Tasmota/tasmota/xdrv_23_zigbee_5_converters...

1522 lines
64 KiB
C++

/*
xdrv_23_zigbee_converters.ino - zigbee support for Tasmota
Copyright (C) 2020 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ZIGBEE
/*********************************************************************************************\
* ZCL
\*********************************************************************************************/
enum Z_DataTypes {
Znodata = 0x00,
Zdata8 = 0x08, Zdata16, Zdata24, Zdata32, Zdata40, Zdata48, Zdata56, Zdata64,
Zbool = 0x10,
Zmap8 = 0x18, Zmap16, Zmap24, Zmap32, Zmap40, Zmap48, Zmap56, Zmap64,
Zuint8 = 0x20, Zuint16, Zuint24, Zuint32, Zuint40, Zuint48, Zuint56, Zuint64,
Zint8 = 0x28, Zint16, Zint24, Zint32, Zint40, Zint48, Zint56, Zint64,
Zenum8 = 0x30, Zenum16 = 0x31,
Zsemi = 0x38, Zsingle = 0x39, Zdouble = 0x3A,
Zoctstr = 0x41, Zstring = 0x42, Zoctstr16 = 0x43, Zstring16 = 0x44,
Arrray = 0x48,
Zstruct = 0x4C,
Zset = 0x50, Zbag = 0x51,
ZToD = 0xE0, Zdate = 0xE1, ZUTC = 0xE2,
ZclusterId = 0xE8, ZattribId = 0xE9, ZbacOID = 0xEA,
ZEUI64 = 0xF0, Zkey128 = 0xF1,
Zunk = 0xFF
};
//
// get the lenth in bytes for a data-type
// return 0 if unknown of type specific
//
// Note: this code is smaller than a static array
uint8_t Z_getDatatypeLen(uint8_t t) {
if ( ((t >= 0x08) && (t <= 0x0F)) || // data8 - data64
((t >= 0x18) && (t <= 0x2F)) ) { // map/uint/int
return (t & 0x07) + 1;
}
switch (t) {
case Zbool:
case Zenum8:
return 1;
case Zenum16:
case Zsemi:
case ZclusterId:
case ZattribId:
return 2;
case Zsingle:
case ZToD:
case Zdate:
case ZUTC:
case ZbacOID:
return 4;
case Zdouble:
case ZEUI64:
return 8;
case Zkey128:
return 16;
case Znodata:
default:
return 0;
}
}
// return value:
// 0 = keep initial value
// 1 = remove initial value
typedef int32_t (*Z_AttrConverter)(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr);
typedef struct Z_AttributeConverter {
uint8_t type;
uint8_t cluster_short;
uint16_t attribute;
const char * name;
int16_t multiplier; // multiplier for numerical value, (if > 0 multiply by x, if <0 device by x)
uint8_t cb; // callback func from Z_ConvOperators
// Z_AttrConverter func;
} Z_AttributeConverter;
// Cluster numbers are store in 8 bits format to save space,
// the following tables allows the conversion from 8 bits index Cx...
