Tasmota/tasmota/tasmota_xdrv_driver/xdrv_56_rtc_chips.ino

465 lines
15 KiB
C++

/*
xsns_56_rtc_chips.ino - RTC chip support for Tasmota
SPDX-FileCopyrightText: 2022 Theo Arends
SPDX-License-Identifier: GPL-3.0-only
*/
#ifdef USE_I2C
#ifdef USE_RTC_CHIPS
/*********************************************************************************************\
* RTC chip support
\*********************************************************************************************/
#define XDRV_56 56
#ifdef USE_GPS // GPS driver has it's own NTP server
#undef RTC_NTP_SERVER // Disable NTP server (+0k8 code)
#endif
struct {
uint32_t (* ReadTime)(void);
void (* SetTime)(uint32_t);
int32_t (* MemRead)(uint8_t *, uint32_t);
int32_t (* MemWrite)(uint8_t *, uint32_t);
bool detected;
int8_t mem_size = -1;
uint8_t address;
uint8_t bus;
char name[10];
} RtcChip;
/*********************************************************************************************\
* DS1307 and DS3231
*
* I2C Address: 0x68
\*********************************************************************************************/
#ifdef USE_DS3231
#define XI2C_26 26 // See I2CDEVICES.md
#define DS3231_ADDRESS 0x68 // DS3231 I2C Address
// DS3231 Register Addresses
#define DS3231_SECONDS 0x00
#define DS3231_MINUTES 0x01
#define DS3231_HOURS 0x02
#define DS3231_DAY 0x03
#define DS3231_DATE 0x04
#define DS3231_MONTH 0x05
#define DS3231_YEAR 0x06
#define DS3231_CONTROL 0x0E
#define DS3231_STATUS 0x0F
// Control register bits
#define DS3231_OSF 7
#define DS3231_EOSC 7
#define DS3231_BBSQW 6
#define DS3231_CONV 5
#define DS3231_RS2 4
#define DS3231_RS1 3
#define DS3231_INTCN 2
//Other
#define DS3231_HR1224 6 // Hours register 12 or 24 hour mode (24 hour mode==0)
#define DS3231_CENTURY 7 // Century bit in Month register
#define DS3231_DYDT 6 // Day/Date flag bit in alarm Day/Date registers
/*-------------------------------------------------------------------------------------------*\
* Read time from DS3231 and return the epoch time (second since 1-1-1970 00:00)
\*-------------------------------------------------------------------------------------------*/
uint32_t DS3231ReadTime(void) {
TIME_T tm;
tm.second = Bcd2Dec(I2cRead8(RtcChip.address, DS3231_SECONDS));
tm.minute = Bcd2Dec(I2cRead8(RtcChip.address, DS3231_MINUTES));
tm.hour = Bcd2Dec(I2cRead8(RtcChip.address, DS3231_HOURS) & ~_BV(DS3231_HR1224)); // Assumes 24hr clock
tm.day_of_week = I2cRead8(RtcChip.address, DS3231_DAY);
tm.day_of_month = Bcd2Dec(I2cRead8(RtcChip.address, DS3231_DATE));
tm.month = Bcd2Dec(I2cRead8(RtcChip.address, DS3231_MONTH) & ~_BV(DS3231_CENTURY)); // Don't use the Century bit
tm.year = Bcd2Dec(I2cRead8(RtcChip.address, DS3231_YEAR));
return MakeTime(tm);
}
/*-------------------------------------------------------------------------------------------*\
* Get time as TIME_T and set the DS3231 time to this value
\*-------------------------------------------------------------------------------------------*/
void DS3231SetTime(uint32_t epoch_time) {
TIME_T tm;
BreakTime(epoch_time, tm);
I2cWrite8(RtcChip.address, DS3231_SECONDS, Dec2Bcd(tm.second));
I2cWrite8(RtcChip.address, DS3231_MINUTES, Dec2Bcd(tm.minute));
I2cWrite8(RtcChip.address, DS3231_HOURS, Dec2Bcd(tm.hour));
I2cWrite8(RtcChip.address, DS3231_DAY, tm.day_of_week);
I2cWrite8(RtcChip.address, DS3231_DATE, Dec2Bcd(tm.day_of_month));
I2cWrite8(RtcChip.address, DS3231_MONTH, Dec2Bcd(tm.month));
I2cWrite8(RtcChip.address, DS3231_YEAR, Dec2Bcd(tm.year));
