mirror of https://github.com/arendst/Tasmota.git
694 lines
32 KiB
C++
694 lines
32 KiB
C++
/*
|
||
xnrg_19_cse7761.ino - CSE7761 energy sensor support for Tasmota
|
||
|
||
Copyright (C) 2021 Theo Arends
|
||
|
||
This program is free software: you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation, either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
This program is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||
*/
|
||
|
||
#ifdef USE_ENERGY_SENSOR
|
||
#ifdef USE_CSE7761
|
||
/*********************************************************************************************\
|
||
* CSE7761 - Energy (Sonoff Dual R3 Pow)
|
||
*
|
||
* Without zero-cross detection
|
||
* {"NAME":"Sonoff Dual R3","GPIO":[32,0,0,0,0,0,0,0,0,576,225,0,0,0,0,0,0,0,0,0,0,7296,7328,224,0,0,0,0,160,161,0,0,0,0,0,0],"FLAG":0,"BASE":1}
|
||
*
|
||
* With zero-cross detection
|
||
* {"NAME":"Sonoff Dual R3 (ZCD)","GPIO":[32,0,0,0,7552,0,0,0,0,576,225,0,0,0,0,0,0,0,0,0,0,7296,7328,224,0,0,0,0,160,161,0,0,0,0,0,0],"FLAG":0,"BASE":1}
|
||
*
|
||
* Based on datasheet from ChipSea and analysing serial data
|
||
* See https://github.com/arendst/Tasmota/discussions/10793
|
||
* https://goldenrelay.en.alibaba.com/product/62119012875-811845870/GOLDEN_GI_1A_5LH_SPST_5V_5A_10A_250VAC_NO_18_5_10_5_15_3mm_sealed_type_all_certificate_compliances_class_F_SPDT_Form_available.html
|
||
\*********************************************************************************************/
|
||
|
||
#define XNRG_19 19
|
||
|
||
//#define CSE7761_SIMULATE // Enable simulation of CSE7761
|
||
#define CSE7761_FREQUENCY // Add support for frequency monitoring
|
||
#define CSE7761_ZEROCROSS // Add zero cross detection
|
||
#define CSE7761_ZEROCROSS_OFFSET 2200 // Zero cross offset due to chip calculation (microseconds)
|
||
#define CSE7761_RELAY_SWITCHTIME 3950 // Relay (Golden GI-1A-5LH 15ms max) switch power on time (microseconds)
|
||
|
||
#define CSE7761_UREF 42563 // RmsUc
|
||
#define CSE7761_IREF 52241 // RmsIAC
|
||
#define CSE7761_PREF 44513 // PowerPAC
|
||
#define CSE7761_FREF 3579545 // System clock (3.579545MHz) as used in frequency calculation
|
||
|
||
#define CSE7761_REG_SYSCON 0x00 // (2) System Control Register (0x0A04)
|
||
#define CSE7761_REG_EMUCON 0x01 // (2) Metering control register (0x0000)
|
||
#define CSE7761_REG_EMUCON2 0x13 // (2) Metering control register 2 (0x0001)
|
||
#define CSE7761_REG_PULSE1SEL 0x1D // (2) Pin function output select register (0x3210)
|
||
|
||
#define CSE7761_REG_UFREQ 0x23 // (2) Voltage Frequency (0x0000)
|
||
#define CSE7761_REG_RMSIA 0x24 // (3) The effective value of channel A current (0x000000)
|
||
#define CSE7761_REG_RMSIB 0x25 // (3) The effective value of channel B current (0x000000)
|
||
#define CSE7761_REG_RMSU 0x26 // (3) Voltage RMS (0x000000)
|
||
#define CSE7761_REG_POWERFACTOR 0x27 // (3) Power factor register, select by command: channel A Power factor or channel B power factor (0x7FFFFF)
|
||
#define CSE7761_REG_POWERPA 0x2C // (4) Channel A active power, update rate 27.2Hz (0x00000000)
|
||
#define CSE7761_REG_POWERPB 0x2D // (4) Channel B active power, update rate 27.2Hz (0x00000000)
|
||
#define CSE7761_REG_SYSSTATUS 0x43 // (1) System status register
|
||
|
||
#define CSE7761_REG_COEFFOFFSET 0x6E // (2) Coefficient checksum offset (0xFFFF)
|
||
#define CSE7761_REG_COEFFCHKSUM 0x6F // (2) Coefficient checksum
|
||
#define CSE7761_REG_RMSIAC 0x70 // (2) Channel A effective current conversion coefficient
|
||
#define CSE7761_REG_RMSIBC 0x71 // (2) Channel B effective current conversion coefficient
|
||
#define CSE7761_REG_RMSUC 0x72 // (2) Effective voltage conversion coefficient
|
||
#define CSE7761_REG_POWERPAC 0x73 // (2) Channel A active power conversion coefficient
|
||
#define CSE7761_REG_POWERPBC 0x74 // (2) Channel B active power conversion coefficient
|
||
#define CSE7761_REG_POWERSC 0x75 // (2) Apparent power conversion coefficient
|
||