// to the 16 bits actual cluster number
enum Cx_cluster_short {
Cx0000, Cx0001, Cx0002, Cx0003, Cx0004, Cx0005, Cx0006, Cx0007,
Cx0008, Cx0009, Cx000A, Cx000B, Cx000C, Cx000D, Cx000E, Cx000F,
Cx0010, Cx0011, Cx0012, Cx0013, Cx0014, Cx001A, Cx0020, Cx0100,
Cx0101, Cx0102, Cx0300, Cx0400, Cx0401, Cx0402, Cx0403, Cx0404,
Cx0405, Cx0406, Cx0B01, Cx0B05,
};
const uint16_t Cx_cluster[] PROGMEM = {
0x0000, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007,
0x0008, 0x0009, 0x000A, 0x000B, 0x000C, 0x000D, 0x000E, 0x000F,
0x0010, 0x0011, 0x0012, 0x0013, 0x0014, 0x001A, 0x0020, 0x0100,
0x0101, 0x0102, 0x0300, 0x0400, 0x0401, 0x0402, 0x0403, 0x0404,
0x0405, 0x0406, 0x0B01, 0x0B05,
};
uint16_t CxToCluster(uint8_t cx) {
if (cx < ARRAY_SIZE(Cx_cluster)) {
return pgm_read_word(&Cx_cluster[cx]);
}
return 0xFFFF;
}
enum Z_ConvOperators {
Z_Nop, // copy value
Z_AddPressureUnit, // add pressure unit attribute (non numerical)
Z_ManufKeep, // copy and record Manufacturer attribute
Z_ModelKeep, // copy and record ModelId attribute
Z_AqaraSensor, // decode prioprietary Aqara Sensor message
Z_AqaraVibration, // decode Aqara vibration modes
Z_AqaraCube, // decode Aqara cube
};
ZF(ZCLVersion) ZF(AppVersion) ZF(StackVersion) ZF(HWVersion) ZF(Manufacturer) ZF(ModelId)
ZF(DateCode) ZF(PowerSource) ZF(SWBuildID) ZF(Power) ZF(SwitchType) ZF(Dimmer)
ZF(MainsVoltage) ZF(MainsFrequency) ZF(BatteryVoltage) ZF(BatteryPercentage)
ZF(CurrentTemperature) ZF(MinTempExperienced) ZF(MaxTempExperienced) ZF(OverTempTotalDwell)
ZF(SceneCount) ZF(CurrentScene) ZF(CurrentGroup) ZF(SceneValid)
ZF(AlarmCount) ZF(Time) ZF(TimeStatus) ZF(TimeZone) ZF(DstStart) ZF(DstEnd)
ZF(DstShift) ZF(StandardTime) ZF(LocalTime) ZF(LastSetTime) ZF(ValidUntilTime) ZF(TimeEpoch)
ZF(LocationType) ZF(LocationMethod) ZF(LocationAge) ZF(QualityMeasure) ZF(NumberOfDevices)
ZF(AnalogInActiveText) ZF(AnalogInDescription) ZF(AnalogInInactiveText) ZF(AnalogInMaxValue)
ZF(AnalogInMinValue) ZF(AnalogInOutOfService) ZF(AqaraRotate) ZF(AnalogInPriorityArray)
ZF(AnalogInReliability) ZF(AnalogInRelinquishDefault) ZF(AnalogInResolution) ZF(AnalogInStatusFlags)
ZF(AnalogInEngineeringUnits) ZF(AnalogInApplicationType) ZF(Aqara_FF05)
ZF(AnalogOutDescription) ZF(AnalogOutMaxValue) ZF(AnalogOutMinValue) ZF(AnalogOutOutOfService)
ZF(AnalogOutValue) ZF(AnalogOutPriorityArray) ZF(AnalogOutReliability) ZF(AnalogOutRelinquishDefault)
ZF(AnalogOutResolution) ZF(AnalogOutStatusFlags) ZF(AnalogOutEngineeringUnits) ZF(AnalogOutApplicationType)
