Tasmota/tools/theov2_attiny85/TheoV2Sensor2/TheoV2Sensor2.ino

286 lines
11 KiB
C++

/****************************************************************************************************************************\
* Arduino project "TheoTinySensor" Copyright 2013 Theo Arends
* This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
******************************************************************************************************************************
****************************************************************************************************************
* Purpose : Arduino Source code for Sensor based on Atmel ATTiny85, running on 8MHz
* Version : R201 - DHT11 or DHT22 and Vcc test
* Date : 20140414
* 20140507 - R202 - Verwijdering VCC_LOOP
*
* This code turns an Atmel ATTiny85 chip into a Sensor using the TheoV2 protocol.
* This code is not of any use without running a Unit within RF range to receive sensor data.
\***************************************************************************************************************/
#define SENSOR_TYPE 2 // 2 = DHT22 or DHT11 sensor
#define DHT22 // DHT22 Temperatuur en luchtvochtigheid
//#define DHT11 // DHT11 Temperatuur en luchtvochtigheid
// Uncomment for test purpose
//#define THEO_TEST
//*****************************************************************************
#ifdef THEO_TEST
#define CHANNEL 0 // 0 - 7, 0 discard by plugin
#define SEND_DELAY 2 // Max Send Delay in multiples of 4.4 seconds, so 2 = 2x4.4=9 seconds
#else
#define CHANNEL 1 // 0 - 7, 0 discard by plugin
#define SEND_DELAY 32 // Max Send Delay in multiples of 4.4 seconds, so 32 = 32x4.4=141 seconds
#endif
#define VREF_35 10675 // Measured value for Vref at 3.5V Vcc * 10 (Chip dependent)
#define BATT_LOW 33 // 3.3V Battery low warning voltage * 10 (Functionality dependent)
//*****************************************************************************
#define DHT_PIN 1 // data to DHT11, fysieke pin 6 on ATTiny85
#define RF_TransmitDataPin 4 // data to RF Transmitter, fysieke pin 3 on ATTiny85
// ATMEL ATTINY85
// AI=Analog Input
// o-\/-+
// reset 1| |8 VCC
// Pin 3 (AI 3) PB3 2| |7
// Pin 4 (AI 2) PB4 3| |6 PB1 PWM Pin 1 - PCINT1
// GND 4| |5
// +----+
byte VccTest;
byte Voltage;
//*****************************************************************************
// Setup stuff
//*****************************************************************************
void setup()
{
VccTest = 255;
pinMode(RF_TransmitDataPin,OUTPUT);
pinMode(DHT_PIN, OUTPUT);
digitalWrite(DHT_PIN, HIGH); // Pull high
delay(3000);
Watchdog_setup(8); // Setup watchdog to notify us every 4.4 seconds
}
//*****************************************************************************
// Main loop
//*****************************************************************************
void loop()
{
int payload1 = 0;
int payload2 = 0;
VccTest++;
if (VccTest == 0) // Do not run the Vcc test too often to save Battery power
{
Voltage = ReadVcc();
if (Voltage <= BATT_LOW)
Voltage |= 0x80;
}
if (GetPayload(payload1, payload2) == 0)
SendData(payload1, payload2);
// Watchdog_sleep(SEND_DELAY + CHANNEL); // Go to deep sleep mode for some time
Watchdog_sleep(SEND_DELAY - SENSOR_TYPE - CHANNEL); // Go to deep sleep mode for some time but not longer than 150 sec
}
//*****************************************************************************
// Sleep stuff
//*****************************************************************************
#include <avr/sleep.h>
#include <avr/wdt.h>
void Watchdog_setup(int ii)
{
// 0=16ms, 1=32ms, 2=64ms, 3=125ms, 4=250ms, 5=500ms, 6=1s, 7=2s, 8=4s, 9=8s
// The prescale value is held in bits 5,2,1,0
// This block moves ii into these bits
byte bb;
if (ii > 9 ) ii=9;
bb=ii & 7;
if (ii > 7) bb|= (1<<5);
bb|= (1<<WDCE);
MCUSR &= ~(1<<WDRF); // Reset the watchdog reset flag
WDTCR |= (1<<WDCE) | (1<<WDE); // Start timed sequence
WDTCR = bb; // Set new watchdog timeout value
WDTCR |= _BV(WDIE); // Enable interrupts instead of reset
}
void Watchdog_sleep(int waitCounter)
{
while (waitCounter != 0)
{
bitClear(ADCSRA,ADEN); // Switch Analog to Digital converter OFF
set_sleep_mode(SLEEP_MODE_PWR_DOWN); // Set sleep mode
sleep_mode(); // System sleeps here
waitCounter--;
}
}
ISR(WDT_vect)
{
// Don't do anything here but we must include this
// block of code otherwise the interrupt calls an
// uninitialized interrupt handler.
}
//*****************************************************************************
// Send data via RF
//*****************************************************************************
#define RF_PULSE_0 500 // PWM: Tijdsduur van de puls bij verzenden van een '0' in uSec.
