Tasmota/tasmota/xdrv_23_zigbee_2_devices.ino

1127 lines
43 KiB
C++

/*
xdrv_23_zigbee.ino - zigbee support for Tasmota
Copyright (C) 2020 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ZIGBEE
#ifndef ZIGBEE_SAVE_DELAY_SECONDS
#define ZIGBEE_SAVE_DELAY_SECONDS 2 // wait for 2s before saving Zigbee info
#endif
const uint16_t kZigbeeSaveDelaySeconds = ZIGBEE_SAVE_DELAY_SECONDS; // wait for x seconds
/*********************************************************************************************\
* Structures for Rules variables related to the last received message
\*********************************************************************************************/
const size_t endpoints_max = 8; // we limit to 8 endpoints
class Z_Device {
public:
uint64_t longaddr; // 0x00 means unspecified
char * manufacturerId;
char * modelId;
char * friendlyName;
// _defer_last_time : what was the last time an outgoing message is scheduled
// this is designed for flow control and avoid messages to be lost or unanswered
uint32_t defer_last_message_sent;
uint8_t endpoints[endpoints_max]; // static array to limit memory consumption, list of endpoints until 0x00 or end of array
// Used for attribute reporting
Z_attribute_list attr_list;
// sequence number for Zigbee frames
uint16_t shortaddr; // unique key if not null, or unspecified if null
uint8_t seqNumber;
// Light information for Hue integration integration, last known values
uint8_t zb_profile; // profile of the device
// high 4 bits is device type:
// 0x0. = bulb
// 0x1. = switch
// 0x2. = motion sensor
// 0x3. = other alarms
// 0xE. = reserved for extension
// 0xF. = unknown
// For Bulb (0x0.)
// 0x0N = number of channel for the bulb: 0-5
// 0x08 = the device is hidden from Alexa
// other status
uint8_t power; // power state (boolean), MSB (0x80) stands for reachable
uint8_t colormode; // 0x00: Hue/Sat, 0x01: XY, 0x02: CT | 0xFF not set, default 0x01
uint8_t dimmer; // last Dimmer value: 0-254 | 0xFF not set, default 0x00
uint8_t sat; // last Sat: 0..254 | 0xFF not set, default 0x00
uint16_t ct; // last CT: 153-500 | 0xFFFF not set, default 200
uint16_t hue; // last Hue: 0..359 | 0xFFFF not set, default 0
uint16_t x, y; // last color [x,y] | 0xFFFF not set, default 0
uint8_t lqi; // lqi from last message, 0xFF means unknown
uint8_t batterypercent; // battery percentage (0..100), 0xFF means unknwon
// sensor data
int16_t temperature; // temperature in 1/10th of Celsius, 0x8000 if unknown
uint16_t pressure; // air pressure in hPa, 0xFFFF if unknown
uint8_t humidity; // humidity in percent, 0..100, 0xFF if unknown
// powe plug data
uint16_t mains_voltage; // AC voltage
int16_t mains_power; // Active power
uint32_t last_seen; // Last seen time (epoch)
// Constructor with all defaults
Z_Device(uint16_t _shortaddr = BAD_SHORTADDR, uint64_t _longaddr = 0x00):
longaddr(_longaddr),
manufacturerId(nullptr),
modelId(nullptr),
friendlyName(nullptr),
defer_last_message_sent(0),
endpoints{ 0, 0, 0, 0, 0, 0, 0, 0 },
attr_list(),
shortaddr(_shortaddr),
seqNumber(0),
// Hue support
zb_profile(0xFF), // no profile
power(0x02), // 0x80 = reachable, 0x01 = power on, 0x02 = power unknown
colormode(0xFF),
dimmer(0xFF),
sat(0xFF),
ct(0xFFFF),
hue(0xFFFF),
x(0xFFFF),
y(0xFFFF),
lqi(0xFF),
batterypercent(0xFF),
temperature(-0x8000),
pressure(0xFFFF),
humidity(0xFF),
mains_voltage(0xFFFF),
mains_power(-0x8000),
last_seen(0)
{ };
inline bool valid(void) const { return BAD_SHORTADDR != shortaddr; } // is the device known, valid and found?
inline bool validLongaddr(void) const { return 0x0000 != longaddr; }
inline bool validManufacturerId(void) const { return nullptr != manufacturerId; }
inline bool validModelId(void) const { return nullptr != modelId; }
inline bool validFriendlyName(void) const { return nullptr != friendlyName; }
inline bool validPower(void) const { return 0x00 == (power & 0x02); }
inline bool validColormode(void) const { return 0xFF != colormode; }
inline bool validDimmer(void) const { return 0xFF != dimmer; }
inline bool validSat(void) const { return 0xFF != sat; }
inline bool validCT(void) const { return 0xFFFF != ct; }
inline bool validHue(void) const { return 0xFFFF != hue; }
inline bool validX(void) const { return 0xFFFF != x; }
inline bool validY(void) const { return 0xFFFF != y; }
inline bool validLqi(void) const { return 0xFF != lqi; }
inline bool validBatteryPercent(void) const { return 0xFF != batterypercent; }
inline bool validTemperature(void) const { return -0x8000 != temperature; }
inline bool validPressure(void) const { return 0xFFFF != pressure; }
inline bool validHumidity(void) const { return 0xFF != humidity; }
inline bool validLastSeen(void) const { return 0x0 != last_seen; }
inline bool validMainsVoltage(void) const { return 0xFFFF != mains_voltage; }
inline bool validMainsPower(void) const { return -0x8000 != mains_power; }
inline void setReachable(bool reachable) { bitWrite(power, 7, reachable); }
inline bool getReachable(void) const { return bitRead(power, 7); }
inline void setPower(bool power_on) { bitWrite(power, 0, power_on); bitWrite(power, 1, false); }
inline bool getPower(void) const { return bitRead(power, 0); }
// If light, returns the number of channels, or 0xFF if unknown
uint8_t getLightChannels(void) const {
if ((zb_profile & 0xF0) == 0x00) {
return zb_profile & 0x07;
}
return 0xFF;
}
};
/*********************************************************************************************\
* Structures for deferred callbacks
\*********************************************************************************************/
typedef void (*Z_DeviceTimer)(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value);
// Category for Deferred actions, this allows to selectively remove active deferred or update them
typedef enum Z_Def_Category {
Z_CAT_ALWAYS = 0, // no category, it will happen whatever new timers
// Below will clear any event in the same category for the same address (shortaddr / groupaddr)
Z_CLEAR_DEVICE = 0x01,
Z_CAT_READ_ATTR, // Attribute reporting, either READ_ATTRIBUTE or REPORT_ATTRIBUTE, we coalesce all attributes reported if we can
Z_CAT_VIRTUAL_OCCUPANCY, // Creation of a virtual attribute, typically after a time-out. Ex: Aqara presence sensor
Z_CAT_REACHABILITY, // timer set to measure reachability of device, i.e. if we don't get an answer after 1s, it is marked as unreachable (for Alexa)
// Below will clear based on device + cluster pair.