#define CSE7761_REG_ENERGYAC 0x76 // (2) Channel A energy conversion coefficient
|
||
#define CSE7761_REG_ENERGYBC 0x77 // (2) Channel B energy conversion coefficient
|
||
|
||
#define CSE7761_SPECIAL_COMMAND 0xEA // Start special command
|
||
#define CSE7761_CMD_RESET 0x96 // Reset command, after receiving the command, the chip resets
|
||
#define CSE7761_CMD_CHAN_A_SELECT 0x5A // Current channel A setting command, which specifies the current used to calculate apparent power,
|
||
// Power factor, phase angle, instantaneous active power, instantaneous apparent power and
|
||
// The channel indicated by the signal of power overload is channel A
|
||
#define CSE7761_CMD_CHAN_B_SELECT 0xA5 // Current channel B setting command, which specifies the current used to calculate apparent power,
|
||
// Power factor, phase angle, instantaneous active power, instantaneous apparent power and
|
||
// The channel indicated by the signal of power overload is channel B
|
||
#define CSE7761_CMD_CLOSE_WRITE 0xDC // Close write operation
|
||
#define CSE7761_CMD_ENABLE_WRITE 0xE5 // Enable write operation
|
||
|
||
enum CSE7761 { RmsIAC, RmsIBC, RmsUC, PowerPAC, PowerPBC, PowerSC, EnergyAC, EnergyBC };
|
||
|
||
#include <TasmotaSerial.h>
|
||
|
||
TasmotaSerial *Cse7761Serial = nullptr;
|
||
|
||
struct {
|
||
uint32_t frequency = 0;
|
||
uint32_t voltage_rms = 0;
|
||
uint32_t current_rms[2] = { 0 };
|
||
uint32_t energy[2] = { 0 };
|
||
uint32_t active_power[2] = { 0 };
|
||
uint16_t coefficient[8] = { 0 };
|
||
uint8_t energy_update = 0;
|
||
uint8_t init = 4;
|
||
uint8_t ready = 0;
|
||
} CSE7761Data;
|
||
|
||
/********************************************************************************************/
|
||
|
||
void Cse7761Write(uint32_t reg, uint32_t data) {
|
||
uint8_t buffer[5];
|
||
|
||
buffer[0] = 0xA5;
|
||
buffer[1] = reg;
|
||
uint32_t len = 2;
|
||
if (data) {
|
||
if (data < 0xFF) {
|
||
buffer[2] = data & 0xFF;
|
||
len = 3;
|
||
} else {
|
||
buffer[2] = (data >> 8) & 0xFF;
|
||
buffer[3] = data & 0xFF;
|
||
len = 4;
|
||
}
|
||
uint8_t crc = 0;
|
||
for (uint32_t i = 0; i < len; i++) {
|
||
crc += buffer[i];
|
||
}
|
||
buffer[len] = ~crc;
|
||
len++;
|
||
}
|
||
|
||
Cse7761Serial->write(buffer, len);
|
||
|
||
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Tx %*_H"), len, buffer);
|
||
}
|
||
|
||
bool Cse7761ReadOnce(uint32_t log_level, uint32_t reg, uint32_t size, uint32_t* value) {
|
||
while (Cse7761Serial->available()) { Cse7761Serial->read(); }
|
||
|
||
Cse7761Write(reg, 0);
|
||
|
||
uint8_t buffer[8] = { 0 };
|
||
uint32_t rcvd = 0;
|
||
uint32_t timeout = millis() + 3;
|
||
|
||
while (!TimeReached(timeout) && (rcvd <= size)) {
|
||
// while (!TimeReached(timeout)) {
|
||
int value = Cse7761Serial->read();
|
||
if ((value > -1) && (rcvd < sizeof(buffer) -1)) {
|
||
buffer[rcvd++] = value;
|
||
}
|
||
}
|
||
|
||
if (!rcvd) {
|
||
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Rx none"));
|
||
return false;
|
||
}
|
||
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Rx %*_H"), rcvd, buffer);
|
||
if (rcvd > 5) {
|
||
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Rx overflow"));
|
||
return false;
|
||
}
|
||
|
||
rcvd--;
|
||
uint32_t result = 0;
|
||
uint8_t crc = 0xA5 + reg;
|
||
for (uint32_t i = 0; i < rcvd; i++) {
|
||
result = (result << 8) | buffer[i];
|
||
crc += buffer[i];
|
||
}
|
||
crc = ~crc;
|
||
if (crc != buffer[rcvd]) {
|
||
AddLog(log_level, PSTR("C61: Rx %*_H, CRC error %02X"), rcvd +1, buffer, crc);
|
||
return false;
|
||
}
|
||
|
||
*value = result;
|
||
return true;
|
||
}
|
||
|
||
uint32_t Cse7761Read(uint32_t reg, uint32_t size) {
|
||
bool result = false; // Start loop
|
||
uint32_t retry = 3; // Retry up to three times
|
||
uint32_t value = 0; // Default no value
|
||
while (!result && retry) {
|
||
retry--;
|
||
result = Cse7761ReadOnce((retry) ? LOG_LEVEL_DEBUG_MORE : LOG_LEVEL_DEBUG, reg, size, &value);
|
||
}
|
||
return value;
|
||
}
|
||
|
||
