Tasmota/tasmota/tasmota_xsns_sensor/xsns_01_counter.ino

442 lines
19 KiB
C++

/*
xsns_01_counter.ino - Counter sensors (water meters, electricity meters etc.) sensor support for Tasmota
Copyright (C) 2021 Maarten Damen and Theo Arends
Stefan Bode (Zero-Cross Dimmer)
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_COUNTER
/*********************************************************************************************\
* Counter sensors (water meters, electricity meters etc.)
\*********************************************************************************************/
#define XSNS_01 1
#define D_PRFX_COUNTER "Counter"
#define D_CMND_COUNTERTYPE "Type"
#define D_CMND_COUNTERDEBOUNCE "Debounce"
#define D_CMND_COUNTERDEBOUNCELOW "DebounceLow"
#define D_CMND_COUNTERDEBOUNCEHIGH "DebounceHigh"
const char kCounterCommands[] PROGMEM = D_PRFX_COUNTER "|" // Prefix
"|" D_CMND_COUNTERTYPE "|" D_CMND_COUNTERDEBOUNCE "|" D_CMND_COUNTERDEBOUNCELOW "|" D_CMND_COUNTERDEBOUNCEHIGH ;
void (* const CounterCommand[])(void) PROGMEM = {
&CmndCounter, &CmndCounterType, &CmndCounterDebounce, &CmndCounterDebounceLow, &CmndCounterDebounceHigh };
uint8_t ctr_index[MAX_COUNTERS] = { 0, 1, 2, 3 };
struct COUNTER {
uint32_t timer[MAX_COUNTERS]; // Last counter time in micro seconds
uint32_t timer_low_high[MAX_COUNTERS]; // Last low/high counter time in micro seconds
uint8_t no_pullup = 0; // Counter input pullup flag (1 = No pullup)
uint8_t pin_state = 0; // LSB0..3 Last state of counter pin; LSB7==0 IRQ is FALLING, LSB7==1 IRQ is CHANGE
bool any_counter = false;
} Counter;
#ifdef USE_AC_ZERO_CROSS_DIMMER
struct AC_ZERO_CROSS_DIMMER {
bool startReSync = false; // set to TRUE if zero-cross event occurs
bool startMeasurePhase[MAX_COUNTERS] ; // set to TRUE if channel is ON and zero-cross occurs to initiate phase measure on channel
bool pwm_defined[MAX_COUNTERS]; // check if all GPIO are set and zerocross enabled. Then ADD dimmer.
bool PWM_ON[MAX_COUNTERS] ; // internal ON/OFF of the channel
uint32_t current_cycle_ClockCycles = 0; // amount of clock cycles between two zero-cross events.
uint32_t currentPWMCycleCount[MAX_COUNTERS] ; // clock cycle time of PWM channel, required to measure actual phase. [3] is phase of zero-cross
int16_t currentShiftClockCycle[MAX_COUNTERS]; // dynamic phase correction per channel in clock cycles
uint32_t tobe_cycle_timeClockCycles = 0; // clock cycles between zero-cross events. Depend on main frequency and CPU speed
uint32_t lastCycleCount = 0; // Last value of GetCycleCount during zero-cross sychronisation
uint32_t currentSteps = 100; // dynamic value of zero-crosses between two sychronisation intervalls (default=20 == 200ms at 100Hz)
uint32_t high; // cycle counts for PWM high vaule. needs long enough (4µs) to secure fire TRIAC
} ac_zero_cross_dimmer;
#endif //USE_AC_ZERO_CROSS_DIMMER
void IRAM_ATTR CounterIsrArg(void *arg) {
uint32_t index = *static_cast<uint8_t*>(arg);
uint32_t time = micros();
uint32_t debounce_time;
if (Counter.pin_state) {
// handle low and high debounce times when configured
if (digitalRead(Pin(GPIO_CNTR1, index)) == bitRead(Counter.pin_state, index)) {
// new pin state to be ignored because debounce time was not met during last IRQ
return;
}