Z_CLEAR_DEVICE_CLUSTER,
Z_CAT_READ_CLUSTER,
// Below will clear based on device + cluster + endpoint
Z_CLEAR_DEVICE_CLUSTER_ENDPOINT,
Z_CAT_EP_DESC, // read endpoint descriptor to gather clusters
Z_CAT_BIND, // send auto-binding to coordinator
Z_CAT_CONFIG_ATTR, // send a config attribute reporting request
Z_CAT_READ_ATTRIBUTE, // read a single attribute
} Z_Def_Category;
const uint32_t Z_CAT_REACHABILITY_TIMEOUT = 2000; // 1000 ms or 1s
typedef struct Z_Deferred {
// below are per device timers, used for example to query the new state of the device
uint32_t timer; // millis() when to fire the timer, 0 if no timer
uint16_t shortaddr; // identifier of the device
uint16_t groupaddr; // group address (if needed)
uint16_t cluster; // cluster to use for the timer
uint8_t endpoint; // endpoint to use for timer
uint8_t category; // which category of deferred is it
uint32_t value; // any raw value to use for the timer
Z_DeviceTimer func; // function to call when timer occurs
} Z_Deferred;
/*********************************************************************************************\
* Singleton for device configuration
\*********************************************************************************************/
// All devices are stored in a Vector
// Invariants:
// - shortaddr is unique if not null
// - longaddr is unique if not null
// - shortaddr and longaddr cannot be both null
class Z_Devices {
public:
Z_Devices() : _deferred() {};
// Probe the existence of device keys
// Results:
// - 0x0000 = not found
// - BAD_SHORTADDR = bad parameter
// - 0x<shortaddr> = the device's short address
uint16_t isKnownLongAddr(uint64_t longaddr) const;
uint16_t isKnownIndex(uint32_t index) const;
uint16_t isKnownFriendlyName(const char * name) const;
Z_Device & findShortAddr(uint16_t shortaddr);
const Z_Device & findShortAddr(uint16_t shortaddr) const;
Z_Device & findLongAddr(uint64_t longaddr);
const Z_Device & findLongAddr(uint64_t longaddr) const;
Z_Device & getShortAddr(uint16_t shortaddr); // find Device from shortAddr, creates it if does not exist
Z_Device & getLongAddr(uint64_t longaddr); // find Device from shortAddr, creates it if does not exist
// check if a device was found or if it's the fallback device
inline bool foundDevice(const Z_Device & device) const {
return (&device != &device_unk);
}
int32_t findFriendlyName(const char * name) const;
uint64_t getDeviceLongAddr(uint16_t shortaddr) const;
uint8_t findFirstEndpoint(uint16_t shortaddr) const;
// Add new device, provide ShortAddr and optional longAddr
// If it is already registered, update information, otherwise create the entry
void updateDevice(uint16_t shortaddr, uint64_t longaddr = 0);
// Add an endpoint to a device
void addEndpoint(uint16_t shortaddr, uint8_t endpoint);
void clearEndpoints(uint16_t shortaddr);
uint32_t countEndpoints(uint16_t shortaddr) const; // return the number of known endpoints (0 if unknown)
void setManufId(uint16_t shortaddr, const char * str);
void setModelId(uint16_t shortaddr, const char * str);
void setFriendlyName(uint16_t shortaddr, const char * str);
inline const char * getFriendlyName(uint16_t shortaddr) const {
return findShortAddr(shortaddr).friendlyName;
}
inline const char * getModelId(uint16_t shortaddr) const {
return findShortAddr(shortaddr).modelId;
}
inline const char * getManufacturerId(uint16_t shortaddr) const{
return findShortAddr(shortaddr).manufacturerId;
}
void setReachable(uint16_t shortaddr, bool reachable);
void setLQI(uint16_t shortaddr, uint8_t lqi);
void setLastSeenNow(uint16_t shortaddr);
// uint8_t getLQI(uint16_t shortaddr) const;
void setBatteryPercent(uint16_t shortaddr, uint8_t bp);
uint8_t getBatteryPercent(uint16_t shortaddr) const;
// get next sequence number for (increment at each all)
uint8_t getNextSeqNumber(uint16_t shortaddr);
// Dump json
String dumpLightState(uint16_t shortaddr) const;
String dump(uint32_t dump_mode, uint16_t status_shortaddr = 0) const;
int32_t deviceRestore(const JsonObject &json);
// General Zigbee device profile support
void setZbProfile(uint16_t shortaddr, uint8_t zb_profile);
uint8_t getZbProfile(uint16_t shortaddr) const ;
// Hue support
void setHueBulbtype(uint16_t shortaddr, int8_t bulbtype);
int8_t getHueBulbtype(uint16_t shortaddr) const ;
void hideHueBulb(uint16_t shortaddr, bool hidden);
bool isHueBulbHidden(uint16_t shortaddr) const ;
// Timers
void resetTimersForDevice(uint16_t shortaddr, uint16_t groupaddr, uint8_t category, uint16_t cluster = 0xFFFF, uint8_t endpoint = 0xFF);
void setTimer(uint16_t shortaddr, uint16_t groupaddr, uint32_t wait_ms, uint16_t cluster, uint8_t endpoint, uint8_t category, uint32_t value, Z_DeviceTimer func);
void queueTimer(uint16_t shortaddr, uint16_t groupaddr, uint32_t wait_ms, uint16_t cluster, uint8_t endpoint, uint8_t category, uint32_t value, Z_DeviceTimer func);
void runTimer(void);