#define RF_PULSE_MID 1000 // PWM: Pulsen langer zijn '1'
#define RF_PULSE_1 1500 // PWM: Tijdsduur van de puls bij verzenden van een '1' in uSec. (3x RF_PULSE_0)
#define RF_SPACE 500 // PWM: Tijdsduur van de space tussen de bitspuls bij verzenden van een '1' in uSec.
#define TransmitRepeat 2
void SendData(int payload1, int payload2)
{
struct
{
byte Checksum; // Checksum over following bytes
byte Channel: 3; // 3 bits channel
byte Type: 5; // 5 bits type
byte Voltage; // Vcc like 45 = 4.5V, bit 8 is batt low
int Payload1;
int Payload2;
} DataBlock;
byte Size = sizeof(DataBlock);
DataBlock.Type = SENSOR_TYPE;
DataBlock.Channel = CHANNEL;
DataBlock.Voltage = Voltage;
DataBlock.Payload1 = payload1;
DataBlock.Payload2 = payload2;
byte c = 0, *B = (byte*)&DataBlock; // bereken checksum: crc-8 uit bovenstaande bytes in de struct
for (byte x = 1; x < Size; x++)
c +=*(B+x);
DataBlock.Checksum = c;
pinMode(RF_TransmitDataPin, OUTPUT);
digitalWrite(RF_TransmitDataPin, LOW); // 0
for (byte y = 0; y < TransmitRepeat; y++) // herhaal verzenden RF code
{
digitalWrite(RF_TransmitDataPin, HIGH); // 1
delayMicroseconds(RF_PULSE_1 * 4);
digitalWrite(RF_TransmitDataPin, LOW); // 0
delayMicroseconds(RF_SPACE * 2);
for (byte x = 0; x < Size; x++)
{
for (byte Bit = 0; Bit <= 7; Bit++)
{
digitalWrite(RF_TransmitDataPin, HIGH); // 1
if ((*(B + x) >> Bit) & 1)
delayMicroseconds(RF_PULSE_1);
else
delayMicroseconds(RF_PULSE_0);
digitalWrite(RF_TransmitDataPin, LOW); // 0
delayMicroseconds(RF_SPACE);
}
}
delayMicroseconds(RF_PULSE_1 * 10);
}
}
//*****************************************************************************
// Measure battery voltage using internal bandgap voltage
//*****************************************************************************
byte ReadVcc()
{
int result;
bitSet(ADCSRA, ADEN); // switch Analog to Digital converter ON
ADMUX = 0x0C; // use VCC and internal bandgap (ATTiny85)
delayMicroseconds(250); // delay substantially improves accuracy
bitSet(ADCSRA, ADSC); // start conversion
while (bit_is_set(ADCSRA, ADSC)); // wait until ADSC is clear
bitClear(ADCSRA, ADEN); // Switch Analog to Digital converter OFF
result = ADCW;
return result ? VREF_35 / result : 0; // 35 = 3.5V
}
//*****************************************************************************
// DHT11 or DHT22 Temperature and humidity sensor support
//*****************************************************************************
byte GetPayload(int &temperature, int &humidity)
{
return GetDHT(temperature, humidity);
}
//*****************************************************************************
// DHT11 or DHT22 Temperature and humidity
// http://forums.adafruit.com/viewtopic.php?f=25&t=43933
// https://github.com/markruys/arduino-DHT
//*****************************************************************************
byte GetDHT(int &temperature, int &humidity)
{
unsigned long startTime = millis();
word rawHumidity;
word rawTemperature;
word data;
digitalWrite(DHT_PIN, LOW); // Send start signal
pinMode(DHT_PIN, OUTPUT);
#ifdef DHT22
delayMicroseconds(800);
#else
delay(18);
#endif
pinMode(DHT_PIN, INPUT);
digitalWrite(DHT_PIN, HIGH); // Switch bus to receive data
// We're going to read 83 edges:
// - First a FALLING, RISING, and FALLING edge for the start bit
// - Then 40 bits: RISING and then a FALLING edge per bit
// To keep our code simple, we accept any HIGH or LOW reading if it's max 85 usecs long
for (int8_t i = -3 ; i < 2 * 40; i++)
{
byte age;
startTime = micros();
do
{
age = (unsigned long)(micros() - startTime);
if (age > 90) return 1;
}
while (digitalRead(DHT_PIN) == (i & 1) ? HIGH : LOW);
if (i >= 0 && (i & 1))
{
data <<= 1; // Now we are being fed our 40 bits
if (age > 30) data |= 1; // A zero max 30 usecs, a one at least 68 usecs. We got a one
}
switch (i)
{
case 31:
rawHumidity = data;
break;
case 63:
rawTemperature = data;
data = 0;
break;
}
}
// Verify checksum
if ((byte)(((byte)rawHumidity) + (rawHumidity >> 8) + ((byte)rawTemperature) + (rawTemperature >> 8)) != data)
return 2;
#ifdef DHT22
int t = (rawTemperature & 0x7fff) * 10;
temperature = rawTemperature & 0x8000 ? - t : t;
// humidity = (rawHumidity / 10) * 100; // round to whole
humidity = rawHumidity * 10;
#else
humidity = (rawHumidity >> 8) * 100;
temperature = (rawTemperature >> 8) * 100;
#endif
return 0;
}