Tasmota/tasmota/xdrv_23_zigbee_5_converters...

1938 lines
82 KiB
C++

/*
xdrv_23_zigbee_converters.ino - zigbee support for Tasmota
Copyright (C) 2020 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ZIGBEE
/*********************************************************************************************\
* ZCL
\*********************************************************************************************/
enum Z_DataTypes {
Znodata = 0x00,
Zdata8 = 0x08, Zdata16, Zdata24, Zdata32, Zdata40, Zdata48, Zdata56, Zdata64,
Zbool = 0x10,
Zmap8 = 0x18, Zmap16, Zmap24, Zmap32, Zmap40, Zmap48, Zmap56, Zmap64,
Zuint8 = 0x20, Zuint16, Zuint24, Zuint32, Zuint40, Zuint48, Zuint56, Zuint64,
Zint8 = 0x28, Zint16, Zint24, Zint32, Zint40, Zint48, Zint56, Zint64,
Zenum8 = 0x30, Zenum16 = 0x31,
Zsemi = 0x38, Zsingle = 0x39, Zdouble = 0x3A,
Zoctstr = 0x41, Zstring = 0x42, Zoctstr16 = 0x43, Zstring16 = 0x44,
Arrray = 0x48,
Zstruct = 0x4C,
Zset = 0x50, Zbag = 0x51,
ZToD = 0xE0, Zdate = 0xE1, ZUTC = 0xE2,
ZclusterId = 0xE8, ZattribId = 0xE9, ZbacOID = 0xEA,
ZEUI64 = 0xF0, Zkey128 = 0xF1,
Zunk = 0xFF
};
//
// get the lenth in bytes for a data-type
// return 0 if unknown of type specific
//
// Note: this code is smaller than a static array
uint8_t Z_getDatatypeLen(uint8_t t) {
if ( ((t >= 0x08) && (t <= 0x0F)) || // data8 - data64
((t >= 0x18) && (t <= 0x2F)) ) { // map/uint/int
return (t & 0x07) + 1;
}
switch (t) {
case Zbool:
case Zenum8:
return 1;
case Zenum16:
case Zsemi:
case ZclusterId:
case ZattribId:
return 2;
case Zsingle:
case ZToD:
case Zdate:
case ZUTC:
case ZbacOID:
return 4;
case Zdouble:
case ZEUI64:
return 8;
case Zkey128:
return 16;
case Znodata:
default:
return 0;
}
}
// is the type a discrete type, cf. section 2.6.2 of ZCL spec
bool Z_isDiscreteDataType(uint8_t t) {
if ( ((t >= 0x20) && (t <= 0x2F)) || // uint8 - int64
((t >= 0x38) && (t <= 0x3A)) || // semi - double
((t >= 0xE0) && (t <= 0xE2)) ) { // ToD - UTC
return false;
} else {
return true;
}
}
typedef struct Z_AttributeConverter {
uint8_t type;
uint8_t cluster_short;
uint16_t attribute;
uint16_t name_offset;
uint8_t multiplier_idx; // multiplier index for numerical value, use CmToMultiplier(), (if > 0 multiply by x, if <0 device by x)
// the high 4 bits are used to encode flags
// currently: 0x80 = this parameter needs to be exported to ZbData
uint8_t mapping; // high 4 bits = type, low 4 bits = offset in bytes from header
// still room for a byte
} Z_AttributeConverter;
// Get offset in bytes of attributes, starting after the header (skipping first 4 bytes)
#define Z_OFFSET(c,a) (offsetof(class c, a) - sizeof(Z_Data))
#define Z_CLASS(c) c // necessary to get a valid token without concatenation (which wouldn't work)
#define Z_MAPPING(c,a) (((((uint8_t)Z_CLASS(c)::type) & 0x0F) << 4) | Z_OFFSET(c,a))
// lines with this marker, will be used to export automatically data to `ZbData`
// at the condition Z_MAPPING() is also used
const uint8_t Z_EXPORT_DATA = 0x80;
// Cluster numbers are store in 8 bits format to save space,
// the following tables allows the conversion from 8 bits index Cx...
// to the 16 bits actual cluster number
enum Cx_cluster_short {
Cx0000, Cx0001, Cx0002, Cx0003, Cx0004, Cx0005, Cx0006, Cx0007,
Cx0008, Cx0009, Cx000A, Cx000B, Cx000C, Cx000D, Cx000E, Cx000F,
Cx0010, Cx0011, Cx0012, Cx0013, Cx0014, Cx001A, Cx0020, Cx0100,
Cx0101, Cx0102, Cx0201, Cx0300, Cx0400, Cx0401, Cx0402, Cx0403,
Cx0404, Cx0405, Cx0406, Cx0500, Cx0702, Cx0B01, Cx0B04, Cx0B05,
CxEF00,
};
const uint16_t Cx_cluster[] PROGMEM = {
0x0000, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
0x0008, 0x0009, 0x000A, 0x000B, 0x000C, 0x000D, 0x000E, 0x000F,
0x0010, 0x0011, 0x0012, 0x0013, 0x0014, 0x001A, 0x0020, 0x0100,
0x0101, 0x0102, 0x0201, 0x0300, 0x0400, 0x0401, 0x0402, 0x0403,
0x0404, 0x0405, 0x0406, 0x0500, 0x0702, 0x0B01, 0x0B04, 0x0B05,
0xEF00,
};
uint16_t CxToCluster(uint8_t cx) {
if (cx < ARRAY_SIZE(Cx_cluster)) {
return pgm_read_word(&Cx_cluster[cx]);
}
return 0xFFFF;
}
uint8_t ClusterToCx(uint16_t cluster) {
for (uint32_t i=0; i<ARRAY_SIZE(Cx_cluster); i++) {
if (pgm_read_word(&Cx_cluster[i]) == cluster) {
return i;
}
}
return 0xFF;
}
// Multiplier contains only a limited set of values, so instead of storing the value
// we store an index in a table, and reduce it to 4 bits
enum Cm_multiplier_nibble {
Cm0 = 0, Cm1 = 1, Cm2, Cm5, Cm10, Cm100,
// negative numbers
Cm_2, Cm_5, Cm_10, Cm_100
};
const int8_t Cm_multiplier[] PROGMEM = {
0, 1, 2, 5, 10, 100,
-2, -5, -10, -100,
};
int8_t CmToMultiplier(uint8_t cm) {
cm = cm & 0x0F; // get only low nibble
if (cm < ARRAY_SIZE(Cm_multiplier)) {
return pgm_read_byte(&Cm_multiplier[cm]);
}
return 1;
}
// list of post-processing directives
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Winvalid-offsetof" // avoid warnings since we're using offsetof() in a risky way
const Z_AttributeConverter Z_PostProcess[] PROGMEM = {
{ Zuint8, Cx0000, 0x0000, Z_(ZCLVersion), Cm1, 0 },
{ Zuint8, Cx0000, 0x0001, Z_(AppVersion), Cm1, 0 },
{ Zuint8, Cx0000, 0x0002, Z_(StackVersion), Cm1, 0 },
{ Zuint8, Cx0000, 0x0003, Z_(HWVersion), Cm1, 0 },
{ Zstring, Cx0000, 0x0004, Z_(Manufacturer), Cm1, 0 }, // record Manufacturer
{ Zstring, Cx0000, 0x0005, Z_(ModelId), Cm1, 0 }, // record Model
// { Zstring, Cx0000, 0x0004, Z_(Manufacturer), Cm1, Z_ManufKeep, 0 }, // record Manufacturer
// { Zstring, Cx0000, 0x0005, Z_(ModelId), Cm1, Z_ModelKeep, 0 }, // record Model
{ Zstring, Cx0000, 0x0006, Z_(DateCode), Cm1, 0 },
{ Zenum8, Cx0000, 0x0007, Z_(PowerSource), Cm1, 0 },
{ Zenum8, Cx0000, 0x0008, Z_(GenericDeviceClass), Cm1, 0 },
{ Zenum8, Cx0000, 0x0009, Z_(GenericDeviceType), Cm1, 0 },
{ Zoctstr, Cx0000, 0x000A, Z_(ProductCode), Cm1, 0 },
{ Zstring, Cx0000, 0x000B, Z_(ProductURL), Cm1, 0 },
{ Zstring, Cx0000, 0x4000, Z_(SWBuildID), Cm1, 0 },
// { Zunk, Cx0000, 0xFFFF, nullptr, Cm0, 0 }, // Remove all other values
// Cmd 0x0A - Cluster 0x0000, attribute 0xFF01 - proprietary
{ Zmap8, Cx0000, 0xFF01, Z_(), Cm0, 0 },
{ Zmap8, Cx0000, 0xFF02, Z_(), Cm0, 0 },
// { Zmap8, Cx0000, 0xFF01, Z_(), Cm0, Z_AqaraSensor, 0 },
// { Zmap8, Cx0000, 0xFF02, Z_(), Cm0, Z_AqaraSensor2, 0 },
// Power Configuration cluster
{ Zuint16, Cx0001, 0x0000, Z_(MainsVoltage), Cm1, 0 },
{ Zuint8, Cx0001, 0x0001, Z_(MainsFrequency), Cm1, 0 },
{ Zuint8, Cx0001, 0x0020, Z_(BatteryVoltage), Cm_10, 0 }, // divide by 10
{ Zuint8, Cx0001, 0x0021, Z_(BatteryPercentage), Cm_2, 0 }, // divide by 2
// { Zuint8, Cx0001, 0x0021, Z_(BatteryPercentage), Cm_2, Z_BatteryPercentage, 0 }, // divide by 2
// Device Temperature Configuration cluster
{ Zint16, Cx0002, 0x0000, Z_(CurrentTemperature), Cm1, 0 },
{ Zint16, Cx0002, 0x0001, Z_(MinTempExperienced), Cm1, 0 },
{ Zint16, Cx0002, 0x0002, Z_(MaxTempExperienced), Cm1, 0 },
{ Zuint16, Cx0002, 0x0003, Z_(OverTempTotalDwell), Cm1, 0 },
// Identify cluster
{ Zuint16, Cx0003, 0x0000, Z_(IdentifyTime), Cm1, 0 },
// Groups cluster
{ Zmap8, Cx0004, 0x0000, Z_(GroupNameSupport), Cm1, 0 },
// Scenes cluster
{ Zuint8, Cx0005, 0x0000, Z_(SceneCount), Cm1, 0 },
{ Zuint8, Cx0005, 0x0001, Z_(CurrentScene), Cm1, 0 },
{ Zuint16, Cx0005, 0x0002, Z_(CurrentGroup), Cm1, 0 },
{ Zbool, Cx0005, 0x0003, Z_(SceneValid), Cm1, 0 },
//{ Zmap8, Cx0005, 0x0004, (NameSupport), Cm1, 0 },
// On/off cluster
{ Zbool, Cx0006, 0x0000, Z_(Power), Cm1, 0 },
{ Zenum8, Cx0006, 0x4003, Z_(StartUpOnOff), Cm1, 0 },
{ Zbool, Cx0006, 0x8000, Z_(Power), Cm1, 0 }, // See 7280
// On/Off Switch Configuration cluster
{ Zenum8, Cx0007, 0x0000, Z_(SwitchType), Cm1, 0 },
// Level Control cluster
{ Zuint8, Cx0008, 0x0000, Z_(Dimmer), Cm1 + Z_EXPORT_DATA, Z_MAPPING(Z_Data_Light, dimmer) },
{ Zmap8, Cx0008, 0x000F, Z_(DimmerOptions), Cm1, 0 },
{ Zuint16, Cx0008, 0x0001, Z_(DimmerRemainingTime), Cm1, 0 },
{ Zuint16, Cx0008, 0x0010, Z_(OnOffTransitionTime), Cm1, 0 },