I2cWrite8(RtcChip.address, DS3231_STATUS, I2cRead8(RtcChip.address, DS3231_STATUS) & ~_BV(DS3231_OSF)); // Clear the Oscillator Stop Flag
}
/*-------------------------------------------------------------------------------------------*\
* Detection
\*-------------------------------------------------------------------------------------------*/
void DS3231Detected(void) {
if (!RtcChip.detected && I2cEnabled(XI2C_26)) {
RtcChip.address = DS3231_ADDRESS;
if (I2cSetDevice(RtcChip.address)) {
if (I2cValidRead(RtcChip.address, DS3231_STATUS, 1)) {
RtcChip.detected = 1;
strcpy_P(RtcChip.name, PSTR("DS3231"));
RtcChip.ReadTime = &DS3231ReadTime;
RtcChip.SetTime = &DS3231SetTime;
RtcChip.mem_size = -1;
}
}
}
}
#endif // USE_DS3231
/*********************************************************************************************\
* BM8563 - Real Time Clock
*
* I2C Address: 0x51 (Fixed in library as BM8563_ADRESS)
\*********************************************************************************************/
#ifdef USE_BM8563
#define XI2C_59 59 // See I2CDEVICES.md
#include "BM8563.h"
struct {
BM8563 Rtc;
bool rtc_ready = false;
bool ntp_time_ok = false;
} bm8563_driver;
uint32_t BM8563GetUtc(void) {
RTC_TimeTypeDef RTCtime;
// 1. read has errors ???
bm8563_driver.Rtc.GetTime(&RTCtime);
// core2_globs.Rtc.GetTime(&RTCtime);
RTC_DateTypeDef RTCdate;
bm8563_driver.Rtc.GetDate(&RTCdate);
TIME_T tm;
tm.second = RTCtime.Seconds;
tm.minute = RTCtime.Minutes;
tm.hour = RTCtime.Hours;
tm.day_of_week = RTCdate.WeekDay;
tm.day_of_month = RTCdate.Date;
tm.month = RTCdate.Month;
tm.year = RTCdate.Year - 1970;
return MakeTime(tm);
}
void BM8563SetUtc(uint32_t epoch_time) {
TIME_T tm;
BreakTime(epoch_time, tm);
RTC_TimeTypeDef RTCtime;
RTCtime.Hours = tm.hour;
RTCtime.Minutes = tm.minute;
RTCtime.Seconds = tm.second;
bm8563_driver.Rtc.SetTime(&RTCtime);
RTC_DateTypeDef RTCdate;
RTCdate.WeekDay = tm.day_of_week;
RTCdate.Month = tm.month;
RTCdate.Date = tm.day_of_month;
RTCdate.Year = tm.year + 1970;
bm8563_driver.Rtc.SetDate(&RTCdate);
}
/*-------------------------------------------------------------------------------------------*\
* Detection
\*-------------------------------------------------------------------------------------------*/
void BM8563Detected(void) {
if (!RtcChip.detected && I2cEnabled(XI2C_59)) {
RtcChip.address = BM8563_ADRESS;
if (I2cSetDevice(RtcChip.address, 0)) {
RtcChip.detected = 1;
}
#ifdef ESP32
else if (I2cSetDevice(RtcChip.address, 1)) {
RtcChip.detected = 1;
RtcChip.bus = 1;
bm8563_driver.Rtc.setBus(1); // switch to bus 1
}
#endif
if (RtcChip.detected) {
bm8563_driver.Rtc.begin();
strcpy_P(RtcChip.name, PSTR("BM8563"));
RtcChip.ReadTime = &BM8563GetUtc;
RtcChip.SetTime = &BM8563SetUtc;
RtcChip.mem_size = -1;
}
}
}
#endif // USE_BM8563
/*********************************************************************************************\
* PCF85363 support
*
* I2C Address: 0x51
\*********************************************************************************************/
#ifdef USE_PCF85363
#define XI2C_66 66 // See I2CDEVICES.md
#define PCF85363_ADDRESS 0x51 // PCF85363 I2C Address
/*-------------------------------------------------------------------------------------------*\
* Read time and return the epoch time (second since 1-1-1970 00:00)
\*-------------------------------------------------------------------------------------------*/
uint32_t Pcf85363ReadTime(void) {
Wire.beginTransmission(RtcChip.address);