// Append or clear attributes Json structure
void jsonAppend(uint16_t shortaddr, const Z_attribute_list &attr_list);
void jsonPublishFlush(uint16_t shortaddr); // publish the json message and clear buffer
bool jsonIsConflict(uint16_t shortaddr, const Z_attribute_list &attr_list) const;
void jsonPublishNow(uint16_t shortaddr, Z_attribute_list &attr_list);
// Iterator
size_t devicesSize(void) const {
return _devices.length();
}
const Z_Device & devicesAt(size_t i) const {
const Z_Device * devp = _devices.at(i);
if (devp) {
return *devp;
} else {
return device_unk;
}
}
// Remove device from list
bool removeDevice(uint16_t shortaddr);
// Mark data as 'dirty' and requiring to save in Flash
void dirty(void);
void clean(void); // avoid writing to flash the last changes
void shrinkToFit(uint16_t shortaddr);
// Find device by name, can be short_addr, long_addr, number_in_array or name
uint16_t parseDeviceParam(const char * param, bool short_must_be_known = false) const;
private:
LList<Z_Device> _devices; // list of devices
LList<Z_Deferred> _deferred; // list of deferred calls
uint32_t _saveTimer = 0;
uint8_t _seqNumber = 0; // global seqNumber if device is unknown
// Following device is used represent the unknown device, with all defaults
// Any find() function will not return Null, instead it will return this instance
const Z_Device device_unk = Z_Device(BAD_SHORTADDR);
//int32_t findShortAddrIdx(uint16_t shortaddr) const;
// Create a new entry in the devices list - must be called if it is sure it does not already exist
Z_Device & createDeviceEntry(uint16_t shortaddr, uint64_t longaddr = 0);
void freeDeviceEntry(Z_Device *device);
void setStringAttribute(char*& attr, const char * str);
void updateZbProfile(uint16_t shortaddr);
};
/*********************************************************************************************\
* Singleton variable
\*********************************************************************************************/
Z_Devices zigbee_devices = Z_Devices();
// Local coordinator information
uint64_t localIEEEAddr = 0;
uint16_t localShortAddr = 0;
/*********************************************************************************************\
* Implementation
\*********************************************************************************************/
//
// Create a new Z_Device entry in _devices. Only to be called if you are sure that no
// entry with same shortaddr or longaddr exists.
//
Z_Device & Z_Devices::createDeviceEntry(uint16_t shortaddr, uint64_t longaddr) {
if ((BAD_SHORTADDR == shortaddr) && !longaddr) { return (Z_Device&) device_unk; } // it is not legal to create this entry
Z_Device device(shortaddr, longaddr);
dirty();
return _devices.addHead(device);
}
void Z_Devices::freeDeviceEntry(Z_Device *device) {
if (device->manufacturerId) { free(device->manufacturerId); }
if (device->modelId) { free(device->modelId); }
if (device->friendlyName) { free(device->friendlyName); }
free(device);
}
//
// Scan all devices to find a corresponding shortaddr
// Looks info device.shortaddr entry
// In:
// shortaddr (not BAD_SHORTADDR)
// Out:
// reference to device, or to device_unk if not found
// (use foundDevice() to check if found)
Z_Device & Z_Devices::findShortAddr(uint16_t shortaddr) {
for (auto & elem : _devices) {
if (elem.shortaddr == shortaddr) { return elem; }
}
return (Z_Device&) device_unk;
}
const Z_Device & Z_Devices::findShortAddr(uint16_t shortaddr) const {
for (const auto & elem : _devices) {
if (elem.shortaddr == shortaddr) { return elem; }
}
return device_unk;
}
//
// Scan all devices to find a corresponding longaddr
// Looks info device.longaddr entry
// In:
// longaddr (non null)
// Out:
// index in _devices of entry, -1 if not found
//
Z_Device & Z_Devices::findLongAddr(uint64_t longaddr) {
if (!longaddr) { return (Z_Device&) device_unk; }
for (auto &elem : _devices) {
if (elem.longaddr == longaddr) { return elem; }
}
return (Z_Device&) device_unk;
}
const Z_Device & Z_Devices::findLongAddr(uint64_t longaddr) const {
if (!longaddr) { return device_unk; }
for (const auto &elem : _devices) {
if (elem.longaddr == longaddr) { return elem; }
}
return device_unk;
}
//
// Scan all devices to find a corresponding friendlyNme
// Looks info device.friendlyName entry
// In:
// friendlyName (null terminated, should not be empty)
// Out:
// index in _devices of entry, -1 if not found
//
int32_t Z_Devices::findFriendlyName(const char * name) const {
if (!name) { return -1; } // if pointer is null
size_t name_len = strlen(name);
int32_t found = 0;
if (name_len) {
for (auto &elem : _devices) {
if (elem.friendlyName) {
if (strcasecmp(elem.friendlyName, name) == 0) { return found; }
}
found++;
}
}
return -1;
}
uint16_t Z_Devices::isKnownLongAddr(uint64_t longaddr) const {
const Z_Device & device = findLongAddr(longaddr);
if (foundDevice(device)) {