ZF(AnalogDescription) ZF(AnalogOutOfService) ZF(AnalogValue) ZF(AnalogPriorityArray) ZF(AnalogReliability)
ZF(AnalogRelinquishDefault) ZF(AnalogStatusFlags) ZF(AnalogEngineeringUnits) ZF(AnalogApplicationType)
ZF(BinaryInActiveText) ZF(BinaryInDescription) ZF(BinaryInInactiveText) ZF(BinaryInOutOfService)
ZF(BinaryInPolarity) ZF(BinaryInValue) ZF(BinaryInPriorityArray) ZF(BinaryInReliability)
ZF(BinaryInStatusFlags) ZF(BinaryInApplicationType)
ZF(BinaryOutActiveText) ZF(BinaryOutDescription) ZF(BinaryOutInactiveText) ZF(BinaryOutMinimumOffTime)
ZF(BinaryOutMinimumOnTime) ZF(BinaryOutOutOfService) ZF(BinaryOutPolarity) ZF(BinaryOutValue)
ZF(BinaryOutPriorityArray) ZF(BinaryOutReliability) ZF(BinaryOutRelinquishDefault) ZF(BinaryOutStatusFlags)
ZF(BinaryOutApplicationType)
ZF(BinaryActiveText) ZF(BinaryDescription) ZF(BinaryInactiveText) ZF(BinaryMinimumOffTime)
ZF(BinaryMinimumOnTime) ZF(BinaryOutOfService) ZF(BinaryValue) ZF(BinaryPriorityArray) ZF(BinaryReliability)
ZF(BinaryRelinquishDefault) ZF(BinaryStatusFlags) ZF(BinaryApplicationType)
ZF(MultiInStateText) ZF(MultiInDescription) ZF(MultiInNumberOfStates) ZF(MultiInOutOfService)
ZF(MultiInValue) ZF(MultiInReliability) ZF(MultiInStatusFlags) ZF(MultiInApplicationType)
ZF(MultiOutStateText) ZF(MultiOutDescription) ZF(MultiOutNumberOfStates) ZF(MultiOutOutOfService)
ZF(MultiOutValue) ZF(MultiOutPriorityArray) ZF(MultiOutReliability) ZF(MultiOutRelinquishDefault)
ZF(MultiOutStatusFlags) ZF(MultiOutApplicationType)
ZF(MultiStateText) ZF(MultiDescription) ZF(MultiNumberOfStates) ZF(MultiOutOfService) ZF(MultiValue)
ZF(MultiReliability) ZF(MultiRelinquishDefault) ZF(MultiStatusFlags) ZF(MultiApplicationType)
ZF(TotalProfileNum) ZF(MultipleScheduling) ZF(EnergyFormatting) ZF(EnergyRemote) ZF(ScheduleMode)
ZF(CheckinInterval) ZF(LongPollInterval) ZF(ShortPollInterval) ZF(FastPollTimeout) ZF(CheckinIntervalMin)
ZF(LongPollIntervalMin) ZF(FastPollTimeoutMax)
ZF(PhysicalClosedLimit) ZF(MotorStepSize) ZF(Status) ZF(ClosedLimit) ZF(Mode)
ZF(LockState) ZF(LockType) ZF(ActuatorEnabled) ZF(DoorState) ZF(DoorOpenEvents)
ZF(DoorClosedEvents) ZF(OpenPeriod)
ZF(AqaraVibrationMode) ZF(AqaraVibrationsOrAngle) ZF(AqaraVibration505) ZF(AqaraAccelerometer)
ZF(WindowCoveringType) ZF(PhysicalClosedLimitLift) ZF(PhysicalClosedLimitTilt) ZF(CurrentPositionLift)
ZF(CurrentPositionTilt) ZF(NumberofActuationsLift) ZF(NumberofActuationsTilt) ZF(ConfigStatus)