Wire.write(0x00);
Wire.endTransmission();
uint8_t buffer[8];
Wire.requestFrom(RtcChip.address, (uint8_t)8);
for (uint32_t i = 0; i < 8; i++) { buffer[i] = Wire.read(); }
Wire.endTransmission();
TIME_T tm;
tm.second = Bcd2Dec(buffer[1] & 0x7F);
tm.minute = Bcd2Dec(buffer[2] & 0x7F);
tm.hour = Bcd2Dec(buffer[3]);
tm.day_of_month = Bcd2Dec(buffer[4]);
tm.day_of_week = buffer[5];
tm.month = Bcd2Dec(buffer[6]);
tm.year = 30 + Bcd2Dec(buffer[7]); // Offset from 1970. So 2022 - 1970 = 52
return MakeTime(tm);
}
/*-------------------------------------------------------------------------------------------*\
* Get time as TIME_T and set time to this value
\*-------------------------------------------------------------------------------------------*/
void Pcf85363SetTime(uint32_t epoch_time) {
TIME_T tm;
BreakTime(epoch_time, tm);
uint8_t buffer[8];
buffer[0] = 0x00; // 100th_seconds (not used)
buffer[1] = Dec2Bcd(tm.second);
buffer[2] = Dec2Bcd(tm.minute);
buffer[3] = Dec2Bcd(tm.hour);
buffer[4] = Dec2Bcd(tm.day_of_month);
buffer[5] = tm.day_of_week;
buffer[6] = Dec2Bcd(tm.month);
buffer[7] = Dec2Bcd(tm.year -30); // Offset from 1970
/*
// Handbook page 13
Wire.beginTransmission(RtcChip.address);
Wire.write(0x2E);
Wire.write(0x01); // Set stop
Wire.write(0xA4); // Clear prescaler
for (uint32_t i = 0; i < 8; i++) { Wire.write(buffer[i]); }
Wire.endTransmission();
Wire.beginTransmission(RtcChip.address);
Wire.write(0x2E);
Wire.write(0x00); // Set start
Wire.endTransmission();
*/
Wire.beginTransmission(RtcChip.address);
Wire.write(0x00);
for (uint32_t i = 0; i < 8; i++) { Wire.write(buffer[i]); }
Wire.endTransmission();
}
/*-------------------------------------------------------------------------------------------*\
* Dump all registers
\*-------------------------------------------------------------------------------------------*/
/*
void Pcf85363Dump(void) {
uint8_t buffer[64];
// 0x00 to 0x2F
Wire.beginTransmission(RtcChip.address);
Wire.write(0x00);
Wire.endTransmission();
Wire.requestFrom(RtcChip.address, (uint8_t)48);
for (uint32_t i = 0; i < 48; i++) {
buffer[i] = Wire.read();
}
Wire.endTransmission();
AddLog(LOG_LEVEL_DEBUG, PSTR("P85: Read 0x00: %48_H"), buffer);
// 0x40 to 0x7F
Wire.beginTransmission(RtcChip.address);
Wire.write(0x40);
Wire.endTransmission();
Wire.requestFrom(RtcChip.address, (uint8_t)64);
for (uint32_t i = 0; i < 64; i++) {
buffer[i] = Wire.read();
}
Wire.endTransmission();
AddLog(LOG_LEVEL_DEBUG, PSTR("P85: Read 0x40: %64_H"), buffer);
}
*/
/*-------------------------------------------------------------------------------------------*\
* Memory block functions
\*-------------------------------------------------------------------------------------------*/
int32_t Pcf8563MemRead(uint8_t *buffer, uint32_t size) {
return I2cReadBuffer(RtcChip.address, 0x40, buffer, size);
}
int32_t Pcf8563MemWrite(uint8_t *buffer, uint32_t size) {
return I2cWriteBuffer(RtcChip.address, 0x40, (uint8_t *)buffer, size);
}
/*-------------------------------------------------------------------------------------------*\
* Detection
\*-------------------------------------------------------------------------------------------*/
void Pcf85363Detected(void) {
if (!RtcChip.detected && I2cEnabled(XI2C_66)) {
RtcChip.address = PCF85363_ADDRESS;
if (I2cSetDevice(RtcChip.address)) {
RtcChip.detected = 1;
strcpy_P(RtcChip.name, PSTR("PCF85363"));
RtcChip.ReadTime = &Pcf85363ReadTime;
RtcChip.SetTime = &Pcf85363SetTime;