uint32_t Cse7761ReadFallback(uint32_t reg, uint32_t prev, uint32_t size) {
|
||
uint32_t value = Cse7761Read(reg, size);
|
||
if (!value) { // Error so use previous value read
|
||
value = prev;
|
||
}
|
||
return value;
|
||
}
|
||
|
||
/********************************************************************************************/
|
||
|
||
uint32_t Cse7761Ref(uint32_t unit) {
|
||
switch (unit) {
|
||
case RmsUC: return 0x400000 * 100 / CSE7761Data.coefficient[RmsUC];
|
||
case RmsIAC: return (0x800000 * 100 / CSE7761Data.coefficient[RmsIAC]) * 10; // Stay within 32 bits
|
||
case PowerPAC: return 0x80000000 / CSE7761Data.coefficient[PowerPAC];
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
bool Cse7761ChipInit(void) {
|
||
uint16_t calc_chksum = 0xFFFF;
|
||
for (uint32_t i = 0; i < 8; i++) {
|
||
CSE7761Data.coefficient[i] = Cse7761Read(CSE7761_REG_RMSIAC + i, 2);
|
||
calc_chksum += CSE7761Data.coefficient[i];
|
||
}
|
||
calc_chksum = ~calc_chksum;
|
||
// uint16_t dummy = Cse7761Read(CSE7761_REG_COEFFOFFSET, 2);
|
||
uint16_t coeff_chksum = Cse7761Read(CSE7761_REG_COEFFCHKSUM, 2);
|
||
if ((calc_chksum != coeff_chksum) || (!calc_chksum)) {
|
||
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Default calibration"));
|
||
CSE7761Data.coefficient[RmsIAC] = CSE7761_IREF;
|
||
// CSE7761Data.coefficient[RmsIBC] = 0xCC05;
|
||
CSE7761Data.coefficient[RmsUC] = CSE7761_UREF;
|
||
CSE7761Data.coefficient[PowerPAC] = CSE7761_PREF;
|
||
// CSE7761Data.coefficient[PowerPBC] = 0xADD7;
|
||
}
|
||
if (HLW_PREF_PULSE == Settings.energy_power_calibration) {
|
||
Settings.energy_frequency_calibration = CSE7761_FREF;
|
||
Settings.energy_voltage_calibration = Cse7761Ref(RmsUC);
|
||
Settings.energy_current_calibration = Cse7761Ref(RmsIAC);
|
||
Settings.energy_power_calibration = Cse7761Ref(PowerPAC);
|
||
}
|
||
// Just to fix intermediate users
|
||
if (Settings.energy_frequency_calibration < CSE7761_FREF / 2) {
|
||
Settings.energy_frequency_calibration = CSE7761_FREF;
|
||
}
|
||
|
||
Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_ENABLE_WRITE);
|
||
|
||
// delay(8); // Exception on ESP8266
|
||
// uint32_t timeout = millis() + 8;
|
||
// while (!TimeReached(timeout)) { }
|
||
|
||
uint8_t sys_status = Cse7761Read(CSE7761_REG_SYSSTATUS, 1);
|
||
#ifdef CSE7761_SIMULATE
|
||
sys_status = 0x11;
|
||
#endif
|
||
if (sys_status & 0x10) { // Write enable to protected registers (WREN)
|
||
/*
|
||
System Control Register (SYSCON) Addr:0x00 Default value: 0x0A04
|
||
Bit name Function description
|
||
15-11 NC -, the default is 1
|
||
10 ADC2ON
|
||
=1, means ADC current channel B is on (Sonoff Dual R3 Pow)
|
||
=0, means ADC current channel B is closed
|
||
9 NC -, the default is 1.
|
||
8-6 PGAIB[2:0] Current channel B analog gain selection highest bit
|
||
=1XX, PGA of current channel B=16 (Sonoff Dual R3 Pow)
|
||
=011, PGA of current channel B=8
|
||
=010, PGA of current channel B=4
|
||
=001, PGA of current channel B=2
|
||
=000, PGA of current channel B=1
|
||
5-3 PGAU[2:0] Highest bit of voltage channel analog gain selection
|
||
=1XX, PGA of voltage U=16
|
||
=011, PGA of voltage U=8
|
||
=010, PGA of voltage U=4
|
||
=001, PGA of voltage U=2
|
||
=000, PGA of voltage U=1 (Sonoff Dual R3 Pow)
|
||
2-0 PGAIA[2:0] Current channel A analog gain selection highest bit
|
||
=1XX, PGA of current channel A=16 (Sonoff Dual R3 Pow)
|
||
=011, PGA of current channel A=8
|
||
=010, PGA of current channel A=4
|
||
=001, PGA of current channel A=2
|
||
=000, PGA of current channel A=1
|
||
*/
|
||
Cse7761Write(CSE7761_REG_SYSCON | 0x80, 0xFF04);
|
||
|
||
/*
|
||
Energy Measure Control Register (EMUCON) Addr:0x01 Default value: 0x0000
|
||
Bit name Function description
|
||
15-14 Tsensor_Step[1:0] Measurement steps of temperature sensor:
|
||
=2'b00 The first step of temperature sensor measurement, the Offset of OP1 and OP2 is +/+. (Sonoff Dual R3 Pow)
|
||
=2'b01 The second step of temperature sensor measurement, the Offset of OP1 and OP2 is +/-.