// { Zuint8, Cx0008, 0x0011, (OnLevel), Cm1, 0 },
// { Zuint16, Cx0008, 0x0012, (OnTransitionTime), Cm1, 0 },
// { Zuint16, Cx0008, 0x0013, (OffTransitionTime), Cm1, 0 },
// { Zuint16, Cx0008, 0x0014, (DefaultMoveRate), Cm1, 0 },
// Alarms cluster
{ Zuint16, Cx0009, 0x0000, Z_(AlarmCount), Cm1, 0 },
// Time cluster
{ ZUTC, Cx000A, 0x0000, Z_(Time), Cm1, 0 },
{ Zmap8, Cx000A, 0x0001, Z_(TimeStatus), Cm1, 0 },
{ Zint32, Cx000A, 0x0002, Z_(TimeZone), Cm1, 0 },
{ Zuint32, Cx000A, 0x0003, Z_(DstStart), Cm1, 0 },
{ Zuint32, Cx000A, 0x0004, Z_(DstEnd), Cm1, 0 },
{ Zint32, Cx000A, 0x0005, Z_(DstShift), Cm1, 0 },
{ Zuint32, Cx000A, 0x0006, Z_(StandardTime), Cm1, 0 },
{ Zuint32, Cx000A, 0x0007, Z_(LocalTime), Cm1, 0 },
{ ZUTC, Cx000A, 0x0008, Z_(LastSetTime), Cm1, 0 },
{ ZUTC, Cx000A, 0x0009, Z_(ValidUntilTime), Cm1, 0 },
{ ZUTC, Cx000A, 0xFF00, Z_(TimeEpoch), Cm1, 0 }, // Tasmota specific, epoch
// RSSI Location cluster
{ Zdata8, Cx000B, 0x0000, Z_(LocationType), Cm1, 0 },
{ Zenum8, Cx000B, 0x0001, Z_(LocationMethod), Cm1, 0 },
{ Zuint16, Cx000B, 0x0002, Z_(LocationAge), Cm1, 0 },
{ Zuint8, Cx000B, 0x0003, Z_(QualityMeasure), Cm1, 0 },
{ Zuint8, Cx000B, 0x0004, Z_(NumberOfDevices), Cm1, 0 },
// Analog Input cluster
// { 0xFF, Cx000C, 0x0004, (AnalogInActiveText), Cm1, 0 },
{ Zstring, Cx000C, 0x001C, Z_(AnalogInDescription), Cm1, 0 },
// { 0xFF, Cx000C, 0x002E, (AnalogInInactiveText), Cm1, 0 },
{ Zsingle, Cx000C, 0x0041, Z_(AnalogInMaxValue), Cm1, 0 },
{ Zsingle, Cx000C, 0x0045, Z_(AnalogInMinValue), Cm1, 0 },
{ Zbool, Cx000C, 0x0051, Z_(AnalogInOutOfService), Cm1, 0 },
{ Zsingle, Cx000C, 0x0055, Z_(AqaraRotate), Cm1, 0 },
// { 0xFF, Cx000C, 0x0057, (AnalogInPriorityArray),Cm1, 0 },
{ Zenum8, Cx000C, 0x0067, Z_(AnalogInReliability), Cm1, 0 },
// { 0xFF, Cx000C, 0x0068, (AnalogInRelinquishDefault),Cm1, 0 },
{ Zsingle, Cx000C, 0x006A, Z_(AnalogInResolution), Cm1, 0 },
{ Zmap8, Cx000C, 0x006F, Z_(AnalogInStatusFlags), Cm1, 0 },
{ Zenum16, Cx000C, 0x0075, Z_(AnalogInEngineeringUnits),Cm1, 0 },
{ Zuint32, Cx000C, 0x0100, Z_(AnalogInApplicationType),Cm1, 0 },
{ Zuint16, Cx000C, 0xFF05, Z_(Aqara_FF05), Cm1, 0 },
// Analog Output cluster
{ Zstring, Cx000D, 0x001C, Z_(AnalogOutDescription), Cm1, 0 },
{ Zsingle, Cx000D, 0x0041, Z_(AnalogOutMaxValue), Cm1, 0 },
{ Zsingle, Cx000D, 0x0045, Z_(AnalogOutMinValue), Cm1, 0 },
{ Zbool, Cx000D, 0x0051, Z_(AnalogOutOutOfService),Cm1, 0 },
{ Zsingle, Cx000D, 0x0055, Z_(AnalogOutValue), Cm1, 0 },
// { Zunk, Cx000D, 0x0057, (AnalogOutPriorityArray),Cm1, 0 },
{ Zenum8, Cx000D, 0x0067, Z_(AnalogOutReliability), Cm1, 0 },
{ Zsingle, Cx000D, 0x0068, Z_(AnalogOutRelinquishDefault), Cm1, 0 },
{ Zsingle, Cx000D, 0x006A, Z_(AnalogOutResolution), Cm1, 0 },
{ Zmap8, Cx000D, 0x006F, Z_(AnalogOutStatusFlags), Cm1, 0 },
{ Zenum16, Cx000D, 0x0075, Z_(AnalogOutEngineeringUnits), Cm1, 0 },
{ Zuint32, Cx000D, 0x0100, Z_(AnalogOutApplicationType), Cm1, 0 },
// Analog Value cluster
{ Zstring, Cx000E, 0x001C, Z_(AnalogDescription), Cm1, 0 },
{ Zbool, Cx000E, 0x0051, Z_(AnalogOutOfService), Cm1, 0 },
{ Zsingle, Cx000E, 0x0055, Z_(AnalogValue), Cm1, 0 },
{ Zunk, Cx000E, 0x0057, Z_(AnalogPriorityArray), Cm1, 0 },
{ Zenum8, Cx000E, 0x0067, Z_(AnalogReliability), Cm1, 0 },
{ Zsingle, Cx000E, 0x0068, Z_(AnalogRelinquishDefault),Cm1, 0 },
{ Zmap8, Cx000E, 0x006F, Z_(AnalogStatusFlags), Cm1, 0 },
{ Zenum16, Cx000E, 0x0075, Z_(AnalogEngineeringUnits),Cm1, 0 },
{ Zuint32, Cx000E, 0x0100, Z_(AnalogApplicationType),Cm1, 0 },
// Binary Input cluster
{ Zstring, Cx000F, 0x0004, Z_(BinaryInActiveText), Cm1, 0 },
{ Zstring, Cx000F, 0x001C, Z_(BinaryInDescription), Cm1, 0 },
{ Zstring, Cx000F, 0x002E, Z_(BinaryInInactiveText),Cm1, 0 },
{ Zbool, Cx000F, 0x0051, Z_(BinaryInOutOfService),Cm1, 0 },
{ Zenum8, Cx000F, 0x0054, Z_(BinaryInPolarity), Cm1, 0 },
{ Zstring, Cx000F, 0x0055, Z_(BinaryInValue), Cm1, 0 },
// { 0xFF, Cx000F, 0x0057, (BinaryInPriorityArray),Cm1, 0 },
{ Zenum8, Cx000F, 0x0067, Z_(BinaryInReliability), Cm1, 0 },
{ Zmap8, Cx000F, 0x006F, Z_(BinaryInStatusFlags), Cm1, 0 },
{ Zuint32, Cx000F, 0x0100, Z_(BinaryInApplicationType),Cm1, 0 },
// Binary Output cluster
{ Zstring, Cx0010, 0x0004, Z_(BinaryOutActiveText), Cm1, 0 },
{ Zstring, Cx0010, 0x001C, Z_(BinaryOutDescription), Cm1, 0 },
{ Zstring, Cx0010, 0x002E, Z_(BinaryOutInactiveText),Cm1, 0 },
{ Zuint32, Cx0010, 0x0042, Z_(BinaryOutMinimumOffTime),Cm1, 0 },
{ Zuint32, Cx0010, 0x0043, Z_(BinaryOutMinimumOnTime),Cm1, 0 },
{ Zbool, Cx0010, 0x0051, Z_(BinaryOutOutOfService),Cm1, 0 },
{ Zenum8, Cx0010, 0x0054, Z_(BinaryOutPolarity), Cm1, 0 },
{ Zbool, Cx0010, 0x0055, Z_(BinaryOutValue), Cm1, 0 },
// { Zunk, Cx0010, 0x0057, (BinaryOutPriorityArray),Cm1, 0 },
{ Zenum8, Cx0010, 0x0067, Z_(BinaryOutReliability), Cm1, 0 },
{ Zbool, Cx0010, 0x0068, Z_(BinaryOutRelinquishDefault),Cm1, 0 },
{ Zmap8, Cx0010, 0x006F, Z_(BinaryOutStatusFlags), Cm1, 0 },
{ Zuint32, Cx0010, 0x0100, Z_(BinaryOutApplicationType),Cm1, 0 },
// Binary Value cluster
{ Zstring, Cx0011, 0x0004, Z_(BinaryActiveText), Cm1, 0 },
{ Zstring, Cx0011, 0x001C, Z_(BinaryDescription), Cm1, 0 },
{ Zstring, Cx0011, 0x002E, Z_(BinaryInactiveText), Cm1, 0 },
{ Zuint32, Cx0011, 0x0042, Z_(BinaryMinimumOffTime), Cm1, 0 },
{ Zuint32, Cx0011, 0x0043, Z_(BinaryMinimumOnTime), Cm1, 0 },
{ Zbool, Cx0011, 0x0051, Z_(BinaryOutOfService), Cm1, 0 },
{ Zbool, Cx0011, 0x0055, Z_(BinaryValue), Cm1, 0 },
// { Zunk, Cx0011, 0x0057, (BinaryPriorityArray), Cm1, 0 },
{ Zenum8, Cx0011, 0x0067, Z_(BinaryReliability), Cm1, 0 },
{ Zbool, Cx0011, 0x0068, Z_(BinaryRelinquishDefault),Cm1, 0 },
{ Zmap8, Cx0011, 0x006F, Z_(BinaryStatusFlags), Cm1, 0 },
{ Zuint32, Cx0011, 0x0100, Z_(BinaryApplicationType),Cm1, 0 },
// Multistate Input cluster
// { Zunk, Cx0012, 0x000E, (MultiInStateText), Cm1, 0 },
{ Zstring, Cx0012, 0x001C, Z_(MultiInDescription), Cm1, 0 },
{ Zuint16, Cx0012, 0x004A, Z_(MultiInNumberOfStates),Cm1, 0 },
{ Zbool, Cx0012, 0x0051, Z_(MultiInOutOfService), Cm1, 0 },
{ Zuint16, Cx0012, 0x0055, Z_(MultiInValue), Cm1, 0 },
// { Zuint16, Cx0012, 0x0055, Z_(MultiInValue), Cm0, Z_AqaraCube, 0 },
// { Zuint16, Cx0012, 0x0055, Z_(MultiInValue), Cm0, Z_AqaraButton, 0 },
{ Zenum8, Cx0012, 0x0067, Z_(MultiInReliability), Cm1, 0 },
{ Zmap8, Cx0012, 0x006F, Z_(MultiInStatusFlags), Cm1, 0 },
{ Zuint32, Cx0012, 0x0100, Z_(MultiInApplicationType),Cm1, 0 },
// Multistate output
// { Zunk, Cx0013, 0x000E, (MultiOutStateText), Cm1, 0 },
{ Zstring, Cx0013, 0x001C, Z_(MultiOutDescription), Cm1, 0 },
{ Zuint16, Cx0013, 0x004A, Z_(MultiOutNumberOfStates),Cm1, 0 },
{ Zbool, Cx0013, 0x0051, Z_(MultiOutOutOfService), Cm1, 0 },
{ Zuint16, Cx0013, 0x0055, Z_(MultiOutValue), Cm1, 0 },
// { Zunk, Cx0013, 0x0057, (MultiOutPriorityArray),Cm1, 0 },
{ Zenum8, Cx0013, 0x0067, Z_(MultiOutReliability), Cm1, 0 },
{ Zuint16, Cx0013, 0x0068, Z_(MultiOutRelinquishDefault),Cm1, 0 },
{ Zmap8, Cx0013, 0x006F, Z_(MultiOutStatusFlags), Cm1, 0 },
{ Zuint32, Cx0013, 0x0100, Z_(MultiOutApplicationType),Cm1, 0 },
// Multistate Value cluster
// { Zunk, Cx0014, 0x000E, (MultiStateText), Cm1, 0 },
{ Zstring, Cx0014, 0x001C, Z_(MultiDescription), Cm1, 0 },
{ Zuint16, Cx0014, 0x004A, Z_(MultiNumberOfStates), Cm1, 0 },
{ Zbool, Cx0014, 0x0051, Z_(MultiOutOfService), Cm1, 0 },
{ Zuint16, Cx0014, 0x0055, Z_(MultiValue), Cm1, 0 },
{ Zenum8, Cx0014, 0x0067, Z_(MultiReliability), Cm1, 0 },
{ Zuint16, Cx0014, 0x0068, Z_(MultiRelinquishDefault),Cm1, 0 },
{ Zmap8, Cx0014, 0x006F, Z_(MultiStatusFlags), Cm1, 0 },
{ Zuint32, Cx0014, 0x0100, Z_(MultiApplicationType), Cm1, 0 },
// Power Profile cluster
{ Zuint8, Cx001A, 0x0000, Z_(TotalProfileNum), Cm1, 0 },
{ Zbool, Cx001A, 0x0001, Z_(MultipleScheduling), Cm1, 0 },
{ Zmap8, Cx001A, 0x0002, Z_(EnergyFormatting), Cm1, 0 },
{ Zbool, Cx001A, 0x0003, Z_(EnergyRemote), Cm1, 0 },