debounce_time = time - Counter.timer_low_high[index];
if bitRead(Counter.pin_state, index) {
// last valid pin state was high, current pin state is low
if (debounce_time <= Settings->pulse_counter_debounce_high * 1000) return;
} else {
// last valid pin state was low, current pin state is high
if (debounce_time <= Settings->pulse_counter_debounce_low * 1000) return;
}
// passed debounce check, save pin state and timing
Counter.timer_low_high[index] = time;
Counter.pin_state ^= (1<<index);
// do not count on rising edge
if bitRead(Counter.pin_state, index) {
// PWMfrequency 100
// restart PWM each second (german 50Hz has to up to 0.01% deviation)
// restart initiated by setting Counter.startReSync = true;
#ifdef USE_AC_ZERO_CROSS_DIMMER
// if zero-cross events occur ond channel is on. phase on PWM must be measured
if ( ac_zero_cross_dimmer.startMeasurePhase[index] == true ) {
ac_zero_cross_dimmer.currentPWMCycleCount[index] = ESP.getCycleCount();
ac_zero_cross_dimmer.startMeasurePhase[index] = false;
}
// if zero-cross event occurs (200ms window, 5-times a second) and device is online for >10sec
if (index == 3 && RtcSettings.pulse_counter[index]%(Settings->pwm_frequency / 5) == 0 && ac_zero_cross_dimmer.pwm_defined[index] && millis() > 10000) {
ac_zero_cross_dimmer.currentPWMCycleCount[index] = ESP.getCycleCount();
if (ac_zero_cross_dimmer.lastCycleCount > 0) {
// start phase measure on PWM channels and initiate phase sync with zero-cross.
ac_zero_cross_dimmer.startReSync = true;
for (uint8_t k=0; k < MAX_COUNTERS-1; k++ ) {
if (ac_zero_cross_dimmer.PWM_ON[k] == true) ac_zero_cross_dimmer.startMeasurePhase[k] = true;
}
ac_zero_cross_dimmer.currentSteps = (ac_zero_cross_dimmer.currentPWMCycleCount[index]-ac_zero_cross_dimmer.lastCycleCount+(ac_zero_cross_dimmer.tobe_cycle_timeClockCycles/2))/(ac_zero_cross_dimmer.tobe_cycle_timeClockCycles);
ac_zero_cross_dimmer.current_cycle_ClockCycles = (ac_zero_cross_dimmer.currentPWMCycleCount[index]-ac_zero_cross_dimmer.lastCycleCount)/ac_zero_cross_dimmer.currentSteps;
}
ac_zero_cross_dimmer.lastCycleCount = ac_zero_cross_dimmer.currentPWMCycleCount[index];
}
#endif //USE_AC_ZERO_CROSS_DIMMER
return;
}
}
debounce_time = time - Counter.timer[index];
if (debounce_time > Settings->pulse_counter_debounce * 1000) {
Counter.timer[index] = time;
if (bitRead(Settings->pulse_counter_type, index)) {
RtcSettings.pulse_counter[index] = debounce_time;
} else {
RtcSettings.pulse_counter[index]++;
}
}
}
/********************************************************************************************/
void CounterInterruptDisable(bool state)
{
if (state) { // Disable interrupts
if (Counter.any_counter) {
for (uint32_t i = 0; i < MAX_COUNTERS; i++) {
if (PinUsed(GPIO_CNTR1, i)) {
detachInterrupt(Pin(GPIO_CNTR1, i));
}
}
Counter.any_counter = false;
}
} else { // Enable interrupts
if (!Counter.any_counter) {
CounterInit();
}
}
}
bool CounterPinState(void)
{
if ((XdrvMailbox.index >= AGPIO(GPIO_CNTR1_NP)) && (XdrvMailbox.index < (AGPIO(GPIO_CNTR1_NP) + MAX_COUNTERS))) {
bitSet(Counter.no_pullup, XdrvMailbox.index - AGPIO(GPIO_CNTR1_NP));
XdrvMailbox.index -= (AGPIO(GPIO_CNTR1_NP) - AGPIO(GPIO_CNTR1));
return true;
}
return false;
}
void CounterInit(void)
{