|
||
=2'b10 The third step of temperature sensor measurement, the Offset of OP1 and OP2 is -/+.
|
||
=2'b11 The fourth step of temperature sensor measurement, the Offset of OP1 and OP2 is -/-.
|
||
After measuring these four results and averaging, the AD value of the current measured temperature can be obtained.
|
||
13 tensor_en Temperature measurement module control
|
||
=0 when the temperature measurement module is closed; (Sonoff Dual R3 Pow)
|
||
=1 when the temperature measurement module is turned on;
|
||
12 comp_off Comparator module close signal:
|
||
=0 when the comparator module is in working state
|
||
=1 when the comparator module is off (Sonoff Dual R3 Pow)
|
||
11-10 Pmode[1:0] Selection of active energy calculation method:
|
||
Pmode =00, both positive and negative active energy participate in the accumulation,
|
||
the accumulation method is algebraic sum mode, the reverse REVQ symbol indicates to active power; (Sonoff Dual R3 Pow)
|
||
Pmode = 01, only accumulate positive active energy;
|
||
Pmode = 10, both positive and negative active energy participate in the accumulation,
|
||
and the accumulation method is absolute value method. No reverse active power indication;
|
||
Pmode =11, reserved, the mode is the same as Pmode =00
|
||
9 NC -
|
||
8 ZXD1 The initial value of ZX output is 0, and different waveforms are output according to the configuration of ZXD1 and ZXD0:
|
||
=0, it means that the ZX output changes only at the selected zero-crossing point (Sonoff Dual R3 Pow)
|
||
=1, indicating that the ZX output changes at both the positive and negative zero crossings
|
||
7 ZXD0
|
||
=0, indicates that the positive zero-crossing point is selected as the zero-crossing detection signal (Sonoff Dual R3 Pow)
|
||
=1, indicating that the negative zero-crossing point is selected as the zero-crossing detection signal
|
||
6 HPFIBOFF
|
||
=0, enable current channel B digital high-pass filter (Sonoff Dual R3 Pow)
|
||
=1, turn off the digital high-pass filter of current channel B
|
||
5 HPFIAOFF
|
||
=0, enable current channel A digital high-pass filter (Sonoff Dual R3 Pow)
|
||
=1, turn off the digital high-pass filter of current channel A
|
||
4 HPFUOFF
|
||
=0, enable U channel digital high pass filter (Sonoff Dual R3 Pow)
|
||
=1, turn off the U channel digital high-pass filter
|
||
3-2 NC -
|
||
1 PBRUN
|
||
=1, enable PFB pulse output and active energy register accumulation; (Sonoff Dual R3 Pow)
|
||
=0 (default), turn off PFB pulse output and active energy register accumulation.
|
||
0 PARUN
|
||
=1, enable PFA pulse output and active energy register accumulation; (Sonoff Dual R3 Pow)
|
||
=0 (default), turn off PFA pulse output and active energy register accumulation.
|
||
*/
|
||
// Cse7761Write(CSE7761_REG_EMUCON | 0x80, 0x1003);
|
||
Cse7761Write(CSE7761_REG_EMUCON | 0x80, 0x1183); // Tasmota enable zero cross detection on both positive and negative signal
|
||
|
||
/*
|
||
Energy Measure Control Register (EMUCON2) Addr: 0x13 Default value: 0x0001
|
||
Bit name Function description
|
||
15-13 NC -
|
||
12 SDOCmos
|
||
=1, SDO pin CMOS open-drain output
|
||
=0, SDO pin CMOS output (Sonoff Dual R3 Pow)