{ Zmap8, Cx001A, 0x0004, Z_(ScheduleMode), Cm1, 0 },
// Poll Control cluster
{ Zuint32, Cx0020, 0x0000, Z_(CheckinInterval), Cm1, 0 },
{ Zuint32, Cx0020, 0x0001, Z_(LongPollInterval), Cm1, 0 },
{ Zuint16, Cx0020, 0x0002, Z_(ShortPollInterval), Cm1, 0 },
{ Zuint16, Cx0020, 0x0003, Z_(FastPollTimeout), Cm1, 0 },
{ Zuint32, Cx0020, 0x0004, Z_(CheckinIntervalMin), Cm1, 0 },
{ Zuint32, Cx0020, 0x0005, Z_(LongPollIntervalMin), Cm1, 0 },
{ Zuint16, Cx0020, 0x0006, Z_(FastPollTimeoutMax), Cm1, 0 },
// Shade Configuration cluster
{ Zuint16, Cx0100, 0x0000, Z_(PhysicalClosedLimit), Cm1, 0 },
{ Zuint8, Cx0100, 0x0001, Z_(MotorStepSize), Cm1, 0 },
{ Zmap8, Cx0100, 0x0002, Z_(Status), Cm1, 0 },
{ Zuint16, Cx0100, 0x0010, Z_(ClosedLimit), Cm1, 0 },
{ Zenum8, Cx0100, 0x0011, Z_(Mode), Cm1, 0 },
// Door Lock cluster
{ Zenum8, Cx0101, 0x0000, Z_(LockState), Cm1, 0 },
{ Zenum8, Cx0101, 0x0001, Z_(LockType), Cm1, 0 },
{ Zbool, Cx0101, 0x0002, Z_(ActuatorEnabled), Cm1, 0 },
{ Zenum8, Cx0101, 0x0003, Z_(DoorState), Cm1, 0 },
{ Zuint32, Cx0101, 0x0004, Z_(DoorOpenEvents), Cm1, 0 },
{ Zuint32, Cx0101, 0x0005, Z_(DoorClosedEvents), Cm1, 0 },
{ Zuint16, Cx0101, 0x0006, Z_(OpenPeriod), Cm1, 0 },
// Aqara Lumi Vibration Sensor
{ Zuint16, Cx0101, 0x0055, Z_(AqaraVibrationMode), Cm1, 0 },
{ Zuint16, Cx0101, 0x0503, Z_(AqaraVibrationsOrAngle), Cm1, 0 },
{ Zuint32, Cx0101, 0x0505, Z_(AqaraVibration505), Cm1, 0 },
{ Zuint48, Cx0101, 0x0508, Z_(AqaraAccelerometer), Cm1, 0 },
// Window Covering cluster
{ Zenum8, Cx0102, 0x0000, Z_(WindowCoveringType), Cm1, 0 },
{ Zuint16, Cx0102, 0x0001, Z_(PhysicalClosedLimitLift),Cm1, 0 },
{ Zuint16, Cx0102, 0x0002, Z_(PhysicalClosedLimitTilt),Cm1, 0 },
{ Zuint16, Cx0102, 0x0003, Z_(CurrentPositionLift), Cm1, 0 },
{ Zuint16, Cx0102, 0x0004, Z_(CurrentPositionTilt), Cm1, 0 },
{ Zuint16, Cx0102, 0x0005, Z_(NumberofActuationsLift),Cm1, 0 },
{ Zuint16, Cx0102, 0x0006, Z_(NumberofActuationsTilt),Cm1, 0 },
{ Zmap8, Cx0102, 0x0007, Z_(ConfigStatus), Cm1, 0 },
{ Zuint8, Cx0102, 0x0008, Z_(CurrentPositionLiftPercentage),Cm1, 0 },
{ Zuint8, Cx0102, 0x0009, Z_(CurrentPositionTiltPercentage),Cm1, 0 },
{ Zuint16, Cx0102, 0x0010, Z_(InstalledOpenLimitLift),Cm1, 0 },
{ Zuint16, Cx0102, 0x0011, Z_(InstalledClosedLimitLift),Cm1, 0 },
{ Zuint16, Cx0102, 0x0012, Z_(InstalledOpenLimitTilt),Cm1, 0 },
{ Zuint16, Cx0102, 0x0013, Z_(InstalledClosedLimitTilt),Cm1, 0 },
{ Zuint16, Cx0102, 0x0014, Z_(VelocityLift), Cm1, 0 },
{ Zuint16, Cx0102, 0x0015, Z_(AccelerationTimeLift),Cm1, 0 },
{ Zuint16, Cx0102, 0x0016, Z_(DecelerationTimeLift), Cm1, 0 },
{ Zmap8, Cx0102, 0x0017, Z_(Mode), Cm1, 0 },
{ Zoctstr, Cx0102, 0x0018, Z_(IntermediateSetpointsLift),Cm1, 0 },
{ Zoctstr, Cx0102, 0x0019, Z_(IntermediateSetpointsTilt),Cm1, 0 },
// Thermostat
{ Zint16, Cx0201, 0x0000, Z_(LocalTemperature), Cm_100, Z_MAPPING(Z_Data_Thermo, temperature) },
{ Zint16, Cx0201, 0x0001, Z_(OutdoorTemperature),Cm_100, 0 },
{ Zuint8, Cx0201, 0x0007, Z_(PICoolingDemand), Cm1, Z_MAPPING(Z_Data_Thermo, th_setpoint) },
{ Zuint8, Cx0201, 0x0008, Z_(PIHeatingDemand), Cm1, Z_MAPPING(Z_Data_Thermo, th_setpoint) },
{ Zint8, Cx0201, 0x0010, Z_(LocalTemperatureCalibration), Cm_10, 0 },
{ Zint16, Cx0201, 0x0011, Z_(OccupiedCoolingSetpoint), Cm_100, Z_MAPPING(Z_Data_Thermo, temperature_target) },
{ Zint16, Cx0201, 0x0012, Z_(OccupiedHeatingSetpoint), Cm_100, Z_MAPPING(Z_Data_Thermo, temperature_target) },
{ Zint16, Cx0201, 0x0013, Z_(UnoccupiedCoolingSetpoint), Cm_100, 0 },
{ Zint16, Cx0201, 0x0014, Z_(UnoccupiedHeatingSetpoint), Cm_100, 0 },
{ Zmap8, Cx0201, 0x001A, Z_(RemoteSensing), Cm1, 0 },
{ Zenum8, Cx0201, 0x001B, Z_(ControlSequenceOfOperation), Cm1, 0 },
{ Zenum8, Cx0201, 0x001C, Z_(SystemMode), Cm1, 0 },
// below is Eurotronic specific
{ Zenum8, Cx0201, 0x4000, Z_(TRVMode), Cm1, 0 },
{ Zuint8, Cx0201, 0x4001, Z_(ValvePosition), Cm1, 0 },
{ Zuint8, Cx0201, 0x4002, Z_(EurotronicErrors), Cm1, 0 },
{ Zint16, Cx0201, 0x4003, Z_(CurrentTemperatureSetPoint), Cm_100, 0 },
// below are virtual attributes to simplify ZbData import/export
{ Zuint8, Cx0201, 0xFFF0, Z_(ThSetpoint), Cm1 + Z_EXPORT_DATA, Z_MAPPING(Z_Data_Thermo, th_setpoint) },
{ Zint16, Cx0201, 0xFFF1, Z_(TempTarget), Cm_100 + Z_EXPORT_DATA, Z_MAPPING(Z_Data_Thermo, temperature_target) },
// Color Control cluster
{ Zuint8, Cx0300, 0x0000, Z_(Hue), Cm1 + Z_EXPORT_DATA, Z_MAPPING(Z_Data_Light, hue) },
{ Zuint8, Cx0300, 0x0001, Z_(Sat), Cm1 + Z_EXPORT_DATA, Z_MAPPING(Z_Data_Light, sat) },
{ Zuint16, Cx0300, 0x0002, Z_(RemainingTime), Cm1, 0 },
{ Zuint16, Cx0300, 0x0003, Z_(X), Cm1 + Z_EXPORT_DATA, Z_MAPPING(Z_Data_Light, x) },
{ Zuint16, Cx0300, 0x0004, Z_(Y), Cm1 + Z_EXPORT_DATA, Z_MAPPING(Z_Data_Light, y) },
{ Zenum8, Cx0300, 0x0005, Z_(DriftCompensation), Cm1, 0 },
{ Zstring, Cx0300, 0x0006, Z_(CompensationText), Cm1, 0 },
{ Zuint16, Cx0300, 0x0007, Z_(CT), Cm1 + Z_EXPORT_DATA, Z_MAPPING(Z_Data_Light, ct) },
{ Zenum8, Cx0300, 0x0008, Z_(ColorMode), Cm1 + Z_EXPORT_DATA, Z_MAPPING(Z_Data_Light, colormode) },
{ Zuint8, Cx0300, 0x0010, Z_(NumberOfPrimaries), Cm1, 0 },
{ Zuint16, Cx0300, 0x0011, Z_(Primary1X), Cm1, 0 },
{ Zuint16, Cx0300, 0x0012, Z_(Primary1Y), Cm1, 0 },
{ Zuint8, Cx0300, 0x0013, Z_(Primary1Intensity), Cm1, 0 },
{ Zuint16, Cx0300, 0x0015, Z_(Primary2X), Cm1, 0 },
{ Zuint16, Cx0300, 0x0016, Z_(Primary2Y), Cm1, 0 },
{ Zuint8, Cx0300, 0x0017, Z_(Primary2Intensity), Cm1, 0 },
{ Zuint16, Cx0300, 0x0019, Z_(Primary3X), Cm1, 0 },
{ Zuint16, Cx0300, 0x001A, Z_(Primary3Y), Cm1, 0 },
{ Zuint8, Cx0300, 0x001B, Z_(Primary3Intensity), Cm1, 0 },
{ Zuint16, Cx0300, 0x0030, Z_(WhitePointX), Cm1, 0 },
{ Zuint16, Cx0300, 0x0031, Z_(WhitePointY), Cm1, 0 },
{ Zuint16, Cx0300, 0x0032, Z_(ColorPointRX), Cm1, 0 },
{ Zuint16, Cx0300, 0x0033, Z_(ColorPointRY), Cm1, 0 },
{ Zuint8, Cx0300, 0x0034, Z_(ColorPointRIntensity), Cm1, 0 },
{ Zuint16, Cx0300, 0x0036, Z_(ColorPointGX), Cm1, 0 },
{ Zuint16, Cx0300, 0x0037, Z_(ColorPointGY), Cm1, 0 },
{ Zuint8, Cx0300, 0x0038, Z_(ColorPointGIntensity), Cm1, 0 },
{ Zuint16, Cx0300, 0x003A, Z_(ColorPointBX), Cm1, 0 },
{ Zuint16, Cx0300, 0x003B, Z_(ColorPointBY), Cm1, 0 },
{ Zuint8, Cx0300, 0x003C, Z_(ColorPointBIntensity), Cm1, 0 },
// Illuminance Measurement cluster
{ Zuint16, Cx0400, 0x0000, Z_(Illuminance), Cm1, 0 }, // Illuminance (in Lux)
{ Zuint16, Cx0400, 0x0001, Z_(IlluminanceMinMeasuredValue), Cm1, 0 }, //
{ Zuint16, Cx0400, 0x0002, Z_(IlluminanceMaxMeasuredValue), Cm1, 0 }, //
{ Zuint16, Cx0400, 0x0003, Z_(IlluminanceTolerance), Cm1, 0 }, //
{ Zenum8, Cx0400, 0x0004, Z_(IlluminanceLightSensorType), Cm1, 0 }, //
{ Zunk, Cx0400, 0xFFFF, Z_(), Cm0, 0 }, // Remove all other values
// Illuminance Level Sensing cluster
{ Zenum8, Cx0401, 0x0000, Z_(IlluminanceLevelStatus), Cm1, 0 }, // Illuminance (in Lux)
{ Zenum8, Cx0401, 0x0001, Z_(IlluminanceLightSensorType), Cm1, 0 }, // LightSensorType
{ Zuint16, Cx0401, 0x0010, Z_(IlluminanceTargetLevel), Cm1, 0 }, //
{ Zunk, Cx0401, 0xFFFF, Z_(), Cm0, 0 }, // Remove all other values
// Temperature Measurement cluster
{ Zint16, Cx0402, 0x0000, Z_(Temperature), Cm_100 + Z_EXPORT_DATA, Z_MAPPING(Z_Data_Thermo, temperature) },
{ Zint16, Cx0402, 0x0001, Z_(TemperatureMinMeasuredValue), Cm_100, 0 }, //
{ Zint16, Cx0402, 0x0002, Z_(TemperatureMaxMeasuredValue), Cm_100, 0 }, //
{ Zuint16, Cx0402, 0x0003, Z_(TemperatureTolerance), Cm_100, 0 }, //
{ Zunk, Cx0402, 0xFFFF, Z_(), Cm0, 0 }, // Remove all other values
// Pressure Measurement cluster
{ Zint16, Cx0403, 0x0000, Z_(Pressure), Cm1 + Z_EXPORT_DATA, Z_MAPPING(Z_Data_Thermo, pressure) }, // Pressure
{ Zint16, Cx0403, 0x0001, Z_(PressureMinMeasuredValue), Cm1, 0 }, //
{ Zint16, Cx0403, 0x0002, Z_(PressureMaxMeasuredValue), Cm1, 0 }, //
{ Zuint16, Cx0403, 0x0003, Z_(PressureTolerance), Cm1, 0 }, //
{ Zint16, Cx0403, 0x0010, Z_(PressureScaledValue), Cm1, 0 }, //