return device.shortaddr; // can be zero, if not yet registered
} else {
return BAD_SHORTADDR;
}
}
uint16_t Z_Devices::isKnownIndex(uint32_t index) const {
if (index < devicesSize()) {
const Z_Device & device = devicesAt(index);
return device.shortaddr;
} else {
return BAD_SHORTADDR;
}
}
uint16_t Z_Devices::isKnownFriendlyName(const char * name) const {
if ((!name) || (0 == strlen(name))) { return BAD_SHORTADDR; } // Error
int32_t found = findFriendlyName(name);
if (found >= 0) {
const Z_Device & device = devicesAt(found);
return device.shortaddr; // can be zero, if not yet registered
} else {
return BAD_SHORTADDR;
}
}
uint64_t Z_Devices::getDeviceLongAddr(uint16_t shortaddr) const {
return findShortAddr(shortaddr).longaddr; // if unknown, it reverts to the Unknown device and longaddr is 0x00
}
//
// We have a seen a shortaddr on the network, get the corresponding device object
//
Z_Device & Z_Devices::getShortAddr(uint16_t shortaddr) {
if (BAD_SHORTADDR == shortaddr) { return (Z_Device&) device_unk; } // this is not legal
Z_Device & device = findShortAddr(shortaddr);
if (foundDevice(device)) {
return device;
}
return createDeviceEntry(shortaddr, 0);
}
// find the Device object by its longaddr (unique key if not null)
Z_Device & Z_Devices::getLongAddr(uint64_t longaddr) {
if (!longaddr) { return (Z_Device&) device_unk; }
Z_Device & device = findLongAddr(longaddr);
if (foundDevice(device)) {
return device;
}
return createDeviceEntry(0, longaddr);
}
// Remove device from list, return true if it was known, false if it was not recorded
bool Z_Devices::removeDevice(uint16_t shortaddr) {
Z_Device & device = findShortAddr(shortaddr);
if (foundDevice(device)) {
_devices.remove(&device);
dirty();
return true;
}
return false;
}
//
// We have just seen a device on the network, update the info based on short/long addr
// In:
// shortaddr
// longaddr (both can't be null at the same time)
void Z_Devices::updateDevice(uint16_t shortaddr, uint64_t longaddr) {
Z_Device * s_found = &findShortAddr(shortaddr); // is there already a shortaddr entry
Z_Device * l_found = &findLongAddr(longaddr); // is there already a longaddr entry
if (foundDevice(*s_found) && foundDevice(*l_found)) { // both shortaddr and longaddr are already registered
if (s_found == l_found) {
} else { // they don't match
// the device with longaddr got a new shortaddr
l_found->shortaddr = shortaddr; // update the shortaddr corresponding to the longaddr
// erase the previous shortaddr
freeDeviceEntry(s_found);
_devices.remove(s_found);
dirty();
}
} else if (foundDevice(*s_found)) {
// shortaddr already exists but longaddr not
// add the longaddr to the entry
s_found->longaddr = longaddr;
dirty();
} else if (foundDevice(*l_found)) {
// longaddr entry exists, update shortaddr
l_found->shortaddr = shortaddr;
dirty();
} else {
// neither short/lonf addr are found.
if ((BAD_SHORTADDR != shortaddr) || longaddr) {
createDeviceEntry(shortaddr, longaddr);
}
}
}
//
// Clear all endpoints
//
void Z_Devices::clearEndpoints(uint16_t shortaddr) {
Z_Device &device = getShortAddr(shortaddr);
for (uint32_t i = 0; i < endpoints_max; i++) {
device.endpoints[i] = 0;
// no dirty here because it doesn't make sense to store it, does it?
}
}
//
// Add an endpoint to a shortaddr
//
void Z_Devices::addEndpoint(uint16_t shortaddr, uint8_t endpoint) {
if (0x00 == endpoint) { return; }
Z_Device &device = getShortAddr(shortaddr);
for (uint32_t i = 0; i < endpoints_max; i++) {
if (endpoint == device.endpoints[i]) {
return; // endpoint already there
}
if (0 == device.endpoints[i]) {
device.endpoints[i] = endpoint;
dirty();
return;
}
}
}
//
// Count the number of known endpoints
//
uint32_t Z_Devices::countEndpoints(uint16_t shortaddr) const {
uint32_t count_ep = 0;
const Z_Device & device =findShortAddr(shortaddr);
if (!foundDevice(device)) return 0;
for (uint32_t i = 0; i < endpoints_max; i++) {
if (0 != device.endpoints[i]) {
count_ep++;
}
}
return count_ep;
}
// Find the first endpoint of the device
uint8_t Z_Devices::findFirstEndpoint(uint16_t shortaddr) const {
// When in router of end-device mode, the coordinator was not probed, in this case always talk to endpoint 1
if (0x0000 == shortaddr) { return 1; }
return findShortAddr(shortaddr).endpoints[0]; // returns 0x00 if no endpoint
}
void Z_Devices::setStringAttribute(char*& attr, const char * str) {
if (nullptr == str) { return; } // ignore a null parameter
size_t str_len = strlen(str);
if ((nullptr == attr) && (0 == str_len)) { return; } // if both empty, don't do anything
if (attr) {
// we already have a value
if (strcmp(attr, str) != 0) {
// new value
free(attr); // free previous value
attr = nullptr;
} else {
return; // same value, don't change anything
}
}
if (str_len) {
attr = (char*) malloc(str_len + 1);
strlcpy(attr, str, str_len + 1);
}
dirty();
}
//
// Sets the ManufId for a device.