|
||
11 EPB_CB Energy_PB clear signal control, the default is 0, and it needs to be configured to 1 in UART mode.
|
||
Clear after reading is not supported in UART mode
|
||
=1, Energy_PB will not be cleared after reading; (Sonoff Dual R3 Pow)
|
||
=0, Energy_PB is cleared after reading;
|
||
10 EPA_CB Energy_PA clear signal control, the default is 0, it needs to be configured to 1 in UART mode,
|
||
Clear after reading is not supported in UART mode
|
||
=1, Energy_PA will not be cleared after reading; (Sonoff Dual R3 Pow)
|
||
=0, Energy_PA is cleared after reading;
|
||
9-8 DUPSEL[1:0] Average register update frequency control
|
||
=00, Update frequency 3.4Hz
|
||
=01, Update frequency 6.8Hz
|
||
=10, Update frequency 13.65Hz
|
||
=11, Update frequency 27.3Hz (Sonoff Dual R3 Pow)
|
||
7 CHS_IB Current channel B measurement selection signal
|
||
=1, measure the current of channel B (Sonoff Dual R3 Pow)
|
||
=0, measure the internal temperature of the chip
|
||
6 PfactorEN Power factor function enable
|
||
=1, turn on the power factor output function (Sonoff Dual R3 Pow)
|
||
=0, turn off the power factor output function
|
||
5 WaveEN Waveform data, instantaneous data output enable signal
|
||
=1, turn on the waveform data output function (Tasmota add frequency)
|
||
=0, turn off the waveform data output function (Sonoff Dual R3 Pow)
|
||
4 SAGEN Voltage drop detection enable signal, WaveEN=1 must be configured first
|
||
=1, turn on the voltage drop detection function
|
||
=0, turn off the voltage drop detection function (Sonoff Dual R3 Pow)
|
||
3 OverEN Overvoltage, overcurrent, and overload detection enable signal, WaveEN=1 must be configured first
|
||
=1, turn on the overvoltage, overcurrent, and overload detection functions
|
||
=0, turn off the overvoltage, overcurrent, and overload detection functions (Sonoff Dual R3 Pow)
|
||
2 ZxEN Zero-crossing detection, phase angle, voltage frequency measurement enable signal
|
||
=1, turn on the zero-crossing detection, phase angle, and voltage frequency measurement functions (Tasmota add frequency)
|
||
=0, disable zero-crossing detection, phase angle, voltage frequency measurement functions (Sonoff Dual R3 Pow)
|
||
1 PeakEN Peak detect enable signal
|
||
=1, turn on the peak detection function
|
||
=0, turn off the peak detection function (Sonoff Dual R3 Pow)
|
||
0 NC Default is 1
|
||
*/
|
||
#ifndef CSE7761_FREQUENCY
|
||
Cse7761Write(CSE7761_REG_EMUCON2 | 0x80, 0x0FC1); // Sonoff Dual R3 Pow
|
||
#else
|
||
Cse7761Write(CSE7761_REG_EMUCON2 | 0x80, 0x0FE5); // Tasmota add Frequency
|
||
|
||
#ifdef CSE7761_ZEROCROSS
|
||
/*
|
||
Pin function output selection register (PULSE1SEL) Addr: 0x1D Default value: 0x3210
|
||
Bit name Function description
|
||
15-13 NC -
|
||
12 SDOCmos
|
||
=1, SDO pin CMOS open-drain output
|
||
|
||
15-12 NC NC, the default value is 4'b0011
|
||
11-8 NC NC, the default value is 4'b0010
|
||
7-4 P2Sel Pulse2 Pin output function selection, see the table below
|
||
3-0 P1Sel Pulse1 Pin output function selection, see the table below
|
||
|
||
Table Pulsex function output selection list
|
||
Pxsel Select description
|
||
0000 Output of energy metering calibration pulse PFA
|
||
0001 The output of the energy metering calibration pulse PFB
|
||
0010 Comparator indication signal comp_sign
|
||
0011 Interrupt signal IRQ output (the default is high level, if it is an interrupt, set to 0)
|
||
0100 Signal indication of power overload: only PA or PB can be selected
|
||
0101 Channel A negative power indicator signal
|
||
0110 Channel B negative power indicator signal
|
||
0111 Instantaneous value update interrupt output
|
||
1000 Average update interrupt output
|
||
1001 Voltage channel zero-crossing signal output (Tasmota add zero-cross detection)
|
||
1010 Current channel A zero-crossing signal output
|
||
1011 Current channel B zero crossing signal output
|
||
1100 Voltage channel overvoltage indication signal output
|
||
1101 Voltage channel undervoltage indication signal output
|
||
1110 Current channel A overcurrent signal indication output
|
||
1111 Current channel B overcurrent signal indication output
|
||
*/
|
||
Cse7761Write(CSE7761_REG_PULSE1SEL | 0x80, 0x3290);
|
||
#endif // CSE7761_ZEROCROSS
|
||
#endif // CSE7761_FREQUENCY
|
||
} else {
|
||
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Write failed"));
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
void Cse7761GetData(void) {
|
||
// The effective value of current and voltage Rms is a 24-bit signed number, the highest bit is 0 for valid data,
|
||
// and when the highest bit is 1, the reading will be processed as zero
|
||
// The active power parameter PowerA/B is in two’s complement format, 32-bit data, the highest bit is Sign bit.