{ Zint16, Cx0403, 0x0011, Z_(PressureMinScaledValue), Cm1, 0 }, //
{ Zint16, Cx0403, 0x0012, Z_(PressureMaxScaledValue), Cm1, 0 }, //
{ Zuint16, Cx0403, 0x0013, Z_(PressureScaledTolerance), Cm1, 0 }, //
{ Zint8, Cx0403, 0x0014, Z_(PressureScale), Cm1, 0 }, //
{ Zint16, Cx0403, 0xFFF0, Z_(SeaPressure), Cm1, Z_MAPPING(Z_Data_Thermo, pressure) }, // Pressure at Sea Level, Tasmota specific
{ Zunk, Cx0403, 0xFFFF, Z_(), Cm0, 0 }, // Remove all other Pressure values
// Flow Measurement cluster
{ Zuint16, Cx0404, 0x0000, Z_(FlowRate), Cm_10, 0 }, // Flow (in m3/h)
{ Zuint16, Cx0404, 0x0001, Z_(FlowMinMeasuredValue), Cm1, 0 }, //
{ Zuint16, Cx0404, 0x0002, Z_(FlowMaxMeasuredValue), Cm1, 0 }, //
{ Zuint16, Cx0404, 0x0003, Z_(FlowTolerance), Cm1, 0 }, //
{ Zunk, Cx0404, 0xFFFF, Z_(), Cm0, 0 }, // Remove all other values
// Relative Humidity Measurement cluster
{ Zuint16, Cx0405, 0x0000, Z_(Humidity), Cm_100 + Z_EXPORT_DATA, Z_MAPPING(Z_Data_Thermo, humidity) }, // Humidity
{ Zuint16, Cx0405, 0x0001, Z_(HumidityMinMeasuredValue), Cm1, 0 }, //
{ Zuint16, Cx0405, 0x0002, Z_(HumidityMaxMeasuredValue), Cm1, 0 }, //
{ Zuint16, Cx0405, 0x0003, Z_(HumidityTolerance), Cm1, 0 }, //
{ Zunk, Cx0405, 0xFFFF, Z_(), Cm0, 0 }, // Remove all other values
// Occupancy Sensing cluster
{ Zmap8, Cx0406, 0x0000, Z_(Occupancy), Cm1, 0 }, // Occupancy (map8)
{ Zenum8, Cx0406, 0x0001, Z_(OccupancySensorType), Cm1, 0 }, // OccupancySensorType
{ Zunk, Cx0406, 0xFFFF, Z_(), Cm0, 0 }, // Remove all other values
// IAS Cluster (Intruder Alarm System)
{ Zenum8, Cx0500, 0x0000, Z_(ZoneState), Cm1, 0 }, // Occupancy (map8)
{ Zenum16, Cx0500, 0x0001, Z_(ZoneType), Cm1, 0 }, // Occupancy (map8)
{ Zmap16, Cx0500, 0x0002, Z_(ZoneStatus), Cm1 + Z_EXPORT_DATA, Z_MAPPING(Z_Data_Alarm, zone_type) }, // Occupancy (map8)
// Metering (Smart Energy) cluster
{ Zuint48, Cx0702, 0x0000, Z_(CurrentSummDelivered), Cm1, 0 },
// Meter Identification cluster
{ Zstring, Cx0B01, 0x0000, Z_(CompanyName), Cm1, 0 },
{ Zuint16, Cx0B01, 0x0001, Z_(MeterTypeID), Cm1, 0 },
{ Zuint16, Cx0B01, 0x0004, Z_(DataQualityID), Cm1, 0 },
{ Zstring, Cx0B01, 0x0005, Z_(CustomerName), Cm1, 0 },
{ Zoctstr, Cx0B01, 0x0006, Z_(Model), Cm1, 0 },
{ Zoctstr, Cx0B01, 0x0007, Z_(PartNumber), Cm1, 0 },
{ Zoctstr, Cx0B01, 0x0008, Z_(ProductRevision), Cm1, 0 },
{ Zoctstr, Cx0B01, 0x000A, Z_(SoftwareRevision), Cm1, 0 },
{ Zstring, Cx0B01, 0x000B, Z_(UtilityName), Cm1, 0 },
{ Zstring, Cx0B01, 0x000C, Z_(POD), Cm1, 0 },
{ Zint24, Cx0B01, 0x000D, Z_(AvailablePower), Cm1, 0 },
{ Zint24, Cx0B01, 0x000E, Z_(PowerThreshold), Cm1, 0 },
// Electrical Measurement cluster
{ Zuint16, Cx0B04, 0x0505, Z_(RMSVoltage), Cm1 + Z_EXPORT_DATA, Z_MAPPING(Z_Data_Plug, mains_voltage) },
{ Zuint16, Cx0B04, 0x0508, Z_(RMSCurrent), Cm1, 0 },
{ Zint16, Cx0B04, 0x050B, Z_(ActivePower), Cm1 + Z_EXPORT_DATA, Z_MAPPING(Z_Data_Plug, mains_power) },
// Diagnostics cluster
{ Zuint16, Cx0B05, 0x0000, Z_(NumberOfResets), Cm1, 0 },
{ Zuint16, Cx0B05, 0x0001, Z_(PersistentMemoryWrites),Cm1, 0 },
{ Zuint8, Cx0B05, 0x011C, Z_(LastMessageLQI), Cm1, 0 },
{ Zuint8, Cx0B05, 0x011D, Z_(LastMessageRSSI), Cm1, 0 },
// Tuya Moes specific - 0xEF00
{ Zoctstr, CxEF00, 0x0070, Z_(TuyaScheduleWorkdays), Cm1, 0 },
{ Zoctstr, CxEF00, 0x0071, Z_(TuyaScheduleHolidays), Cm1, 0 },
{ Zuint8, CxEF00, 0x0107, Z_(TuyaChildLock), Cm1, 0 },
{ Zuint8, CxEF00, 0x0112, Z_(TuyaWindowDetection), Cm1, 0 },
{ Zuint8, CxEF00, 0x0114, Z_(TuyaValveDetection), Cm1, 0 },
{ Zuint8, CxEF00, 0x0174, Z_(TuyaAutoLock), Cm1, 0 },
{ Zint16, CxEF00, 0x0202, Z_(TuyaTempTarget), Cm_10, 0 },
{ Zint16, CxEF00, 0x0203, Z_(LocalTemperature), Cm_10, 0 }, // will be overwritten by actual LocalTemperature
{ Zuint8, CxEF00, 0x0215, Z_(TuyaBattery), Cm1, 0 }, // TODO check equivalent?
{ Zint32, CxEF00, 0x0266, Z_(TuyaMinTemp), Cm1, 0 },
{ Zint32, CxEF00, 0x0267, Z_(TuyaMaxTemp), Cm1, 0 },
{ Zint32, CxEF00, 0x0269, Z_(TuyaBoostTime), Cm1, 0 },
{ Zint32, CxEF00, 0x026B, Z_(TuyaComfortTemp), Cm1, 0 },
{ Zint32, CxEF00, 0x026C, Z_(TuyaEcoTemp), Cm1, 0 },
{ Zuint8, CxEF00, 0x026D, Z_(TuyaValvePosition), Cm1, 0 },
{ Zint32, CxEF00, 0x0272, Z_(TuyaAwayTemp), Cm1, 0 },
{ Zint32, CxEF00, 0x0275, Z_(TuyaAwayDays), Cm1, 0 },
{ Zuint8, CxEF00, 0x0404, Z_(TuyaPreset), Cm1, 0 },
{ Zuint8, CxEF00, 0x0405, Z_(TuyaFanMode), Cm1, 0 },
{ Zuint8, CxEF00, 0x046A, Z_(TuyaForceMode), Cm1, 0 },
{ Zuint8, CxEF00, 0x046F, Z_(TuyaWeekSelect), Cm1, 0 },
};
#pragma GCC diagnostic pop
typedef union ZCLHeaderFrameControl_t {
struct {
uint8_t frame_type : 2; // 00 = across entire profile, 01 = cluster specific
uint8_t manuf_specific : 1; // Manufacturer Specific Sub-field
uint8_t direction : 1; // 0 = tasmota to zigbee, 1 = zigbee to tasmota
uint8_t disable_def_resp : 1; // don't send back default response
uint8_t reserved : 3;
} b;
uint32_t d8; // raw 8 bits field
} ZCLHeaderFrameControl_t;
// Find the attribute details by attribute name
// If not found:
// - returns nullptr
const __FlashStringHelper* zigbeeFindAttributeByName(const char *command,
uint16_t *cluster, uint16_t *attribute, int8_t *multiplier,
uint8_t *zigbee_type = nullptr, Z_Data_Type *data_type = nullptr, uint8_t *map_offset = nullptr) {
for (uint32_t i = 0; i < ARRAY_SIZE(Z_PostProcess); i++) {
const Z_AttributeConverter *converter = &Z_PostProcess[i];
if (0 == pgm_read_word(&converter->name_offset)) { continue; } // avoid strcasecmp_P() from crashing
if (0 == strcasecmp_P(command, Z_strings + pgm_read_word(&converter->name_offset))) {
if (cluster) { *cluster = CxToCluster(pgm_read_byte(&converter->cluster_short)); }
if (attribute) { *attribute = pgm_read_word(&converter->attribute); }
if (multiplier) { *multiplier = CmToMultiplier(pgm_read_byte(&converter->multiplier_idx)); }
if (zigbee_type) { *zigbee_type = pgm_read_byte(&converter->type); }
uint8_t conv_mapping = pgm_read_byte(&converter->mapping);
if (data_type) { *data_type = (Z_Data_Type) ((conv_mapping & 0xF0)>>4); }
if (map_offset) { *map_offset = (conv_mapping & 0x0F); }
return (const __FlashStringHelper*) (Z_strings + pgm_read_word(&converter->name_offset));
}
}
return nullptr;
}
//
// Find attribute details: Name, Type, Multiplier by cuslter/attr_id
//
const __FlashStringHelper* zigbeeFindAttributeById(uint16_t cluster, uint16_t attr_id,
uint8_t *attr_type, int8_t *multiplier) {
for (uint32_t i = 0; i < ARRAY_SIZE(Z_PostProcess); i++) {
const Z_AttributeConverter *converter = &Z_PostProcess[i];
uint16_t conv_cluster = CxToCluster(pgm_read_byte(&converter->cluster_short));
uint16_t conv_attr_id = pgm_read_word(&converter->attribute);
if ((conv_cluster == cluster) && (conv_attr_id == attr_id)) {
if (multiplier) { *multiplier = CmToMultiplier(pgm_read_byte(&converter->multiplier_idx)); }
if (attr_type) { *attr_type = pgm_read_byte(&converter->type); }
return (const __FlashStringHelper*) (Z_strings + pgm_read_word(&converter->name_offset));
}
}
return nullptr;
}
class ZCLFrame {
public:
ZCLFrame(uint8_t frame_control, uint16_t manuf_code, uint8_t transact_seq, uint8_t cmd_id,
const char *buf, size_t buf_len, uint16_t clusterid, uint16_t groupaddr,
uint16_t srcaddr, uint8_t srcendpoint, uint8_t dstendpoint, uint8_t wasbroadcast,
uint8_t linkquality, uint8_t securityuse, uint8_t seqnumber):
_manuf_code(manuf_code), _transact_seq(transact_seq), _cmd_id(cmd_id),
_payload(buf_len ? buf_len : 250), // allocate the data frame from source or preallocate big enough
_cluster_id(clusterid), _groupaddr(groupaddr),
_srcaddr(srcaddr), _srcendpoint(srcendpoint), _dstendpoint(dstendpoint), _wasbroadcast(wasbroadcast),
_linkquality(linkquality), _securityuse(securityuse), _seqnumber(seqnumber)
{
_frame_control.d8 = frame_control;
_payload.addBuffer(buf, buf_len);
};
void log(void) {
char hex_char[_payload.len()*2+2];