RtcChip.mem_size = 64;
RtcChip.MemRead = &Pcf8563MemRead;
RtcChip.MemWrite = &Pcf8563MemWrite;
}
}
}
#endif // USE_PCF85363
/*********************************************************************************************\
* RTC Detect and time set
\*********************************************************************************************/
void RtcChipDetect(void) {
RtcChip.detected = 0;
RtcChip.bus = 0;
#ifdef USE_DS3231
DS3231Detected();
#endif // USE_DS3231
#ifdef USE_BM8563
BM8563Detected();
#endif // USE_BM8563
#ifdef USE_PCF85363
Pcf85363Detected();
#endif // USE_PCF85363
if (!RtcChip.detected) { return; }
I2cSetActiveFound(RtcChip.address, RtcChip.name, RtcChip.bus);
if (Rtc.utc_time < START_VALID_TIME) { // Not sync with NTP/GPS (time not valid), so read time
uint32_t time = RtcChip.ReadTime(); // Read UTC TIME
if (time > START_VALID_TIME) {
Rtc.utc_time = time;
RtcSync(RtcChip.name);
}
}
}
void RtcChipTimeSynced(void) {
if ((Rtc.utc_time > START_VALID_TIME) && // Valid UTC time
(abs((int32_t)(Rtc.utc_time - RtcChip.ReadTime())) > 2)) { // Time has drifted from RTC more than 2 seconds
RtcChip.SetTime(Rtc.utc_time); // Update time
AddLog(LOG_LEVEL_DEBUG, PSTR("RTC: %s re-synced (" D_UTC_TIME ") %s"), RtcChip.name, GetDateAndTime(DT_UTC).c_str());
}
}
int32_t RtcChipMemSize(void) {
return RtcChip.mem_size; // Not supported or max size
}
int32_t RtcChipMemRead(uint8_t *buffer, uint32_t size) {
if (size <= RtcChip.mem_size) {
return RtcChip.MemRead(buffer, size);
}
return -1; // Not supported or too large
}
int32_t RtcChipMemWrite(uint8_t *buffer, uint32_t size) {
if (size <= RtcChip.mem_size) {
return RtcChip.MemWrite(buffer, size);
}
return -1; // Not supported or too large
}
/*********************************************************************************************\
* NTP server functions
\*********************************************************************************************/
#ifdef RTC_NTP_SERVER
#include "NTPServer.h"
#include "NTPPacket.h"
#define NTP_MILLIS_OFFSET 50
const char kRtcChipCommands[] PROGMEM = "Rtc|" // Prefix
D_CMND_NTPSERVER;
void (* const RtcChipCommand[])(void) PROGMEM = {
&CmndRtcNtpServer };
NtpServer RtcChipTimeServer(PortUdp);
void RtcChipEverySecond(void) {
static bool ntp_server_started = false;
if (Settings->sbflag1.local_ntp_server && (Rtc.utc_time > START_VALID_TIME)) {
if (!ntp_server_started) {
if (RtcChipTimeServer.beginListening()) {
ntp_server_started = true;
AddLog(LOG_LEVEL_DEBUG, PSTR("RTC: NTP server started"));
}
} else {
RtcChipTimeServer.processOneRequest(Rtc.utc_time, NTP_MILLIS_OFFSET);
}
}
}
void CmndRtcNtpServer(void) {
// RtcChipNtpServer 0 or 1
if (XdrvMailbox.payload >= 0) {
Settings->sbflag1.local_ntp_server = 0;
if ((XdrvMailbox.payload &1) && RtcChipTimeServer.beginListening()) {
Settings->sbflag1.local_ntp_server = 1;
}
}
ResponseCmndStateText(Settings->sbflag1.local_ntp_server);
}
#endif // RTC_NTP_SERVER
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv56(uint8_t function) {
bool result = false;
#ifdef RTC_NTP_SERVER
switch (function) {
case FUNC_EVERY_SECOND:
RtcChipEverySecond();
break;
case FUNC_COMMAND:
result = DecodeCommand(kRtcChipCommands, RtcChipCommand);
break;
}
#endif // RTC_NTP_SERVER
if (FUNC_MODULE_INIT == function) {
RtcChipDetect();
}
else if (RtcChip.detected) {
switch (function) {
case FUNC_TIME_SYNCED:
RtcChipTimeSynced();
break;
}
}
return result;
}
#endif // USE_RTC_CHIPS
#endif // USE_I2C