|
||
uint32_t value = Cse7761ReadFallback(CSE7761_REG_RMSU, CSE7761Data.voltage_rms, 3);
|
||
#ifdef CSE7761_SIMULATE
|
||
value = 2342160; // 237.7V
|
||
#endif
|
||
CSE7761Data.voltage_rms = (value >= 0x800000) ? 0 : value;
|
||
|
||
#ifdef CSE7761_FREQUENCY
|
||
value = Cse7761ReadFallback(CSE7761_REG_UFREQ, CSE7761Data.frequency, 2);
|
||
#ifdef CSE7761_SIMULATE
|
||
value = 8948; // 49.99Hz
|
||
#endif
|
||
CSE7761Data.frequency = (value >= 0x8000) ? 0 : value;
|
||
#endif // CSE7761_FREQUENCY
|
||
|
||
value = Cse7761ReadFallback(CSE7761_REG_RMSIA, CSE7761Data.current_rms[0], 3);
|
||
#ifdef CSE7761_SIMULATE
|
||
value = 455;
|
||
#endif
|
||
CSE7761Data.current_rms[0] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA
|
||
value = Cse7761ReadFallback(CSE7761_REG_POWERPA, CSE7761Data.active_power[0], 4);
|
||
#ifdef CSE7761_SIMULATE
|
||
value = 217;
|
||
#endif
|
||
CSE7761Data.active_power[0] = (0 == CSE7761Data.current_rms[0]) ? 0 : (value & 0x80000000) ? (~value) + 1 : value;
|
||
|
||
value = Cse7761ReadFallback(CSE7761_REG_RMSIB, CSE7761Data.current_rms[1], 3);
|
||
#ifdef CSE7761_SIMULATE
|
||
value = 29760; // 0.185A
|
||
#endif
|
||
CSE7761Data.current_rms[1] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA
|
||
value = Cse7761ReadFallback(CSE7761_REG_POWERPB, CSE7761Data.active_power[1], 4);
|
||
#ifdef CSE7761_SIMULATE
|
||
value = 2126641; // 44.05W
|
||
#endif
|
||
CSE7761Data.active_power[1] = (0 == CSE7761Data.current_rms[1]) ? 0 : (value & 0x80000000) ? (~value) + 1 : value;
|
||
|
||
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: F%d, U%d, I%d/%d, P%d/%d"),
|
||
CSE7761Data.frequency, CSE7761Data.voltage_rms,
|
||
CSE7761Data.current_rms[0], CSE7761Data.current_rms[1],
|
||
CSE7761Data.active_power[0], CSE7761Data.active_power[1]);
|
||
|
||
if (Energy.power_on) { // Powered on
|
||
// Voltage = RmsU * RmsUC * 10 / 0x400000
|
||
// Energy.voltage[0] = (float)(((uint64_t)CSE7761Data.voltage_rms * CSE7761Data.coefficient[RmsUC] * 10) >> 22) / 1000; // V
|
||
Energy.voltage[0] = ((float)CSE7761Data.voltage_rms / Settings.energy_voltage_calibration); // V
|
||
#ifdef CSE7761_FREQUENCY
|
||
Energy.frequency[0] = (CSE7761Data.frequency) ? ((float)Settings.energy_frequency_calibration / 8 / CSE7761Data.frequency) : 0; // Hz
|
||
#endif
|
||
|
||
for (uint32_t channel = 0; channel < 2; channel++) {
|
||
Energy.data_valid[channel] = 0;
|
||
// Active power = PowerPA * PowerPAC * 1000 / 0x80000000
|
||
// Energy.active_power[channel] = (float)(((uint64_t)CSE7761Data.active_power[channel] * CSE7761Data.coefficient[PowerPAC + channel] * 1000) >> 31) / 1000; // W
|
||
Energy.active_power[channel] = (float)CSE7761Data.active_power[channel] / Settings.energy_power_calibration; // W
|
||
if (0 == Energy.active_power[channel]) {
|
||
Energy.current[channel] = 0;
|
||
} else {
|
||
// Current = RmsIA * RmsIAC / 0x800000
|
||
// Energy.current[channel] = (float)(((uint64_t)CSE7761Data.current_rms[channel] * CSE7761Data.coefficient[RmsIAC + channel]) >> 23) / 1000; // A
|
||
Energy.current[channel] = (float)CSE7761Data.current_rms[channel] / Settings.energy_current_calibration; // A
|
||
CSE7761Data.energy[channel] += Energy.active_power[channel];
|
||
CSE7761Data.energy_update++;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/********************************************************************************************/
|
||
/*
|
||
void Cse7761DumpRegs(void) {
|
||
uint32_t registers[23] = { 0 };
|
||
uint32_t reg_num[23] = { 0 };
|
||
reg_num[0] = 0x00; registers[0] = Cse7761Read(0x00, 2);
|
||
reg_num[1] = 0x01; registers[1] = Cse7761Read(0x01, 2);
|
||
reg_num[2] = 0x02; registers[2] = Cse7761Read(0x02, 2);