// No action taken if the device does not exist.
// Inputs:
// - shortaddr: 16-bits short address of the device. No action taken if the device is unknown
// - str: string pointer, if nullptr it is considered as empty string
// Impact:
// - Any actual change in ManufId (i.e. setting a different value) triggers a `dirty()` and saving to Flash
//
void Z_Devices::setManufId(uint16_t shortaddr, const char * str) {
setStringAttribute(getShortAddr(shortaddr).manufacturerId, str);
}
void Z_Devices::setModelId(uint16_t shortaddr, const char * str) {
setStringAttribute(getShortAddr(shortaddr).modelId, str);
}
void Z_Devices::setFriendlyName(uint16_t shortaddr, const char * str) {
setStringAttribute(getShortAddr(shortaddr).friendlyName, str);
}
void Z_Devices::setReachable(uint16_t shortaddr, bool reachable) {
getShortAddr(shortaddr).setReachable(reachable);
}
void Z_Devices::setLQI(uint16_t shortaddr, uint8_t lqi) {
if (shortaddr == localShortAddr) { return; }
getShortAddr(shortaddr).lqi = lqi;
}
void Z_Devices::setLastSeenNow(uint16_t shortaddr) {
if (shortaddr == localShortAddr) { return; }
getShortAddr(shortaddr).last_seen= Rtc.utc_time;
}
void Z_Devices::setBatteryPercent(uint16_t shortaddr, uint8_t bp) {
getShortAddr(shortaddr).batterypercent = bp;
}
// get the next sequance number for the device, or use the global seq number if device is unknown
uint8_t Z_Devices::getNextSeqNumber(uint16_t shortaddr) {
Z_Device & device = findShortAddr(shortaddr);
if (foundDevice(device)) {
device.seqNumber += 1;
return device.seqNumber;
} else {
_seqNumber += 1;
return _seqNumber;
}
}
// General Zigbee device profile support
void Z_Devices::setZbProfile(uint16_t shortaddr, uint8_t zb_profile) {
Z_Device &device = getShortAddr(shortaddr);
if (zb_profile != device.zb_profile) {
device.zb_profile = zb_profile;
updateZbProfile(shortaddr);
dirty();
}
}
// Do all the required action when a profile is changed
void Z_Devices::updateZbProfile(uint16_t shortaddr) {
Z_Device &device = getShortAddr(shortaddr);
uint8_t zb_profile = device.zb_profile;
if (0xFF == zb_profile) { return; }
switch (zb_profile & 0xF0) {
case 0x00: // bulb profile
{
uint32_t channels = zb_profile & 0x07;
// depending on the bulb type, the default parameters from unknown to credible defaults
// if (!device.validPower()) { device.setPower(false); }
// if (1 <= channels) {
// if (0xFF == device.dimmer) { device.dimmer = 0; }
// }
// if (3 <= channels) {
// if (0xFF == device.sat) { device.sat = 0; }
// if (0xFFFF == device.hue) { device.hue = 0; }
// if (0xFFFF == device.x) { device.x = 0; }
// if (0xFFFF == device.y) { device.y = 0; }
// if (0xFF == device.colormode) { device.colormode = 0; } // HueSat mode
// }
// if ((2 == channels) || (5 == channels)) {
// if (0xFFFF == device.ct) { device.ct = 200; }
// if (0xFF == device.colormode) { device.colormode = 2; } // CT mode
// }
}
break;
}
}
// Returns the device profile or 0xFF if the device or profile is unknown
uint8_t Z_Devices::getZbProfile(uint16_t shortaddr) const {
return findShortAddr(shortaddr).zb_profile;
}
// Hue support
void Z_Devices::setHueBulbtype(uint16_t shortaddr, int8_t bulbtype) {
uint8_t zb_profile = (0 > bulbtype) ? 0xFF : (bulbtype & 0x07);
setZbProfile(shortaddr, zb_profile);
}
int8_t Z_Devices::getHueBulbtype(uint16_t shortaddr) const {
uint8_t zb_profile = getZbProfile(shortaddr);
if (0x00 == (zb_profile & 0xF0)) {
return (zb_profile & 0x07);
} else {
// not a bulb
return -1;
}
}
void Z_Devices::hideHueBulb(uint16_t shortaddr, bool hidden) {
uint8_t hue_hidden_flag = hidden ? 0x08 : 0x00;
Z_Device &device = getShortAddr(shortaddr);
if (0x00 == (device.zb_profile & 0xF0)) {
// bulb type
// set bit 3 accordingly
if (hue_hidden_flag != (device.zb_profile & 0x08)) {
device.zb_profile = (device.zb_profile & 0xF7) | hue_hidden_flag;
dirty();
}
}
}
// true if device is not knwon or not a bulb - it wouldn't make sense to publish a non-bulb
bool Z_Devices::isHueBulbHidden(uint16_t shortaddr) const {
const Z_Device & device = findShortAddr(shortaddr);
if (foundDevice(device)) {
uint8_t zb_profile = device.zb_profile;
if (0x00 == (zb_profile & 0xF0)) {
// bulb type
return (zb_profile & 0x08) ? true : false;
}
}
return true; // Fallback - Device is considered as hidden
}
// Deferred actions
// Parse for a specific category, of all deferred for a device if category == 0xFF
// Only with specific cluster number or for all clusters if cluster == 0xFFFF