ToHex_P((unsigned char*)_payload.getBuffer(), _payload.len(), hex_char, sizeof(hex_char));
Response_P(PSTR("{\"" D_JSON_ZIGBEEZCL_RECEIVED "\":{"
"\"groupid\":%d," "\"clusterid\":%d," "\"srcaddr\":\"0x%04X\","
"\"srcendpoint\":%d," "\"dstendpoint\":%d," "\"wasbroadcast\":%d,"
"\"" D_CMND_ZIGBEE_LINKQUALITY "\":%d," "\"securityuse\":%d," "\"seqnumber\":%d,"
"\"fc\":\"0x%02X\",\"manuf\":\"0x%04X\",\"transact\":%d,"
"\"cmdid\":\"0x%02X\",\"payload\":\"%s\"}}"),
_groupaddr, _cluster_id, _srcaddr,
_srcendpoint, _dstendpoint, _wasbroadcast,
_linkquality, _securityuse, _seqnumber,
_frame_control, _manuf_code, _transact_seq, _cmd_id,
hex_char);
if (Settings.flag3.tuya_serial_mqtt_publish) {
MqttPublishPrefixTopicRulesProcess_P(TELE, PSTR(D_RSLT_SENSOR));
} else {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "%s"), mqtt_data);
}
}
static ZCLFrame parseRawFrame(const SBuffer &buf, uint8_t offset, uint8_t len, uint16_t clusterid, uint16_t groupid,
uint16_t srcaddr, uint8_t srcendpoint, uint8_t dstendpoint, uint8_t wasbroadcast,
uint8_t linkquality, uint8_t securityuse, uint8_t seqnumber) { // parse a raw frame and build the ZCL frame object
uint32_t i = offset;
ZCLHeaderFrameControl_t frame_control;
uint16_t manuf_code = 0;
uint8_t transact_seq;
uint8_t cmd_id;
frame_control.d8 = buf.get8(i++);
if (frame_control.b.manuf_specific) {
manuf_code = buf.get16(i);
i += 2;
}
transact_seq = buf.get8(i++);
cmd_id = buf.get8(i++);
ZCLFrame zcl_frame(frame_control.d8, manuf_code, transact_seq, cmd_id,
(const char *)(buf.buf() + i), len + offset - i,
clusterid, groupid,
srcaddr, srcendpoint, dstendpoint, wasbroadcast,
linkquality, securityuse, seqnumber);
return zcl_frame;
}
bool isClusterSpecificCommand(void) {
return _frame_control.b.frame_type & 1;
}
void parseReportAttributes(Z_attribute_list& attr_list);
void generateSyntheticAttributes(Z_attribute_list& attr_list);
void computeSyntheticAttributes(Z_attribute_list& attr_list);
void generateCallBacks(Z_attribute_list& attr_list);
void parseReadAttributes(Z_attribute_list& attr_list);
void parseReadAttributesResponse(Z_attribute_list& attr_list);
void parseReadConfigAttributes(Z_attribute_list& attr_list);
void parseConfigAttributes(Z_attribute_list& attr_list);
void parseResponse(void);
void parseResponseOld(void);
void parseClusterSpecificCommand(Z_attribute_list& attr_list);
void postProcessAttributes(uint16_t shortaddr, Z_attribute_list& attr_list);
// synthetic attributes converters
void syntheticAqaraSensor(Z_attribute_list &attr_list, class Z_attribute &attr);
void syntheticAqaraSensor2(Z_attribute_list &attr_list, class Z_attribute &attr);
void syntheticAqaraCubeOrButton(Z_attribute_list &attr_list, class Z_attribute &attr);
void syntheticAqaraVibration(Z_attribute_list &attr_list, class Z_attribute &attr);
inline void setGroupId(uint16_t groupid) {
_groupaddr = groupid;
}
inline void setClusterId(uint16_t clusterid) {
_cluster_id = clusterid;
}
inline uint16_t getSrcAddr(void) const { return _srcaddr; }
inline uint16_t getGroupAddr(void) const { return _groupaddr; }
inline uint16_t getClusterId(void) const { return _cluster_id; }
inline uint8_t getLinkQuality(void) const { return _linkquality; }
inline uint8_t getCmdId(void) const { return _cmd_id; }
inline uint16_t getSrcEndpoint(void) const { return _srcendpoint; }
const SBuffer &getPayload(void) const {
return _payload;
}
uint16_t getManufCode(void) const {
return _manuf_code;
}
private:
ZCLHeaderFrameControl_t _frame_control = { .d8 = 0 };
uint16_t _manuf_code = 0; // optional
uint8_t _transact_seq = 0; // transaction sequence number
uint8_t _cmd_id = 0;
SBuffer _payload;
uint16_t _cluster_id = 0;
uint16_t _groupaddr = 0;
// information from decoded ZCL frame
uint16_t _srcaddr;
uint8_t _srcendpoint;
uint8_t _dstendpoint;
uint8_t _wasbroadcast;
uint8_t _linkquality;
uint8_t _securityuse;
uint8_t _seqnumber;
};
// Zigbee ZCL converters
// from https://github.com/Koenkk/zigbee-shepherd-converters/blob/638d29f0cace6343052b9a4e7fd60980fa785479/converters/fromZigbee.js#L55
// Input voltage in mV, i.e. 3000 = 3.000V
// Output percentage from 0 to 100 as int
uint8_t toPercentageCR2032(uint32_t voltage) {
uint32_t percentage;
if (voltage < 2100) {
percentage = 0;
} else if (voltage < 2440) {
percentage = 6 - ((2440 - voltage) * 6) / 340;
} else if (voltage < 2740) {
percentage = 18 - ((2740 - voltage) * 12) / 300;
} else if (voltage < 2900) {
percentage = 42 - ((2900 - voltage) * 24) / 160;
} else if (voltage < 3000) {
percentage = 100 - ((3000 - voltage) * 58) / 100;
} else if (voltage >= 3000) {
percentage = 100;
}
return percentage;
}
//
// Appends the attribute value to Write or to Report
// Adds to buf:
// - n bytes: value (typically between 1 and 4 bytes, or bigger for strings)
// returns number of bytes of attribute, or <0 if error
int32_t encodeSingleAttribute(class SBuffer &buf, double val_d, const char *val_str, uint8_t attrtype) {
uint32_t len = Z_getDatatypeLen(attrtype); // pre-compute lenght, overloaded for variable length attributes
uint32_t u32 = val_d;
int32_t i32 = val_d;
float f32 = val_d;
switch (attrtype) {
// unsigned 8
case Zbool: // bool
case Zuint8: // uint8
case Zenum8: // enum8
case Zdata8: // data8
case Zmap8: // map8
buf.add8(u32);
break;
// unsigned 16
case Zuint16: // uint16
case Zenum16: // enum16
case Zdata16: // data16
case Zmap16: // map16
buf.add16(u32);
break;
// unisgned 32
case Zuint32: // uint32
case Zdata32: // data32
case Zmap32: // map32
case ZUTC: // UTC - epoch 32 bits, seconds since 1-Jan-2000
buf.add32(u32);
break;
// signed 8
case Zint8: // int8
buf.add8(i32);
break;
case Zint16: // int16
buf.add16(i32);
break;
case Zint32: // int32
buf.add32(i32);
break;
case Zsingle: // float
uint32_t *f_ptr;
buf.add32( *((uint32_t*)&f32) ); // cast float as uint32_t
break;
case Zstring:
case Zstring16:
{
if (nullptr == val_str) { return -2; }
size_t val_len = strlen(val_str);
if (val_len > 32) { val_len = 32; }
len = val_len + 1;
buf.add8(val_len);
if (Zstring16 == attrtype) {
buf.add8(0); // len is on 2 bytes
len++;
}
for (uint32_t i = 0; i < val_len; i++) {
buf.add8(val_str[i]);
}
}
break;
default:
return -1;
}
return len;
}
//
// parse a single attribute
//
// Input:
// attr: attribute object to store to
// buf: the buffer to read from
// offset: location in the buffer to read from
// attrtype: type of attribute (byte) or -1 to read from the stream as first byte
// Output:
// return: the length in bytes of the attribute
uint32_t parseSingleAttribute(Z_attribute & attr, const SBuffer &buf,
uint32_t offset, int32_t attrtype = -1) {
uint32_t i = offset;
if (attrtype < 0) {
attrtype = buf.get8(i++);
}
// fallback - enter a null value
attr.setNone(); // set to null by default
uint32_t len = Z_getDatatypeLen(attrtype); // pre-compute lenght, overloaded for variable length attributes
// now parse accordingly to attr type
switch (attrtype) {
// case Znodata: // nodata
// case Zunk: // unk
// break;
case Zbool: // bool
case Zuint8: // uint8
case Zenum8: // enum8
{
uint8_t uint8_val = buf.get8(i);
// i += 1;
if (0xFF != uint8_val) {
attr.setUInt(uint8_val);
}
}
break;
case Zuint16: // uint16
case Zenum16: // enum16
{
uint16_t uint16_val = buf.get16(i);
// i += 2;
if (0xFFFF != uint16_val) {
attr.setUInt(uint16_val);
}
}
break;
case Zuint32: // uint32
case ZUTC: // UTC
{
uint32_t uint32_val = buf.get32(i);
// i += 4;
if (0xFFFFFFFF != uint32_val) {
attr.setUInt(uint32_val);
}
}
break;
// Note: uint40, uint48, uint56, uint64 are displayed as Hex
// Note: int40, int48, int56, int64 are displayed as Hex
case Zuint40: // uint40
case Zuint48: // uint48
case Zuint56: // uint56
case Zuint64: // uint64
case Zint40: // int40
case Zint48: // int48
case Zint56: // int56
case Zint64: // int64
{
// uint8_t len = attrtype - 0x27; // 5 - 8
// print as HEX "0x...."