ZF(CurrentPositionLiftPercentage) ZF(CurrentPositionTiltPercentage) ZF(InstalledOpenLimitLift)
ZF(InstalledClosedLimitLift) ZF(InstalledOpenLimitTilt) ZF(InstalledClosedLimitTilt) ZF(VelocityLift)
ZF(AccelerationTimeLift) ZF(DecelerationTimeLift) ZF(IntermediateSetpointsLift)
ZF(IntermediateSetpointsTilt)
ZF(Hue) ZF(Sat) ZF(RemainingTime) ZF(X) ZF(Y) ZF(DriftCompensation) ZF(CompensationText) ZF(CT)
ZF(ColorMode) ZF(NumberOfPrimaries) ZF(Primary1X) ZF(Primary1Y) ZF(Primary1Intensity) ZF(Primary2X)
ZF(Primary2Y) ZF(Primary2Intensity) ZF(Primary3X) ZF(Primary3Y) ZF(Primary3Intensity) ZF(WhitePointX)
ZF(WhitePointY) ZF(ColorPointRX) ZF(ColorPointRY) ZF(ColorPointRIntensity) ZF(ColorPointGX) ZF(ColorPointGY)
ZF(ColorPointGIntensity) ZF(ColorPointBX) ZF(ColorPointBY) ZF(ColorPointBIntensity)
ZF(Illuminance) ZF(IlluminanceMinMeasuredValue) ZF(IlluminanceMaxMeasuredValue) ZF(IlluminanceTolerance)
ZF(IlluminanceLightSensorType) ZF(IlluminanceLevelStatus) ZF(IlluminanceTargetLevel)
ZF(Temperature) ZF(TemperatureMinMeasuredValue) ZF(TemperatureMaxMeasuredValue) ZF(TemperatureTolerance)
ZF(PressureUnit) ZF(Pressure) ZF(PressureMinMeasuredValue) ZF(PressureMaxMeasuredValue) ZF(PressureTolerance)
ZF(PressureScaledValue) ZF(PressureMinScaledValue) ZF(PressureMaxScaledValue) ZF(PressureScaledTolerance)
ZF(PressureScale)
ZF(FlowRate) ZF(FlowMinMeasuredValue) ZF(FlowMaxMeasuredValue) ZF(FlowTolerance)
ZF(Humidity) ZF(HumidityMinMeasuredValue) ZF(HumidityMaxMeasuredValue) ZF(HumidityTolerance)
ZF(Occupancy) ZF(OccupancySensorType)
ZF(CompanyName) ZF(MeterTypeID) ZF(DataQualityID) ZF(CustomerName) ZF(Model) ZF(PartNumber)
ZF(SoftwareRevision) ZF(POD) ZF(AvailablePower) ZF(PowerThreshold) ZF(ProductRevision) ZF(UtilityName)
ZF(NumberOfResets) ZF(PersistentMemoryWrites) ZF(LastMessageLQI) ZF(LastMessageRSSI)
// list of post-processing directives
const Z_AttributeConverter Z_PostProcess[] PROGMEM = {
{ Zuint8, Cx0000, 0x0000, Z(ZCLVersion), 1, Z_Nop },
{ Zuint8, Cx0000, 0x0001, Z(AppVersion), 1, Z_Nop },
{ Zuint8, Cx0000, 0x0002, Z(StackVersion), 1, Z_Nop },
{ Zuint8, Cx0000, 0x0003, Z(HWVersion), 1, Z_Nop },
{ Zstring, Cx0000, 0x0004, Z(Manufacturer), 1, Z_ManufKeep }, // record Manufacturer
{ Zstring, Cx0000, 0x0005, Z(ModelId), 1, Z_ModelKeep }, // record Model
{ Zstring, Cx0000, 0x0006, Z(DateCode), 1, Z_Nop },
{ Zenum8, Cx0000, 0x0007, Z(PowerSource), 1, Z_Nop },
{ Zstring, Cx0000, 0x4000, Z(SWBuildID), 1, Z_Nop },
// { Zunk, Cx0000, 0xFFFF, nullptr, 0, Z_Nop }, // Remove all other values