|
||
reg_num[3] = 0x13; registers[3] = Cse7761Read(0x13, 2);
|
||
reg_num[4] = 0x1D; registers[4] = Cse7761Read(0x1D, 2);
|
||
reg_num[5] = 0x2F; registers[5] = Cse7761Read(0x2F, 3);
|
||
reg_num[6] = 0x40; registers[6] = Cse7761Read(0x40, 2);
|
||
reg_num[7] = 0x41; registers[7] = Cse7761Read(0x41, 2);
|
||
reg_num[8] = 0x42; registers[8] = Cse7761Read(0x42, 2);
|
||
reg_num[9] = 0x43; registers[9] = Cse7761Read(0x43, 1);
|
||
reg_num[10] = 0x44; registers[10] = Cse7761Read(0x44, 4);
|
||
reg_num[11] = 0x45; registers[11] = Cse7761Read(0x45, 2);
|
||
reg_num[12] = 0x6E; registers[12] = Cse7761Read(0x6E, 2);
|
||
reg_num[13] = 0x6F; registers[13] = Cse7761Read(0x6F, 2);
|
||
reg_num[14] = 0x70; registers[14] = Cse7761Read(0x70, 2);
|
||
reg_num[15] = 0x71; registers[15] = Cse7761Read(0x71, 2);
|
||
reg_num[16] = 0x72; registers[16] = Cse7761Read(0x72, 2);
|
||
reg_num[17] = 0x73; registers[17] = Cse7761Read(0x73, 2);
|
||
reg_num[18] = 0x74; registers[18] = Cse7761Read(0x74, 2);
|
||
reg_num[19] = 0x75; registers[19] = Cse7761Read(0x75, 2);
|
||
reg_num[20] = 0x76; registers[20] = Cse7761Read(0x76, 2);
|
||
reg_num[21] = 0x77; registers[21] = Cse7761Read(0x77, 2);
|
||
reg_num[22] = 0x7F; registers[22] = Cse7761Read(0x7F, 3);
|
||
|
||
char reg_data[320];
|
||
reg_data[0] = '\0';
|
||
for (uint32_t i = 0; i < 23; i++) {
|
||
snprintf_P(reg_data, sizeof(reg_data), PSTR("%s%s%8X"), reg_data, (i) ? "," : "", reg_num[i]);
|
||
}
|
||
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: RegDump %s"), reg_data);
|
||
|
||
reg_data[0] = '\0';
|
||
for (uint32_t i = 0; i < 23; i++) {
|
||
snprintf_P(reg_data, sizeof(reg_data), PSTR("%s%s%08X"), reg_data, (i) ? "," : "", registers[i]);
|
||
}
|
||
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: RegDump %s"), reg_data);
|
||
}
|
||
*/
|
||
|
||
void Cse7761Every200ms(void) {
|
||
if (2 == CSE7761Data.ready) {
|
||
Cse7761GetData();
|
||
}
|
||
}
|
||
|
||
void Cse7761EverySecond(void) {
|
||
if (CSE7761Data.init) {
|
||
if (3 == CSE7761Data.init) {
|
||
Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_RESET);
|
||
}
|
||
else if (2 == CSE7761Data.init) {
|
||
uint16_t syscon = Cse7761Read(0x00, 2); // Default 0x0A04
|
||
#ifdef CSE7761_SIMULATE
|
||
syscon = 0x0A04;
|
||
#endif
|
||
if ((0x0A04 == syscon) && Cse7761ChipInit()) {
|
||
CSE7761Data.ready = 1;
|
||
}
|
||
}
|
||
else if (1 == CSE7761Data.init) {
|
||
if (1 == CSE7761Data.ready) {
|
||
Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_CLOSE_WRITE);
|
||
AddLog(LOG_LEVEL_INFO, PSTR("C61: CSE7761 found"));
|
||
CSE7761Data.ready = 2;
|
||
}
|
||
}
|
||
CSE7761Data.init--;
|
||
}
|
||
else {
|
||
if (2 == CSE7761Data.ready) {
|
||
if (CSE7761Data.energy_update) {
|
||
uint32_t energy_sum = ((CSE7761Data.energy[0] + CSE7761Data.energy[1]) * 1000) / CSE7761Data.energy_update;
|
||
if (energy_sum) {
|
||
Energy.kWhtoday_delta += energy_sum / 36;
|
||
EnergyUpdateToday();
|
||
}
|
||
}
|
||
CSE7761Data.energy[0] = 0;
|
||
CSE7761Data.energy[1] = 0;
|
||
CSE7761Data.energy_update = 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
void Cse7761SnsInit(void) {
|
||
// Software serial init needs to be done here as earlier (serial) interrupts may lead to Exceptions
|
||
Cse7761Serial = new TasmotaSerial(Pin(GPIO_CSE7761_RX), Pin(GPIO_CSE7761_TX), 1);
|
||
if (Cse7761Serial->begin(38400, SERIAL_8E1)) {
|
||
if (Cse7761Serial->hardwareSerial()) {
|
||
SetSerial(38400, TS_SERIAL_8E1);
|
||
ClaimSerial();
|
||
}
|
||
|
||
#ifdef CSE7761_FREQUENCY
|
||
#ifdef CSE7761_ZEROCROSS
|
||
ZeroCrossInit(CSE7761_ZEROCROSS_OFFSET + CSE7761_RELAY_SWITCHTIME);
|
||
#endif // CSE7761_ZEROCROSS