for (uint32_t i = 0; i < MAX_COUNTERS; i++) {
if (PinUsed(GPIO_CNTR1, i)) {
#ifdef USE_AC_ZERO_CROSS_DIMMER
if (Settings->flag4.zerocross_dimmer) {
ac_zero_cross_dimmer.current_cycle_ClockCycles = ac_zero_cross_dimmer.tobe_cycle_timeClockCycles = microsecondsToClockCycles(1000000 / Settings->pwm_frequency);
// short fire on PWM to ensure not to hit next sinus curve but trigger the TRIAC. 0.78% of duty cycle (10ms) ~4µs
ac_zero_cross_dimmer.high = ac_zero_cross_dimmer.current_cycle_ClockCycles / 256;
// Support for dimmer 1-3. Counter4 reseverd for zero-cross signal
if ((i < MAX_COUNTERS-1 && PinUsed(GPIO_PWM1, i)) || ( i == MAX_COUNTERS-1) ) {
ac_zero_cross_dimmer.pwm_defined[i] = true;
if (i == 3) {
AddLog(LOG_LEVEL_INFO, PSTR("ZeroCross initialized"));
} else {
AddLog(LOG_LEVEL_INFO, PSTR("Dimmer: [%d] initialized. READY. Dimmer %d"), i+1, Light.fade_running ? Light.fade_cur_10[i] : Light.fade_start_10[i]);
}
}
}
#endif //USE_AC_ZERO_CROSS_DIMMER
Counter.any_counter = true;
pinMode(Pin(GPIO_CNTR1, i), bitRead(Counter.no_pullup, i) ? INPUT : INPUT_PULLUP);
if ((0 == Settings->pulse_counter_debounce_low) && (0 == Settings->pulse_counter_debounce_high) && !Settings->flag4.zerocross_dimmer) {
Counter.pin_state = 0;
attachInterruptArg(Pin(GPIO_CNTR1, i), CounterIsrArg, &ctr_index[i], FALLING);
} else {
Counter.pin_state = 0x8f;
attachInterruptArg(Pin(GPIO_CNTR1, i), CounterIsrArg, &ctr_index[i], CHANGE);
}
}
}
}
void CounterEverySecond(void)
{
for (uint32_t i = 0; i < MAX_COUNTERS; i++) {
if (PinUsed(GPIO_CNTR1, i)) {
if (bitRead(Settings->pulse_counter_type, i)) {
uint32_t time = micros() - Counter.timer[i];
if (time > 4200000000) { // 70 minutes
RtcSettings.pulse_counter[i] = 4200000000; // Set Timer to max in case of no more interrupts due to stall of measured device
}
}
}
}
}
void CounterSaveState(void)
{
for (uint32_t i = 0; i < MAX_COUNTERS; i++) {
if (PinUsed(GPIO_CNTR1, i)) {
Settings->pulse_counter[i] = RtcSettings.pulse_counter[i];
}
}
}
void CounterShow(bool json)
{
bool header = false;
uint8_t dsxflg = 0;
for (uint32_t i = 0; i < MAX_COUNTERS; i++) {
if (PinUsed(GPIO_CNTR1, i)) {
char counter[33];
if (bitRead(Settings->pulse_counter_type, i)) {
dtostrfd((double)RtcSettings.pulse_counter[i] / 1000000, 6, counter);
} else {
dsxflg++;
snprintf_P(counter, sizeof(counter), PSTR("%lu"), RtcSettings.pulse_counter[i]);
}
if (json) {
if (!header) {
ResponseAppend_P(PSTR(",\"COUNTER\":{"));
}
ResponseAppend_P(PSTR("%s\"C%d\":%s"), (header)?",":"", i +1, counter);
header = true;
#ifdef USE_DOMOTICZ
if ((0 == TasmotaGlobal.tele_period) && (1 == dsxflg)) {
DomoticzSensor(DZ_COUNT, RtcSettings.pulse_counter[i]);
dsxflg++;
}
#endif // USE_DOMOTICZ
if ((0 == TasmotaGlobal.tele_period ) && (Settings->flag3.counter_reset_on_tele)) {
RtcSettings.pulse_counter[i] = 0;
}
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(PSTR("{s}" D_COUNTER "%d{m}%s%s{e}"),
i +1, counter, (bitRead(Settings->pulse_counter_type, i)) ? " " D_UNIT_SECOND : "");
#endif // USE_WEBSERVER
}
}
}
if (header) {
ResponseJsonEnd();
}
}
#ifdef USE_AC_ZERO_CROSS_DIMMER
void SyncACDimmer(void)
{
if (ac_zero_cross_dimmer.startReSync ) {
// currently only support one AC Dimmer PWM. Plan to support up to 4 Dimmer on same Phase.