char hex[2*len+3];
snprintf_P(hex, sizeof(hex), PSTR("0x"));
for (uint32_t j=0; j<len; j++) {
snprintf_P(hex, sizeof(hex), PSTR("%s%02X"), hex, buf.get8(i+len-j-1));
}
attr.setStr(hex);
// i += len;
}
break;
case Zint8: // int8
{
int8_t int8_val = buf.get8(i);
// i += 1;
if (0x80 != int8_val) {
attr.setInt(int8_val);
}
}
break;
case Zint16: // int16
{
int16_t int16_val = buf.get16(i);
// i += 2;
if (0x8000 != int16_val) {
attr.setInt(int16_val);
}
}
break;
case Zint32: // int32
{
int32_t int32_val = buf.get32(i);
// i += 4;
if (0x80000000 != int32_val) {
attr.setInt(int32_val);
}
}
break;
case Zoctstr: // octet string, 1 byte len
case Zstring: // char string, 1 byte len
case Zoctstr16: // octet string, 2 bytes len
case Zstring16: // char string, 2 bytes len
// For strings, default is to try to do a real string, but reverts to octet stream if null char is present or on some exceptions
{
bool parse_as_string = true;
len = (attrtype <= 0x42) ? buf.get8(i) : buf.get16(i); // len is 8 or 16 bits
i += (attrtype <= 0x42) ? 1 : 2; // increment pointer
if (i + len > buf.len()) { // make sure we don't get past the buffer
len = buf.len() - i;
}
// check if we can safely use a string
if ((0x41 == attrtype) || (0x43 == attrtype)) { parse_as_string = false; }
if (parse_as_string) {
char str[len+1];
strncpy(str, buf.charptr(i), len);
str[len] = 0x00;
attr.setStr(str);
} else {
attr.setBuf(buf, i, len);
}
// i += len;
// break;
}
// i += buf.get8(i) + 1;
break;
case Zstruct:
{
uint16_t struct_size = buf.get16(i);
len = 2;
if (0xFFFF != struct_size) {
if (struct_size > 16) { struct_size = 16; }
// parse inner attributes - supports only fixed length for now
for (uint32_t j = 0; j < struct_size; j++) {
uint8_t attr_type = buf.get8(i+len);
len += Z_getDatatypeLen(attr_type) + 1;
}
attr.setBuf(buf, i, len);
}
}
break;
case Zdata8: // data8
case Zmap8: // map8
{
uint8_t uint8_val = buf.get8(i);
// i += 1;
attr.setUInt(uint8_val);
}
break;
case Zdata16: // data16
case Zmap16: // map16
{
uint16_t uint16_val = buf.get16(i);
// i += 2;
attr.setUInt(uint16_val);
}
break;
case Zdata32: // data32
case Zmap32: // map32
{
uint32_t uint32_val = buf.get32(i);
// i += 4;
attr.setUInt(uint32_val);
}
break;
case Zsingle: // float
{
uint32_t uint32_val = buf.get32(i);
float * float_val = (float*) &uint32_val;
// i += 4;
attr.setFloat(*float_val);
}
break;
// TODO
case ZToD: // ToD
case Zdate: // date
case ZclusterId: // clusterId
case ZattribId: // attribId
case ZbacOID: // bacOID
case ZEUI64: // EUI64
case Zkey128: // key128
case Zsemi: // semi (float on 2 bytes)
break;
// Other un-implemented data types
case Zdata24: // data24
case Zdata40: // data40
case Zdata48: // data48
case Zdata56: // data56
case Zdata64: // data64
break;
// map<x>
case Zmap24: // map24
case Zmap40: // map40
case Zmap48: // map48
case Zmap56: // map56
case Zmap64: // map64
break;
case Zdouble: // double precision
{
uint64_t uint64_val = buf.get64(i);
double * double_val = (double*) &uint64_val;
// i += 8;
attr.setFloat((float) *double_val);
}
break;
}
i += len;
return i - offset; // how much have we increased the index
}
// First pass, parse all attributes in their native format
void ZCLFrame::parseReportAttributes(Z_attribute_list& attr_list) {
uint32_t i = 0;
uint32_t len = _payload.len();
while (len >= i + 3) {
uint16_t attrid = _payload.get16(i);
i += 2;
// exception for Xiaomi lumi.weather - specific field to be treated as octet and not char
if ((0x0000 == _cluster_id) && (0xFF01 == attrid)) {
if (0x42 == _payload.get8(i)) {
_payload.set8(i, 0x41); // change type from 0x42 to 0x41
}
}
// TODO look for suffix
Z_attribute & attr = attr_list.addAttribute(_cluster_id, attrid);
i += parseSingleAttribute(attr, _payload, i);
}
// Issue Philips outdoor motion sensor SML002, see https://github.com/Koenkk/zigbee2mqtt/issues/897
// The sensor expects the coordinator to send a Default Response to acknowledge the attribute reporting
if (0 == _frame_control.b.disable_def_resp) {
// the device expects a default response
SBuffer buf(2);
buf.add8(_cmd_id);
buf.add8(0x00); // Status = OK
ZigbeeZCLSend_Raw(ZigbeeZCLSendMessage({
_srcaddr,
0x0000,
_cluster_id,
_srcendpoint,
ZCL_DEFAULT_RESPONSE,
_manuf_code,
false /* not cluster specific */,
false /* noresponse */,
_transact_seq, /* zcl transaction id */
buf.getBuffer(), buf.len()
}));
}
}
//
// Extract attributes hidden in other compound attributes
//
void ZCLFrame::generateSyntheticAttributes(Z_attribute_list& attr_list) {
// scan through attributes and apply specific converters
for (auto &attr : attr_list) {
if (attr.key_is_str) { continue; } // pass if key is a name
uint32_t ccccaaaa = (attr.key.id.cluster << 16) | attr.key.id.attr_id;
switch (ccccaaaa) { // 0xccccaaaa . c=cluster, a=attribute
case 0x0000FF01:
syntheticAqaraSensor(attr_list, attr);
break;
case 0x0000FF02:
syntheticAqaraSensor2(attr_list, attr);
break;
case 0x00120055:
syntheticAqaraCubeOrButton(attr_list, attr);
break;
case 0x01010055:
case 0x01010508:
syntheticAqaraVibration(attr_list, attr);
break;
}
}
}
//
// Compute new attributes based on the standard set
// Note: both function are now split to compute on extracted attributes
//
void ZCLFrame::computeSyntheticAttributes(Z_attribute_list& attr_list) {
// scan through attributes and apply specific converters
for (auto &attr : attr_list) {
if (attr.key_is_str) { continue; } // pass if key is a name
uint32_t ccccaaaa = (attr.key.id.cluster << 16) | attr.key.id.attr_id;
switch (ccccaaaa) { // 0xccccaaaa . c=cluster, a=attribute
case 0x00010020: // BatteryVoltage
if (attr_list.countAttribute(0x0001,0x0021) == 0) { // if it does not already contain BatteryPercentage
uint32_t mv = attr.getUInt()*100;
attr_list.addAttribute(0x0001, 0x0021).setUInt(toPercentageCR2032(mv) * 2);
}
break;
case 0x02010008: // Pi Heating Demand - solve Eutotronic bug
{
const char * manufacturer_c = zigbee_devices.getManufacturerId(_srcaddr); // null if unknown
String manufacturerId((char*) manufacturer_c);
if (manufacturerId.equals(F("Eurotronic"))) {
// Eurotronic does not report 0..100 but 0..255, including 255 which is normally an ivalid value
uint8_t valve = attr.getUInt();
if (attr.isNone()) { valve = 255; }
uint8_t valve_100 = changeUIntScale(valve, 0, 255, 0, 100);
attr.setUInt(valve_100);
}
}
break;
case 0x04030000: // Pressure
{
int16_t pressure = attr.getInt();
int16_t pressure_sealevel = (pressure / FastPrecisePow(1.0 - ((float)Settings.altitude / 44330.0f), 5.255f)) - 21.6f;
attr_list.addAttribute(0x0403, 0xFFF0).setInt(pressure_sealevel);
// We create a synthetic attribute 0403/FFF0 to indicate sea level
}
break;
}
}
}
// Set deferred callbacks for Occupancy
// TODO make delay a parameter
void ZCLFrame::generateCallBacks(Z_attribute_list& attr_list) {
static const uint32_t OCCUPANCY_TIMEOUT = 90 * 1000; // 90 s
// scan through attributes and apply specific converters
for (auto &attr : attr_list) {
if (attr.key_is_str) { continue; } // pass if key is a name
uint32_t ccccaaaa = (attr.key.id.cluster << 16) | attr.key.id.attr_id;
switch (ccccaaaa) { // 0xccccaaaa . c=cluster, a=attribute
case 0x04060000: // Occupancy
uint32_t occupancy = attr.getUInt();
if (occupancy) {
zigbee_devices.setTimer(_srcaddr, 0 /* groupaddr */, OCCUPANCY_TIMEOUT, _cluster_id, _srcendpoint, Z_CAT_VIRTUAL_OCCUPANCY, 0, &Z_OccupancyCallback);
} else {
zigbee_devices.resetTimersForDevice(_srcaddr, 0 /* groupaddr */, Z_CAT_VIRTUAL_OCCUPANCY);
}
break;
}
}
}
// A command has been sent to a device this device, or to a group
// Set timers to read back values.
// If it's a device address, also set a timer for reachability test
void sendHueUpdate(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint = 0) {
uint32_t wait_ms = 0xFFFF;
switch (cluster) {
case 0x0006:
wait_ms = 200; // wait 0.2 s
break;
case 0x0008:
wait_ms = 1050; // wait 1.0 s
break;
case 0x0102:
wait_ms = 10000; // wait 10.0 s
break;
case 0x0300:
wait_ms = 1050; // wait 1.0 s
break;
default:
break;
}
if (0xFFFF != wait_ms) {
if ((BAD_SHORTADDR != shortaddr) && (0 == endpoint)) {
endpoint = zigbee_devices.findFirstEndpoint(shortaddr);
}
if ((BAD_SHORTADDR == shortaddr) || (endpoint)) { // send if group address or endpoint is known
zigbee_devices.queueTimer(shortaddr, groupaddr, wait_ms, cluster, endpoint, Z_CAT_READ_CLUSTER, 0 /* value */, &Z_ReadAttrCallback);
if (BAD_SHORTADDR != shortaddr) { // reachability test is not possible for group addresses, since we don't know the list of devices in the group
zigbee_devices.setTimer(shortaddr, groupaddr, wait_ms + Z_CAT_REACHABILITY_TIMEOUT, cluster, endpoint, Z_CAT_REACHABILITY, 0 /* value */, &Z_Unreachable);
}
}
}
}
// ZCL_READ_ATTRIBUTES
void ZCLFrame::parseReadAttributes(Z_attribute_list& attr_list) {
uint32_t i = 0;
uint32_t len = _payload.len();
uint16_t read_attr_ids[len/2];
attr_list.addAttribute(F(D_CMND_ZIGBEE_CLUSTER)).setUInt(_cluster_id);
Z_json_array attr_numbers;
Z_attribute_list attr_names;
while (len >= 2 + i) {
uint16_t attrid = _payload.get16(i);
attr_numbers.add(attrid);
read_attr_ids[i/2] = attrid;
// find the attribute name
for (uint32_t i = 0; i < ARRAY_SIZE(Z_PostProcess); i++) {
const Z_AttributeConverter *converter = &Z_PostProcess[i];
uint16_t conv_cluster = CxToCluster(pgm_read_byte(&converter->cluster_short));
uint16_t conv_attribute = pgm_read_word(&converter->attribute);
if ((conv_cluster == _cluster_id) && (conv_attribute == attrid)) {
attr_names.addAttribute(Z_strings + pgm_read_word(&converter->name_offset), true).setBool(true);
break;
}
}
i += 2;
}
attr_list.addAttribute(F("Read")).setStrRaw(attr_numbers.toString().c_str());
attr_list.addAttribute(F("ReadNames")).setStrRaw(attr_names.toString(true).c_str());
// call auto-responder
Z_AutoResponder(_srcaddr, _cluster_id, _srcendpoint, read_attr_ids, len/2);
}
// ZCL_CONFIGURE_REPORTING_RESPONSE
void ZCLFrame::parseConfigAttributes(Z_attribute_list& attr_list) {
uint32_t len = _payload.len();
Z_attribute_list attr_config_list;
for (uint32_t i=0; len >= i+4; i+=4) {
uint8_t status = _payload.get8(i);
uint16_t attr_id = _payload.get8(i+2);
Z_attribute_list attr_config_response;
attr_config_response.addAttribute(F("Status")).setUInt(status);