void Z_Devices::resetTimersForDevice(uint16_t shortaddr, uint16_t groupaddr, uint8_t category, uint16_t cluster, uint8_t endpoint) {
// iterate the list of deferred, and remove any linked to the shortaddr
for (auto & defer : _deferred) {
if ((defer.shortaddr == shortaddr) && (defer.groupaddr == groupaddr)) {
if ((0xFF == category) || (defer.category == category)) {
if ((0xFFFF == cluster) || (defer.cluster == cluster)) {
if ((0xFF == endpoint) || (defer.endpoint == endpoint)) {
_deferred.remove(&defer);
}
}
}
}
}
}
// Set timer for a specific device
void Z_Devices::setTimer(uint16_t shortaddr, uint16_t groupaddr, uint32_t wait_ms, uint16_t cluster, uint8_t endpoint, uint8_t category, uint32_t value, Z_DeviceTimer func) {
// First we remove any existing timer for same device in same category, except for category=0x00 (they need to happen anyway)
if (category >= Z_CLEAR_DEVICE) { // if category == 0, we leave all previous timers
resetTimersForDevice(shortaddr, groupaddr, category, category >= Z_CLEAR_DEVICE_CLUSTER ? cluster : 0xFFFF, category >= Z_CLEAR_DEVICE_CLUSTER_ENDPOINT ? endpoint : 0xFF); // remove any cluster
}
// Now create the new timer
Z_Deferred & deferred = _deferred.addHead();
deferred = { wait_ms + millis(), // timer
shortaddr,
groupaddr,
cluster,
endpoint,
category,
value,
func };
}
// Set timer after the already queued events
// I.e. the wait_ms is not counted from now, but from the last event queued, which is 'now' or in the future
void Z_Devices::queueTimer(uint16_t shortaddr, uint16_t groupaddr, uint32_t wait_ms, uint16_t cluster, uint8_t endpoint, uint8_t category, uint32_t value, Z_DeviceTimer func) {
Z_Device & device = getShortAddr(shortaddr);
uint32_t now_millis = millis();
if (TimeReached(device.defer_last_message_sent)) {
device.defer_last_message_sent = now_millis;
}
// defer_last_message_sent equals now or a value in the future
device.defer_last_message_sent += wait_ms;
// for queueing we don't clear the backlog, so we force category to Z_CAT_ALWAYS
setTimer(shortaddr, groupaddr, (device.defer_last_message_sent - now_millis), cluster, endpoint, Z_CAT_ALWAYS, value, func);
}
// Run timer at each tick
// WARNING: don't set a new timer within a running timer, this causes memory corruption
void Z_Devices::runTimer(void) {
// visit all timers
for (auto & defer : _deferred) {
uint32_t timer = defer.timer;
if (TimeReached(timer)) {
(*defer.func)(defer.shortaddr, defer.groupaddr, defer.cluster, defer.endpoint, defer.value);
_deferred.remove(&defer);
}
}
// check if we need to save to Flash
if ((_saveTimer) && TimeReached(_saveTimer)) {
saveZigbeeDevices();
_saveTimer = 0;
}
}
// does the new payload conflicts with the existing payload, i.e. values would be overwritten
// true - one attribute (except LinkQuality) woudl be lost, there is conflict
// false - new attributes can be safely added
bool Z_Devices::jsonIsConflict(uint16_t shortaddr, const Z_attribute_list &attr_list) const {
const Z_Device & device = findShortAddr(shortaddr);
if (!foundDevice(device)) { return false; }
if (attr_list.isEmpty()) {
return false; // if no previous value, no conflict
}
// compare groups
if (device.attr_list.isValidGroupId() && attr_list.isValidGroupId()) {
if (device.attr_list.group_id != attr_list.group_id) { return true; } // groups are in conflict
}
// compare src_ep
if (device.attr_list.isValidSrcEp() && attr_list.isValidSrcEp()) {
if (device.attr_list.src_ep != attr_list.src_ep) { return true; }
}
// LQI does not count as conflicting
// parse all other parameters
for (const auto & attr : attr_list) {
const Z_attribute * curr_attr = device.attr_list.findAttribute(attr);
if (nullptr != curr_attr) {
if (!curr_attr->equalsVal(attr)) {
return true; // the value already exists and is different - conflict!
}
}
}
return false;
}
void Z_Devices::jsonAppend(uint16_t shortaddr, const Z_attribute_list &attr_list) {
Z_Device & device = getShortAddr(shortaddr);
device.attr_list.mergeList(attr_list);
}
void Z_Devices::jsonPublishFlush(uint16_t shortaddr) {
Z_Device & device = getShortAddr(shortaddr);
if (!device.valid()) { return; } // safeguard
Z_attribute_list &attr_list = device.attr_list;
if (!attr_list.isEmpty()) {
const char * fname = zigbee_devices.getFriendlyName(shortaddr);
bool use_fname = (Settings.flag4.zigbee_use_names) && (fname); // should we replace shortaddr with friendlyname?