for (uint32_t i = 0; i < MAX_COUNTERS-1; i++) {
if (Light.fade_start_10[i] == 0 && Light.fade_cur_10[i] == 0 && ac_zero_cross_dimmer.PWM_ON[i]==false ) continue;
if (ac_zero_cross_dimmer.pwm_defined[i] && (ac_zero_cross_dimmer.startMeasurePhase[i] == 0 || ac_zero_cross_dimmer.PWM_ON[i] == false ) )
{
uint32_t phaseStart_ActualClockCycles; // As-Is positon of PWM after Zero Cross
uint32_t phaseStart_ToBeClockCycles; // To be position after zero-cross to fire PWM start
int16_t phaseShift_ClockCycles; //
// reset trigger for PWM sync
ac_zero_cross_dimmer.startReSync = false;
// calculate timeoffset to fire PWM based on Dimmer
phaseStart_ToBeClockCycles = (ac_zero_cross_dimmer.tobe_cycle_timeClockCycles * (1024 - (Light.fade_running ? Light.fade_cur_10[i] : Light.fade_start_10[i]))) / 1024;
// Limit range to avoid overshoot and undershoot
phaseStart_ToBeClockCycles = tmin(tmax(phaseStart_ToBeClockCycles, 160000), 0.95* ac_zero_cross_dimmer.tobe_cycle_timeClockCycles);
// Switch OFF dimmer
if (Light.fade_start_10[i] == 0 && !Light.fade_running) {
ac_zero_cross_dimmer.PWM_ON[i]=false;
Light.fade_cur_10[i] = 0;
digitalWrite(Pin(GPIO_PWM1, i), LOW);
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("CNT2: [%d], curr: %d, final: %d, fading: %d, phase-shift: %d, ON/OFF: %d"),i, Light.fade_cur_10[i], Light.fade_start_10[i], Light.fade_running, phaseStart_ToBeClockCycles,ac_zero_cross_dimmer.PWM_ON[i]);
continue;
}
// Calculyte clockcycles between zero-cross [3] and start of the current PWM signal [i]
phaseStart_ActualClockCycles = ac_zero_cross_dimmer.currentPWMCycleCount[i]-ac_zero_cross_dimmer.currentPWMCycleCount[3];
// Calulate additional or less clockcycles to move current phase position to should be position
phaseShift_ClockCycles = (int32_t)((int32_t)phaseStart_ToBeClockCycles-(int32_t)phaseStart_ActualClockCycles)/100;
if ( ac_zero_cross_dimmer.PWM_ON[i] == 0 ) {
// because in LOOP calculate the timelag to fire PWM correctly with zero-cross
uint32_t timelag_ClockCycles = (ESP.getCycleCount() - ac_zero_cross_dimmer.currentPWMCycleCount[3])%ac_zero_cross_dimmer.tobe_cycle_timeClockCycles;
timelag_ClockCycles = ((phaseStart_ToBeClockCycles + ac_zero_cross_dimmer.tobe_cycle_timeClockCycles) - timelag_ClockCycles)%ac_zero_cross_dimmer.tobe_cycle_timeClockCycles;
delayMicroseconds(clockCyclesToMicroseconds(timelag_ClockCycles));
ac_zero_cross_dimmer.PWM_ON[i]=true;
pinMode(Pin(GPIO_PWM1, i), OUTPUT);
} else {
// currentShiftClockCycle is an I-Controller (not PID) to realign the phase. grace time are 5 clock cycles
ac_zero_cross_dimmer.currentShiftClockCycle[i] += phaseShift_ClockCycles > 5 ? 1 : (phaseShift_ClockCycles < -5 ? -1 : 0);
ac_zero_cross_dimmer.current_cycle_ClockCycles += ac_zero_cross_dimmer.currentShiftClockCycle[i]+phaseShift_ClockCycles;
}
#ifdef ESP8266
// Find the first GPIO being generated by checking GCC's find-first-set (returns 1 + the bit of the first 1 in an int32_t
startWaveformClockCycles(Pin(GPIO_PWM1, i), ac_zero_cross_dimmer.high, ac_zero_cross_dimmer.current_cycle_ClockCycles - ac_zero_cross_dimmer.high, 0, -1, 0, true);
#endif // ESP8266
#ifdef ESP32
// Under investigation. Still not working
double esp32freq = 1000000.0 / clockCyclesToMicroseconds(ac_zero_cross_dimmer.current_cycle_ClockCycles);
ledcSetup(i, esp32freq, 10);
ledcAttachPin(Pin(GPIO_PWM1, i), i);
ledcWrite(i, 5);
#endif // ESP32