attr_config_response.addAttribute(F("StatusMsg")).setStr(getZigbeeStatusMessage(status).c_str());
const __FlashStringHelper* attr_name = zigbeeFindAttributeById(_cluster_id, attr_id, nullptr, nullptr);
if (attr_name) {
attr_config_list.addAttribute(attr_name).setStrRaw(attr_config_response.toString(true).c_str());
} else {
attr_config_list.addAttribute(_cluster_id, attr_id).setStrRaw(attr_config_response.toString(true).c_str());
}
}
Z_attribute &attr_1 = attr_list.addAttribute(F("ConfigResponse"));
attr_1.setStrRaw(attr_config_list.toString(true).c_str());
}
// ZCL_READ_REPORTING_CONFIGURATION_RESPONSE
void ZCLFrame::parseReadConfigAttributes(Z_attribute_list& attr_list) {
uint32_t i = 0;
uint32_t len = _payload.len();
Z_attribute &attr_root = attr_list.addAttribute(F("ReadConfig"));
Z_attribute_list attr_1;
while (len >= i + 4) {
uint8_t status = _payload.get8(i);
uint8_t direction = _payload.get8(i+1);
uint16_t attrid = _payload.get16(i+2);
Z_attribute_list attr_2;
if (direction) {
attr_2.addAttribute(F("DirectionReceived")).setBool(true);
}
// find the attribute name
int8_t multiplier = 1;
for (uint32_t i = 0; i < ARRAY_SIZE(Z_PostProcess); i++) {
const Z_AttributeConverter *converter = &Z_PostProcess[i];
uint16_t conv_cluster = CxToCluster(pgm_read_byte(&converter->cluster_short));
uint16_t conv_attribute = pgm_read_word(&converter->attribute);
if ((conv_cluster == _cluster_id) && (conv_attribute == attrid)) {
const char * attr_name = Z_strings + pgm_read_word(&converter->name_offset);
attr_2.addAttribute(attr_name, true).setBool(true);
multiplier = CmToMultiplier(pgm_read_byte(&converter->multiplier_idx));
break;
}
}
i += 4;
if (0 != status) {
attr_2.addAttribute(F("Status")).setUInt(status);
attr_2.addAttribute(F("StatusMsg")).setStr(getZigbeeStatusMessage(status).c_str());
} else {
// no error, decode data
if (direction) {
// only Timeout period is present
uint16_t attr_timeout = _payload.get16(i);
i += 2;
attr_2.addAttribute(F("TimeoutPeriod")).setUInt((0xFFFF == attr_timeout) ? -1 : attr_timeout);
} else {
// direction == 0, we have a data type
uint8_t attr_type = _payload.get8(i);
bool attr_discrete = Z_isDiscreteDataType(attr_type);
uint16_t attr_min_interval = _payload.get16(i+1);
uint16_t attr_max_interval = _payload.get16(i+3);
i += 5;
attr_2.addAttribute(F("MinInterval")).setUInt((0xFFFF == attr_min_interval) ? -1 : attr_min_interval);
attr_2.addAttribute(F("MaxInterval")).setUInt((0xFFFF == attr_max_interval) ? -1 : attr_max_interval);
if (!attr_discrete) {
// decode Reportable Change
Z_attribute &attr_change = attr_2.addAttribute(F("ReportableChange"));
i += parseSingleAttribute(attr_change, _payload, i, attr_type);
if ((1 != multiplier) && (0 != multiplier)) {
float fval = attr_change.getFloat();
if (multiplier > 0) { fval = fval * multiplier; }
else { fval = fval / (-multiplier); }
attr_change.setFloat(fval);
}
}
}
}
attr_1.addAttribute(_cluster_id, attrid).setStrRaw(attr_2.toString(true).c_str());
}
attr_root.setStrRaw(attr_1.toString(true).c_str());
}
// ZCL_READ_ATTRIBUTES_RESPONSE
void ZCLFrame::parseReadAttributesResponse(Z_attribute_list& attr_list) {
uint32_t i = 0;
uint32_t len = _payload.len();
while (len >= i + 4) {
uint16_t attrid = _payload.get16(i);
i += 2;
uint8_t status = _payload.get8(i++);
if (0 == status) {
Z_attribute & attr = attr_list.addAttribute(_cluster_id, attrid);
i += parseSingleAttribute(attr, _payload, i);
}
}
}
// ZCL_DEFAULT_RESPONSE
void ZCLFrame::parseResponse(void) {
if (_payload.len() < 2) { return; } // wrong format
uint8_t cmd = _payload.get8(0);
uint8_t status = _payload.get8(1);
Z_attribute_list attr_list;
// "Device"
char s[12];
snprintf_P(s, sizeof(s), PSTR("0x%04X"), _srcaddr);
attr_list.addAttribute(F(D_JSON_ZIGBEE_DEVICE)).setStr(s);
// "Name"
const char * friendlyName = zigbee_devices.getFriendlyName(_srcaddr);
if (friendlyName) {
attr_list.addAttribute(F(D_JSON_ZIGBEE_NAME)).setStr(friendlyName);
}
// "Command"
snprintf_P(s, sizeof(s), PSTR("%04X!%02X"), _cluster_id, cmd);
attr_list.addAttribute(F(D_JSON_ZIGBEE_CMD)).setStr(s);
// "Status"
attr_list.addAttribute(F(D_JSON_ZIGBEE_STATUS)).setUInt(status);
// "StatusMessage"
attr_list.addAttribute(F(D_JSON_ZIGBEE_STATUS_MSG)).setStr(getZigbeeStatusMessage(status).c_str());
// Add Endpoint
attr_list.addAttribute(F(D_CMND_ZIGBEE_ENDPOINT)).setUInt(_srcendpoint);
// Add Group if non-zero
if (_groupaddr) { // TODO what about group zero
attr_list.group_id = _groupaddr;
}
// Add linkquality
attr_list.lqi = _linkquality;
Response_P(PSTR("{\"" D_JSON_ZIGBEE_RESPONSE "\":%s}"), attr_list.toString(true).c_str());
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
}
// Parse non-normalized attributes
void ZCLFrame::parseClusterSpecificCommand(Z_attribute_list& attr_list) {
convertClusterSpecific(attr_list, _cluster_id, _cmd_id, _frame_control.b.direction, _srcaddr, _srcendpoint, _payload);
#ifndef USE_ZIGBEE_NO_READ_ATTRIBUTES // read attributes unless disabled
if (!_frame_control.b.direction) { // only handle server->client (i.e. device->coordinator)
if (_wasbroadcast) { // only update for broadcast messages since we don't see unicast from device to device and we wouldn't know the target
sendHueUpdate(BAD_SHORTADDR, _groupaddr, _cluster_id);
}
}
#endif
}
// ======================================================================
// New version of synthetic attribute generation
void ZCLFrame::syntheticAqaraSensor(Z_attribute_list &attr_list, class Z_attribute &attr) {
const SBuffer * buf = attr.getRaw();
if (buf) {
const SBuffer & buf2 = *buf;
uint32_t i = 0;
uint32_t len = buf2.len();
const char * modelId_c = zigbee_devices.getModelId(_srcaddr); // null if unknown
String modelId((char*) modelId_c);
while (len >= 2 + i) {
uint8_t attrid = buf2.get8(i++);
Z_attribute attr; // temporary attribute
i += parseSingleAttribute(attr, buf2, i);
int32_t ival32 = attr.getInt();
uint32_t uval32 = attr.getUInt();
bool translated = false; // were we able to translate to a known format?
if (0x01 == attrid) {
float batteryvoltage = attr.getFloat() / 100;
attr_list.addAttribute(0x0001, 0x0020).setFloat(batteryvoltage);
uint8_t batterypercentage = toPercentageCR2032(uval32);
attr_list.addAttribute(0x0001, 0x0021).setUInt(batterypercentage * 2);
} else if ((nullptr != modelId) && (0 == getManufCode())) {
translated = true;
if (modelId.startsWith(F("lumi.sensor_ht")) ||
modelId.equals(F("lumi.sens")) ||
modelId.startsWith(F("lumi.weather"))) { // Temp sensor
// Filter according to prefix of model name
// onla Aqara Temp/Humidity has manuf_code of zero. If non-zero we skip the parameters
if (0x64 == attrid) {
attr_list.addAttribute(0x0402, 0x0000).setInt(ival32); // Temperature
} else if (0x65 == attrid) {
attr_list.addAttribute(0x0405, 0x0000).setUInt(uval32); // Humidity * 100
} else if (0x66 == attrid) {
attr_list.addAttribute(0x0403, 0x0000).setUInt((ival32 + 50) / 100); // Pressure
}
} else if (modelId.startsWith(F("lumi.sensor_smoke"))) { // gas leak
if (0x64 == attrid) {
attr_list.addAttribute(F("SmokeDensity")).copyVal(attr);
}
} else if (modelId.startsWith(F("lumi.sensor_natgas"))) { // gas leak
if (0x64 == attrid) {
attr_list.addAttribute(F("GasDensity")).copyVal(attr);
}
} else {
translated = false; // we didn't find a match
}
// } else if (0x115F == zcl->getManufCode()) { // Aqara Motion Sensor, still unknown field
}
if (!translated) {
if (attrid >= 100) { // payload is always above 0x64 or 100
char attr_name[12];
snprintf_P(attr_name, sizeof(attr_name), PSTR("Xiaomi_%02X"), attrid);
attr_list.addAttribute(attr_name).copyVal(attr);
}
}
}
}
}
void ZCLFrame::syntheticAqaraSensor2(class Z_attribute_list &attr_list, class Z_attribute &attr) {
const SBuffer * buf = attr.getRaw();
if (buf) {
const SBuffer & buf2 = *buf;
uint32_t len = buf2.len();
// Look for battery value which is the first attribute of type 0x21
uint16_t struct_size = buf2.get16(0);
size_t struct_len = 2;
if (0xFFFF != struct_size) {
if (struct_size > 16) { struct_size = 16; }
for (uint32_t j = 0; (j < struct_size) && (struct_len < len); j++) {
uint8_t attr_type = buf2.get8(struct_len);
if (0x21 == attr_type) {
uint16_t val = buf2.get16(struct_len+1);
float batteryvoltage = (float)val / 100;
attr_list.addAttribute(0x0001, 0x0020).setFloat(batteryvoltage);
uint8_t batterypercentage = toPercentageCR2032(val);
attr_list.addAttribute(0x0001, 0x0021).setUInt(batterypercentage * 2);
break;
}
struct_len += Z_getDatatypeLen(attr_type) + 1;
}
}
}
attr_list.removeAttribute(&attr);
}
// Aqara Cube and Button
void ZCLFrame::syntheticAqaraCubeOrButton(class Z_attribute_list &attr_list, class Z_attribute &attr) {
const char * modelId_c = zigbee_devices.findShortAddr(_srcaddr).modelId; // null if unknown
String modelId((char*) modelId_c);
if (modelId.startsWith(F("lumi.sensor_cube"))) { // only for Aqara cube
int32_t val = attr.getInt();
const __FlashStringHelper *aqara_cube = F("AqaraCube");
const __FlashStringHelper *aqara_cube_side = F("AqaraCubeSide");
const __FlashStringHelper *aqara_cube_from_side = F("AqaraCubeFromSide");
switch (val) {
case 0:
attr_list.addAttribute(aqara_cube).setStr(PSTR("shake"));
break;
case 2:
attr_list.addAttribute(aqara_cube).setStr(PSTR("wakeup"));
break;
case 3:
attr_list.addAttribute(aqara_cube).setStr(PSTR("fall"));
break;
case 64 ... 127:
attr_list.addAttribute(aqara_cube).setStr(PSTR("flip90"));
attr_list.addAttribute(aqara_cube_side).setInt(val % 8);
attr_list.addAttribute(aqara_cube_from_side).setInt((val - 64) / 8);
break;
case 128 ... 132:
attr_list.addAttribute(aqara_cube).setStr(PSTR("flip180"));
attr_list.addAttribute(aqara_cube_side).setInt(val - 128);
break;
case 256 ... 261:
attr_list.addAttribute(aqara_cube).setStr(PSTR("slide"));
attr_list.addAttribute(aqara_cube_side).setInt(val - 256);
break;
case 512 ... 517:
attr_list.addAttribute(aqara_cube).setStr(PSTR("tap"));
attr_list.addAttribute(aqara_cube_side).setInt(val - 512);
break;
}
attr_list.removeAttribute(&attr);
// Source: https://github.com/kirovilya/ioBroker.zigbee
// +---+
// | 2 |
// +---+---+---+
// | 4 | 0 | 1 |
// +---+---+---+
// |M5I|
// +---+
// | 3 |
// +---+
// Side 5 is with the MI logo, side 3 contains the battery door.