|
||
#endif // CSE7761_FREQUENCY
|
||
|
||
} else {
|
||
TasmotaGlobal.energy_driver = ENERGY_NONE;
|
||
}
|
||
}
|
||
|
||
void Cse7761DrvInit(void) {
|
||
if (PinUsed(GPIO_CSE7761_RX) && PinUsed(GPIO_CSE7761_TX)) {
|
||
CSE7761Data.ready = 0;
|
||
CSE7761Data.init = 4; // Init setup steps
|
||
Energy.phase_count = 2; // Handle two channels as two phases
|
||
Energy.voltage_common = true; // Use common voltage
|
||
#ifdef CSE7761_FREQUENCY
|
||
Energy.frequency_common = true; // Use common frequency
|
||
#endif
|
||
Energy.use_overtemp = true; // Use global temperature for overtemp detection
|
||
TasmotaGlobal.energy_driver = XNRG_19;
|
||
}
|
||
}
|
||
|
||
bool Cse7761Command(void) {
|
||
bool serviced = true;
|
||
|
||
uint32_t channel = (2 == XdrvMailbox.index) ? 1 : 0;
|
||
uint32_t value = (uint32_t)(CharToFloat(XdrvMailbox.data) * 100); // 1.23 = 123
|
||
|
||
if (CMND_POWERCAL == Energy.command_code) {
|
||
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(PowerPAC); }
|
||
// Service in xdrv_03_energy.ino
|
||
}
|
||
else if (CMND_POWERSET == Energy.command_code) {
|
||
if (XdrvMailbox.data_len && CSE7761Data.active_power[channel]) {
|
||
if ((value > 100) && (value < 200000)) { // Between 1W and 2000W
|
||
Settings.energy_power_calibration = ((CSE7761Data.active_power[channel]) / value) * 100;
|
||
}
|
||
}
|
||
}
|
||
else if (CMND_VOLTAGECAL == Energy.command_code) {
|
||
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(RmsUC); }
|
||
// Service in xdrv_03_energy.ino
|
||
}
|
||
else if (CMND_VOLTAGESET == Energy.command_code) {
|
||
if (XdrvMailbox.data_len && CSE7761Data.voltage_rms) {
|
||
if ((value > 10000) && (value < 26000)) { // Between 100V and 260V
|
||
Settings.energy_voltage_calibration = (CSE7761Data.voltage_rms * 100) / value;
|
||
}
|
||
}
|
||
}
|
||
else if (CMND_CURRENTCAL == Energy.command_code) {
|
||
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(RmsIAC); }
|
||
// Service in xdrv_03_energy.ino
|
||
}
|
||
else if (CMND_CURRENTSET == Energy.command_code) {
|
||
if (XdrvMailbox.data_len && CSE7761Data.current_rms[channel]) {
|
||
if ((value > 1000) && (value < 1000000)) { // Between 10mA and 10A
|
||
Settings.energy_current_calibration = ((CSE7761Data.current_rms[channel] * 100) / value) * 1000;
|
||
}
|
||
}
|
||
}
|
||
#ifdef CSE7761_FREQUENCY
|
||
else if (CMND_FREQUENCYCAL == Energy.command_code) {
|
||
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = CSE7761_FREF; }
|
||
// Service in xdrv_03_energy.ino
|
||
}
|
||
else if (CMND_FREQUENCYSET == Energy.command_code) {
|
||
if (XdrvMailbox.data_len && CSE7761Data.frequency) {
|
||
if ((value > 4500) && (value < 6500)) { // Between 45.00Hz and 65.00Hz
|
||
Settings.energy_frequency_calibration = (CSE7761Data.frequency * 8 * value) / 100;
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
else serviced = false; // Unknown command
|
||
|
||
return serviced;
|
||
}
|
||
|
||
/*********************************************************************************************\
|
||
* Interface
|
||
\*********************************************************************************************/
|
||
|
||
bool Xnrg19(uint8_t function) {
|
||
bool result = false;
|
||
|
||
switch (function) {
|
||
case FUNC_EVERY_200_MSECOND:
|
||
Cse7761Every200ms();
|
||
break;
|
||
case FUNC_ENERGY_EVERY_SECOND:
|
||
Cse7761EverySecond();
|
||
break;
|
||
case FUNC_COMMAND:
|
||
result = Cse7761Command();
|
||
break;
|
||
case FUNC_INIT:
|
||
Cse7761SnsInit();
|
||
break;
|
||
case FUNC_PRE_INIT:
|
||
Cse7761DrvInit();
|
||
break;
|
||
}
|
||
return result;
|
||
}
|
||
|
||
#endif // USE_CSE7761
|
||
#endif // USE_ENERGY_SENSOR
|