// save parameters is global variables to be used by Rules
gZbLastMessage.device = shortaddr; // %zbdevice%
gZbLastMessage.groupaddr = attr_list.group_id; // %zbgroup%
gZbLastMessage.endpoint = attr_list.src_ep; // %zbendpoint%
mqtt_data[0] = 0; // clear string
// Do we prefix with `ZbReceived`?
if (!Settings.flag4.remove_zbreceived) {
Response_P(PSTR("{\"" D_JSON_ZIGBEE_RECEIVED "\":"));
}
// What key do we use, shortaddr or name?
if (use_fname) {
Response_P(PSTR("%s{\"%s\":{"), mqtt_data, fname);
} else {
Response_P(PSTR("%s{\"0x%04X\":{"), mqtt_data, shortaddr);
}
// Add "Device":"0x...."
Response_P(PSTR("%s\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\","), mqtt_data, shortaddr);
// Add "Name":"xxx" if name is present
if (fname) {
Response_P(PSTR("%s\"" D_JSON_ZIGBEE_NAME "\":\"%s\","), mqtt_data, EscapeJSONString(fname).c_str());
}
// Add all other attributes
Response_P(PSTR("%s%s}}"), mqtt_data, attr_list.toString().c_str());
if (!Settings.flag4.remove_zbreceived) {
Response_P(PSTR("%s}"), mqtt_data);
}
// AddLog_P2(LOG_LEVEL_INFO, PSTR(">>> %s"), mqtt_data); // TODO
attr_list.reset(); // clear the attributes
if (Settings.flag4.zigbee_distinct_topics) {
char subtopic[16];
snprintf_P(subtopic, sizeof(subtopic), PSTR("%04X/" D_RSLT_SENSOR), shortaddr);
MqttPublishPrefixTopic_P(TELE, subtopic, Settings.flag.mqtt_sensor_retain);
} else {
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR), Settings.flag.mqtt_sensor_retain);
}
XdrvRulesProcess(); // apply rules
}
}
void Z_Devices::jsonPublishNow(uint16_t shortaddr, Z_attribute_list &attr_list) {
jsonPublishFlush(shortaddr); // flush any previous buffer
jsonAppend(shortaddr, attr_list);
jsonPublishFlush(shortaddr); // publish now
}
void Z_Devices::dirty(void) {
_saveTimer = kZigbeeSaveDelaySeconds * 1000 + millis();
}
void Z_Devices::clean(void) {
_saveTimer = 0;
}
// Parse the command parameters for either:
// - a short address starting with "0x", example: 0x1234
// - a long address starting with "0x", example: 0x7CB03EBB0A0292DD
// - a number 0..99, the index number in ZigbeeStatus
// - a friendly name, between quotes, example: "Room_Temp"
uint16_t Z_Devices::parseDeviceParam(const char * param, bool short_must_be_known) const {
if (nullptr == param) { return 0; }
size_t param_len = strlen(param);
char dataBuf[param_len + 1];
strcpy(dataBuf, param);
RemoveSpace(dataBuf);
uint16_t shortaddr = BAD_SHORTADDR; // start with unknown
if (strlen(dataBuf) < 4) {
// simple number 0..99
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= 99)) {
shortaddr = zigbee_devices.isKnownIndex(XdrvMailbox.payload - 1);
}
} else if ((dataBuf[0] == '0') && ((dataBuf[1] == 'x') || (dataBuf[1] == 'X'))) {
// starts with 0x
if (strlen(dataBuf) < 18) {
// expect a short address
shortaddr = strtoull(dataBuf, nullptr, 0);
if (short_must_be_known) {
shortaddr = zigbee_devices.findShortAddr(shortaddr).shortaddr; // if not found, it reverts to the unknown_device with address BAD_SHORTADDR
}
// else we don't check if it's already registered to force unregistered devices
} else {
// expect a long address
uint64_t longaddr = strtoull(dataBuf, nullptr, 0);
shortaddr = zigbee_devices.isKnownLongAddr(longaddr);
}
} else {
// expect a Friendly Name
shortaddr = zigbee_devices.isKnownFriendlyName(dataBuf);
}
return shortaddr;
}
// Display the tracked status for a light
String Z_Devices::dumpLightState(uint16_t shortaddr) const {
Z_attribute_list attr_list;
char hex[8];
const Z_Device & device = findShortAddr(shortaddr);
const char * fname = getFriendlyName(shortaddr);
bool use_fname = (Settings.flag4.zigbee_use_names) && (fname); // should we replace shortaddr with friendlyname?