// presentValue = 0 = shake
// presentValue = 2 = wakeup
// presentValue = 3 = fly/fall
// presentValue = y + x * 8 + 64 = 90º Flip from side x on top to side y on top
// presentValue = x + 128 = 180º flip to side x on top
// presentValue = x + 256 = push/slide cube while side x is on top
// presentValue = x + 512 = double tap while side x is on top
} else if (modelId.startsWith(F("lumi.remote")) || modelId.startsWith(F("lumi.sensor_switch"))) { // only for Aqara buttons WXKG11LM & WXKG12LM
int32_t val = attr.getInt();
const __FlashStringHelper *aqara_click = F("click");
const __FlashStringHelper *aqara_action = F("action");
switch (val) {
case 0:
attr_list.addAttribute(aqara_action).setStr(PSTR("hold"));
break;
case 1:
attr_list.addAttribute(aqara_click).setStr(PSTR("single"));
break;
case 2:
attr_list.addAttribute(aqara_click).setStr(PSTR("double"));
break;
case 16:
attr_list.addAttribute(aqara_action).setStr(PSTR("hold"));
break;
case 17:
attr_list.addAttribute(aqara_action).setStr(PSTR("release"));
break;
case 18:
attr_list.addAttribute(aqara_action).setStr(PSTR("shake"));
break;
case 255:
attr_list.addAttribute(aqara_action).setStr(PSTR("release"));
break;
default:
attr_list.addAttribute(aqara_click).setUInt(val);
break;
}
}
}
// Aqara vibration device
void ZCLFrame::syntheticAqaraVibration(class Z_attribute_list &attr_list, class Z_attribute &attr) {
switch (attr.key.id.attr_id) {
case 0x0055:
{
int32_t ivalue = attr.getInt();
const __FlashStringHelper * svalue;
switch (ivalue) {
case 1: svalue = F("vibrate"); break;
case 2: svalue = F("tilt"); break;
case 3: svalue = F("drop"); break;
default: svalue = F("unknown"); break;
}
attr.setStr((const char*)svalue);
}
break;
case 0x0503:
break;
case 0x0505:
break;
case 0x0508:
{
// see https://github.com/Koenkk/zigbee2mqtt/issues/295 and http://faire-ca-soi-meme.fr/domotique/2018/09/03/test-xiaomi-aqara-vibration-sensor/
// report accelerometer measures
const SBuffer * buf = attr.getRaw();
if (buf) {
const SBuffer & buf2 = *buf;
int16_t x, y, z;
z = buf2.get16(0);
y = buf2.get16(2);
x = buf2.get16(4);
char temp[32];
snprintf_P(temp, sizeof(temp), "[%i,%i,%i]", x, y, z);
attr.setStrRaw(temp);
// calculate angles
float X = x;
float Y = y;
float Z = z;
int32_t Angle_X = 0.5f + atanf(X/sqrtf(z*z+y*y)) * f_180pi;
int32_t Angle_Y = 0.5f + atanf(Y/sqrtf(x*x+z*z)) * f_180pi;
int32_t Angle_Z = 0.5f + atanf(Z/sqrtf(x*x+y*y)) * f_180pi;
snprintf_P(temp, sizeof(temp), "[%i,%i,%i]", Angle_X, Angle_Y, Angle_Z);
attr_list.addAttribute(F("AqaraAngles")).setStrRaw(temp);
}
}
break;
}
}
/// Publish a message for `"Occupancy":0` when the timer expired
void Z_OccupancyCallback(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) {
Z_attribute_list attr_list;
attr_list.addAttribute(F(OCCUPANCY)).setUInt(0);
zigbee_devices.jsonPublishNow(shortaddr, attr_list);
}
// ======================================================================
void ZCLFrame::postProcessAttributes(uint16_t shortaddr, Z_attribute_list& attr_list) {
// source endpoint
uint8_t src_ep = _srcendpoint;
for (auto &attr : attr_list) {
// attr is Z_attribute&
if (!attr.key_is_str) {
uint16_t cluster = attr.key.id.cluster;
uint16_t attribute = attr.key.id.attr_id;
uint32_t ccccaaaa = (attr.key.id.cluster << 16) | attr.key.id.attr_id;
Z_Device & device = zigbee_devices.getShortAddr(shortaddr);
// Look for an entry in the converter table
bool found = false;
const char * conv_name;
Z_Data_Type map_type;
uint8_t map_offset;
uint8_t zigbee_type;
int8_t conv_multiplier;
for (uint32_t i = 0; i < ARRAY_SIZE(Z_PostProcess); i++) {
const Z_AttributeConverter *converter = &Z_PostProcess[i];
uint16_t conv_cluster = CxToCluster(pgm_read_byte(&converter->cluster_short));
uint16_t conv_attribute = pgm_read_word(&converter->attribute);
if ((conv_cluster == cluster) &&
((conv_attribute == attribute) || (conv_attribute == 0xFFFF)) ) {
conv_multiplier = CmToMultiplier(pgm_read_byte(&converter->multiplier_idx));
zigbee_type = pgm_read_byte(&converter->type);
uint8_t mapping = pgm_read_byte(&converter->mapping);
map_type = (Z_Data_Type) ((mapping & 0xF0)>>4);
map_offset = (mapping & 0x0F);
conv_name = Z_strings + pgm_read_word(&converter->name_offset);
found = true;
break;
}
}
float fval = attr.getFloat();
if (found && (map_type != Z_Data_Type::Z_Unknown)) {
// We apply an automatic mapping to Z_Data_XXX object
// First we find or instantiate the correct Z_Data_XXX accorfing to the endpoint
// Then store the attribute at the attribute addres (via offset) and according to size 8/16/32 bits
// we don't apply the multiplier, but instead store in Z_Data_XXX object
Z_Data & data = device.data.getByType(map_type, src_ep);
uint8_t *attr_address = ((uint8_t*)&data) + sizeof(Z_Data) + map_offset;
uint32_t uval32 = attr.getUInt(); // call converter to uint only once
int32_t ival32 = attr.getInt(); // call converter to int only once
// AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR(D_LOG_ZIGBEE "Mapping type=%d offset=%d zigbee_type=%02X value=%d\n"), (uint8_t) map_type, map_offset, zigbee_type, ival32);
switch (zigbee_type) {
case Zenum8:
case Zuint8: *(uint8_t*)attr_address = uval32; break;
case Zenum16:
case Zuint16: *(uint16_t*)attr_address = uval32; break;
case Zuint32: *(uint32_t*)attr_address = uval32; break;
case Zint8: *(int8_t*)attr_address = ival32; break;
case Zint16: *(int16_t*)attr_address = ival32; break;
case Zint32: *(int32_t*)attr_address = ival32; break;
}
}
uint16_t uval16 = attr.getUInt(); // call converter to uint only once
int16_t ival16 = attr.getInt(); // call converter to int only once
Z_Data_Set & data = device.data;
// update any internal structure
switch (ccccaaaa) {
case 0x00000004: zigbee_devices.setManufId(shortaddr, attr.getStr()); break;
case 0x00000005: zigbee_devices.setModelId(shortaddr, attr.getStr()); break;
case 0x00010021: zigbee_devices.setBatteryPercent(shortaddr, uval16); break;
case 0x00060000:
case 0x00068000: device.setPower(attr.getBool(), src_ep); break;
}
// now apply the multiplier to make it human readable
if (found) {
if (0 == conv_multiplier) { attr_list.removeAttribute(&attr); continue; } // remove attribute if multiplier is zero
if (1 != conv_multiplier) {
if (conv_multiplier > 0) { fval = fval * conv_multiplier; }
else { fval = fval / (-conv_multiplier); }
attr.setFloat(fval);
}
}
// Replace cluster/attribute with name
if (found) {
if (0x00 != pgm_read_byte(conv_name)) {// if name is not null, replace it
attr.setKeyName(conv_name, true); // PMEM string so no need to copy
}
}
}
}
}
//
// Given an attribute string, retrieve all attribute details.
// Input: the attribute has a key name, either: <cluster>/<attr> or <cluster>/<attr>%<type> or "<attribute_name>"
// Ex: "0008/0000", "0008/0000%20", "Dimmer"
// Use:
// Z_attribute attr;
// attr.setKeyName("0008/0000%20")
// if (Z_parseAttributeKey(attr)) {
// // ok
// }
//
// Output:
// The `attr` attribute has the correct cluster, attr_id, attr_type, attr_multiplier
// Note: the attribute value is unchanged and unparsed
//
// Note: if the type is specified in the key, the multiplier is not applied, no conversion happens
bool Z_parseAttributeKey(class Z_attribute & attr) {
// check if the name has the format "XXXX/YYYY" where XXXX is the cluster, YYYY the attribute id
// alternative "XXXX/YYYY%ZZ" where ZZ is the type (for unregistered attributes)
if (attr.key_is_str) {
const char * key = attr.key.key;
char * delimiter = strchr(key, '/');
char * delimiter2 = strchr(key, '%');
if (delimiter) {
uint16_t attr_id = 0xFFFF;
uint16_t cluster_id = 0xFFFF;
uint8_t type_id = Zunk;
cluster_id = strtoul(key, &delimiter, 16);
if (!delimiter2) {
attr_id = strtoul(delimiter+1, nullptr, 16);
} else {
attr_id = strtoul(delimiter+1, &delimiter2, 16);
type_id = strtoul(delimiter2+1, nullptr, 16);
}
attr.setKeyId(cluster_id, attr_id);
attr.attr_type = type_id;
}
}
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("cluster_id = 0x%04X, attr_id = 0x%04X"), cluster_id, attr_id);
// do we already know the type, i.e. attribute and cluster are also known
if (Zunk == attr.attr_type) {
// scan attributes to find by name, and retrieve type
for (uint32_t i = 0; i < ARRAY_SIZE(Z_PostProcess); i++) {
const Z_AttributeConverter *converter = &Z_PostProcess[i];
bool match = false;
uint16_t local_attr_id = pgm_read_word(&converter->attribute);
uint16_t local_cluster_id = CxToCluster(pgm_read_byte(&converter->cluster_short));
uint8_t local_type_id = pgm_read_byte(&converter->type);
int8_t local_multiplier = CmToMultiplier(pgm_read_byte(&converter->multiplier_idx));
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Try cluster = 0x%04X, attr = 0x%04X, type_id = 0x%02X"), local_cluster_id, local_attr_id, local_type_id);
if (!attr.key_is_str) {
if ((attr.key.id.cluster == local_cluster_id) && (attr.key.id.attr_id == local_attr_id)) {
attr.attr_type = local_type_id;
break;
}
} else if (pgm_read_word(&converter->name_offset)) {
const char * key = attr.key.key;
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Comparing '%s' with '%s'"), attr_name, converter->name);
if (0 == strcasecmp_P(key, Z_strings + pgm_read_word(&converter->name_offset))) {
// match
attr.setKeyId(local_cluster_id, local_attr_id);
attr.attr_type = local_type_id;
attr.attr_multiplier = local_multiplier;
break;
}
}
}
}
return (Zunk != attr.attr_type) ? true : false;
}
// generic toAttributes() based on declaration in the attribute array
// can be overloaded for specific objects
// Input:
// the Json object to add attributes to
// the type of object (necessary since the type system is unaware of the actual sub-type)
void Z_Data::toAttributes(Z_attribute_list & attr_list, Z_Data_Type type) const {
// iterate through attributes to see which ones need to be exported
for (uint32_t i = 0; i < ARRAY_SIZE(Z_PostProcess); i++) {
const Z_AttributeConverter *converter = &Z_PostProcess[i];
uint8_t conv_export = pgm_read_byte(&converter->multiplier_idx) & Z_EXPORT_DATA;
uint8_t conv_mapping = pgm_read_byte(&converter->mapping);
Z_Data_Type map_type = (Z_Data_Type) ((conv_mapping & 0xF0)>>4);
uint8_t map_offset = (conv_mapping & 0x0F);
if ((conv_export != 0) && (map_type == type)) {
// we need to export this attribute
const char * conv_name = Z_strings + pgm_read_word(&converter->name_offset);
uint8_t zigbee_type = pgm_read_byte(&converter->type); // zigbee type to select right size 8/16/32 bits
uint8_t *attr_address = ((uint8_t*)this) + sizeof(Z_Data) + map_offset; // address of attribute in memory
int32_t data_size = 0;
int32_t ival32;
uint32_t uval32;
switch (zigbee_type) {
case Zenum8:
case Zuint8: uval32 = *(uint8_t*)attr_address; if (uval32 != 0xFF) data_size = 8; break;
case Zenum16:
case Zuint16: uval32 = *(uint16_t*)attr_address; if (uval32 != 0xFFFF) data_size = 16; break;
case Zuint32: uval32 = *(uint32_t*)attr_address; if (uval32 != 0xFFFFFFFF) data_size = 32; break;
case Zint8: ival32 = *(int8_t*)attr_address; if (ival32 != -0x80) data_size = -8; break;
case Zint16: ival32 = *(int16_t*)attr_address; if (ival32 != -0x8000) data_size = -16; break;
case Zint32: ival32 = *(int32_t*)attr_address; if (ival32 != -0x80000000) data_size = -32; break;
}
if (data_size != 0) {
Z_attribute & attr = attr_list.addAttribute(conv_name);
if (data_size > 0) { attr.setUInt(uval32); }
else { attr.setInt(ival32); }
}
}
}
}
#endif // USE_ZIGBEE