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("CNT: [%d], shift: %d, dimm_time_CCs %d, phaseShift_CCs %d, currentPWMcylce: %lu, current_cycle_CC: %lu, lastcc %lu, currentSteps %lu, currDIM %lu, last delta:%lu"),
i, ac_zero_cross_dimmer.currentShiftClockCycle[i], phaseStart_ToBeClockCycles,phaseShift_ClockCycles,ac_zero_cross_dimmer.currentPWMCycleCount[i],ac_zero_cross_dimmer.current_cycle_ClockCycles , ac_zero_cross_dimmer.lastCycleCount, ac_zero_cross_dimmer.currentSteps, Light.fade_cur_10[i],phaseStart_ActualClockCycles);
// Light fading
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("CNT: [%d], curr: %d, final: %d, fading: %d, phase-shift: %d, ON/OFF: %d"),i, Light.fade_cur_10[i], Light.fade_start_10[i], Light.fade_running, phaseStart_ToBeClockCycles,ac_zero_cross_dimmer.PWM_ON[i]);
} // do sync onchannel
} // loop on counter
} // zero cross detected
} // end SyncACDimmer
#endif //USE_AC_ZERO_CROSS_DIMMER
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
void CmndCounter(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_COUNTERS)) {
if ((XdrvMailbox.data_len > 0) && PinUsed(GPIO_CNTR1, XdrvMailbox.index -1)) {
if ((XdrvMailbox.data[0] == '-') || (XdrvMailbox.data[0] == '+')) {
RtcSettings.pulse_counter[XdrvMailbox.index -1] += XdrvMailbox.payload;
Settings->pulse_counter[XdrvMailbox.index -1] += XdrvMailbox.payload;
} else {
RtcSettings.pulse_counter[XdrvMailbox.index -1] = XdrvMailbox.payload;
Settings->pulse_counter[XdrvMailbox.index -1] = XdrvMailbox.payload;
}
}
ResponseCmndIdxNumber(RtcSettings.pulse_counter[XdrvMailbox.index -1]);
}
}
void CmndCounterType(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_COUNTERS)) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 1) && PinUsed(GPIO_CNTR1, XdrvMailbox.index -1)) {
bitWrite(Settings->pulse_counter_type, XdrvMailbox.index -1, XdrvMailbox.payload &1);
RtcSettings.pulse_counter[XdrvMailbox.index -1] = 0;
Settings->pulse_counter[XdrvMailbox.index -1] = 0;
}
ResponseCmndIdxNumber(bitRead(Settings->pulse_counter_type, XdrvMailbox.index -1));
}
}
void CmndCounterDebounce(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 32001)) {
Settings->pulse_counter_debounce = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->pulse_counter_debounce);
}
void CmndCounterDebounceLow(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 32001)) {
Settings->pulse_counter_debounce_low = XdrvMailbox.payload;
CounterInit();
}
ResponseCmndNumber(Settings->pulse_counter_debounce_low);
}
void CmndCounterDebounceHigh(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 32001)) {
Settings->pulse_counter_debounce_high = XdrvMailbox.payload;
CounterInit();
}
ResponseCmndNumber(Settings->pulse_counter_debounce_high);
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns01(uint8_t function)
{
bool result = false;
if (Counter.any_counter) {
switch (function) {
case FUNC_EVERY_SECOND:
CounterEverySecond();
break;
case FUNC_JSON_APPEND:
CounterShow(1);
break;
#ifdef USE_AC_ZERO_CROSS_DIMMER
case FUNC_EVERY_50_MSECOND:
SyncACDimmer();
break;
#endif //USE_AC_ZERO_CROSS_DIMMER
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
CounterShow(0);
break;
#endif // USE_WEBSERVER
case FUNC_SAVE_BEFORE_RESTART:
case FUNC_SAVE_AT_MIDNIGHT:
CounterSaveState();
break;
case FUNC_COMMAND:
result = DecodeCommand(kCounterCommands, CounterCommand);
break;
}
} else {
switch (function) {
case FUNC_INIT:
CounterInit();
break;
case FUNC_PIN_STATE:
result = CounterPinState();
break;
}
}
return result;
}
#endif // USE_COUNTER