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), shortaddr);
attr_list.addAttribute(F(D_JSON_ZIGBEE_DEVICE)).setStr(hex);
if (fname) {
attr_list.addAttribute(F(D_JSON_ZIGBEE_NAME)).setStr(fname);
}
if (foundDevice(device)) {
// expose the last known status of the bulb, for Hue integration
attr_list.addAttribute(F(D_JSON_ZIGBEE_LIGHT)).setInt(getHueBulbtype(shortaddr)); // sign extend, 0xFF changed as -1
// dump all known values
attr_list.addAttribute(F("Reachable")).setBool(device.getReachable());
if (device.validPower()) { attr_list.addAttribute(F("Power")).setUInt(device.getPower()); }
if (device.validDimmer()) { attr_list.addAttribute(F("Dimmer")).setUInt(device.dimmer); }
if (device.validColormode()) { attr_list.addAttribute(F("Colormode")).setUInt(device.colormode); }
if (device.validCT()) { attr_list.addAttribute(F("CT")).setUInt(device.ct); }
if (device.validSat()) { attr_list.addAttribute(F("Sat")).setUInt(device.sat); }
if (device.validHue()) { attr_list.addAttribute(F("Hue")).setUInt(device.hue); }
if (device.validX()) { attr_list.addAttribute(F("X")).setUInt(device.x); }
if (device.validY()) { attr_list.addAttribute(F("Y")).setUInt(device.y); }
}
Z_attribute_list attr_list_root;
Z_attribute * attr_root;
if (use_fname) {
attr_root = &attr_list_root.addAttribute(fname);
} else {
attr_root = &attr_list_root.addAttribute(hex);
}
attr_root->setStrRaw(attr_list.toString(true).c_str());
return attr_list_root.toString(true);
}
// Dump the internal memory of Zigbee devices
// Mode = 1: simple dump of devices addresses
// Mode = 2: simple dump of devices addresses and names, endpoints, light
String Z_Devices::dump(uint32_t dump_mode, uint16_t status_shortaddr) const {
Z_json_array json_arr;
for (const auto & device : _devices) {
uint16_t shortaddr = device.shortaddr;
char hex[22];
// ignore non-current device, if device specified
if ((BAD_SHORTADDR != status_shortaddr) && (status_shortaddr != shortaddr)) { continue; }
Z_attribute_list attr_list;
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), shortaddr);
attr_list.addAttribute(F(D_JSON_ZIGBEE_DEVICE)).setStr(hex);
if (device.friendlyName > 0) {
attr_list.addAttribute(F(D_JSON_ZIGBEE_NAME)).setStr(device.friendlyName);
}
if (2 <= dump_mode) {
hex[0] = '0'; // prefix with '0x'
hex[1] = 'x';
Uint64toHex(device.longaddr, &hex[2], 64);
attr_list.addAttribute(F("IEEEAddr")).setStr(hex);
if (device.modelId) {
attr_list.addAttribute(F(D_JSON_MODEL D_JSON_ID)).setStr(device.modelId);
}
int8_t bulbtype = getHueBulbtype(shortaddr);
if (bulbtype >= 0) {
attr_list.addAttribute(F(D_JSON_ZIGBEE_LIGHT)).setInt(bulbtype); // sign extend, 0xFF changed as -1
}
if (device.manufacturerId) {
attr_list.addAttribute(F("Manufacturer")).setStr(device.manufacturerId);
}
Z_json_array arr_ep;
for (uint32_t i = 0; i < endpoints_max; i++) {
uint8_t endpoint = device.endpoints[i];
if (0x00 == endpoint) { break; }
arr_ep.add(endpoint);
}
attr_list.addAttribute(F("Endpoints")).setStrRaw(arr_ep.toString().c_str());
}
json_arr.addStrRaw(attr_list.toString(true).c_str());
}
return json_arr.toString();
}
// Restore a single device configuration based on json export
// Input: json element as expported by `ZbStatus2``
// Mandatory attribue: `Device`
//
// Returns:
// 0 : Ok
// <0 : Error
//
// Ex: {"Device":"0x5ADF","Name":"IKEA_Light","IEEEAddr":"0x90FD9FFFFE03B051","ModelId":"TRADFRI bulb E27 WS opal 980lm","Manufacturer":"IKEA of Sweden","Endpoints":["0x01","0xF2"]}
int32_t Z_Devices::deviceRestore(const JsonObject &json) {
// params
uint16_t device = 0x0000; // 0x0000 is coordinator so considered invalid
uint64_t ieeeaddr = 0x0000000000000000LL; // 0 means unknown
const char * modelid = nullptr;
const char * manufid = nullptr;
const char * friendlyname = nullptr;
int8_t bulbtype = 0xFF;
size_t endpoints_len = 0;
// read mandatory "Device"
const JsonVariant &val_device = GetCaseInsensitive(json, PSTR("Device"));
if (nullptr != &val_device) {
device = strToUInt(val_device);
} else {
return -1; // missing "Device" attribute
}
// read "IEEEAddr" 64 bits in format "0x0000000000000000"
const JsonVariant &val_ieeeaddr = GetCaseInsensitive(json, PSTR("IEEEAddr"));
if (nullptr != &val_ieeeaddr) {
ieeeaddr = strtoull(val_ieeeaddr.as<const char*>(), nullptr, 0);
}
// read "Name"
friendlyname = getCaseInsensitiveConstCharNull(json, PSTR("Name"));
// read "ModelId"
modelid = getCaseInsensitiveConstCharNull(json, PSTR("ModelId"));
// read "Manufacturer"
manufid = getCaseInsensitiveConstCharNull(json, PSTR("Manufacturer"));
// read "Light"
const JsonVariant &val_bulbtype = GetCaseInsensitive(json, PSTR(D_JSON_ZIGBEE_LIGHT));
if (nullptr != &val_bulbtype) { bulbtype = strToUInt(val_bulbtype);; }
// update internal device information
updateDevice(device, ieeeaddr);
if (modelid) { setModelId(device, modelid); }
if (manufid) { setManufId(device, manufid); }
if (friendlyname) { setFriendlyName(device, friendlyname); }
if (&val_bulbtype) { setHueBulbtype(device, bulbtype); }
// read "Endpoints"
const JsonVariant &val_endpoints = GetCaseInsensitive(json, PSTR("Endpoints"));
if ((nullptr != &val_endpoints) && (val_endpoints.is<JsonArray>())) {
const JsonArray &arr_ep = val_endpoints.as<const JsonArray&>();
endpoints_len = arr_ep.size();
clearEndpoints(device); // clear even if array is empty
if (endpoints_len) {
for (auto ep_elt : arr_ep) {
uint8_t ep = strToUInt(ep_elt);
if (ep) {
addEndpoint(device, ep);
}
}
}
}
return 0;
}
#endif // USE_ZIGBEE