// Cmd 0x0A - Cluster 0x0000, attribute 0xFF01 - proprietary
{ Zmap8, Cx0000, 0xFF01, nullptr, 0, Z_AqaraSensor }, // Occupancy (map8)
// Power Configuration cluster
{ Zuint16, Cx0001, 0x0000, Z(MainsVoltage), 1, Z_Nop },
{ Zuint8, Cx0001, 0x0001, Z(MainsFrequency), 1, Z_Nop },
{ Zuint8, Cx0001, 0x0020, Z(BatteryVoltage), -10,Z_Nop }, // divide by 10
{ Zuint8, Cx0001, 0x0021, Z(BatteryPercentage), -2, Z_Nop }, // divide by 2
// Device Temperature Configuration cluster
{ Zint16, Cx0002, 0x0000, Z(CurrentTemperature), 1, Z_Nop },
{ Zint16, Cx0002, 0x0001, Z(MinTempExperienced), 1, Z_Nop },
{ Zint16, Cx0002, 0x0002, Z(MaxTempExperienced), 1, Z_Nop },
{ Zuint16, Cx0002, 0x0003, Z(OverTempTotalDwell), 1, Z_Nop },
// Scenes cluster
{ Zuint8, Cx0005, 0x0000, Z(SceneCount), 1, Z_Nop },
{ Zuint8, Cx0005, 0x0001, Z(CurrentScene), 1, Z_Nop },
{ Zuint16, Cx0005, 0x0002, Z(CurrentGroup), 1, Z_Nop },
{ Zbool, Cx0005, 0x0003, Z(SceneValid), 1, Z_Nop },
//{ Zmap8, Cx0005, 0x0004, Z(NameSupport), 1, Z_Nop },
// On/off cluster
{ Zbool, Cx0006, 0x0000, Z(Power), 1, Z_Nop },
{ Zbool, Cx0006, 0x8000, Z(Power), 1, Z_Nop }, // See 7280
// On/Off Switch Configuration cluster
{ Zenum8, Cx0007, 0x0000, Z(SwitchType), 1, Z_Nop },
// Level Control cluster
{ Zuint8, Cx0008, 0x0000, Z(Dimmer), 1, Z_Nop },
// { Zuint16, Cx0008, 0x0001, Z(RemainingTime", 1, Z_Nop },
// { Zuint16, Cx0008, 0x0010, Z(OnOffTransitionTime", 1, Z_Nop },
// { Zuint8, Cx0008, 0x0011, Z(OnLevel", 1, Z_Nop },
// { Zuint16, Cx0008, 0x0012, Z(OnTransitionTime", 1, Z_Nop },
// { Zuint16, Cx0008, 0x0013, Z(OffTransitionTime", 1, Z_Nop },
// { Zuint16, Cx0008, 0x0014, Z(DefaultMoveRate", 1, Z_Nop },
// Alarms cluster
{ Zuint16, Cx0009, 0x0000, Z(AlarmCount), 1, Z_Nop },
// Time cluster
{ ZUTC, Cx000A, 0x0000, Z(Time), 1, Z_Nop },
{ Zmap8, Cx000A, 0x0001, Z(TimeStatus), 1, Z_Nop },
{ Zint32, Cx000A, 0x0002, Z(TimeZone), 1, Z_Nop },
{ Zuint32, Cx000A, 0x0003, Z(DstStart), 1, Z_Nop },
{ Zuint32, Cx000A, 0x0004, Z(DstEnd), 1, Z_Nop },
{ Zint32, Cx000A, 0x0005, Z(DstShift), 1, Z_Nop },
{ Zuint32, Cx000A, 0x0006, Z(StandardTime), 1, Z_Nop },
{ Zuint32, Cx000A, 0x0007, Z(LocalTime), 1, Z_Nop },
{ ZUTC, Cx000A, 0x0008, Z(LastSetTime), 1, Z_Nop },
{ ZUTC, Cx000A, 0x0009, Z(ValidUntilTime), 1, Z_Nop },
{ ZUTC, Cx000A, 0xFF00, Z(TimeEpoch), 1, Z_Nop }, // Tasmota specific, epoch
// RSSI Location cluster
{ Zdata8, Cx000B, 0x0000, Z(LocationType), 1, Z_Nop },
{ Zenum8, Cx000B, 0x0001, Z(LocationMethod), 1, Z_Nop },
{ Zuint16, Cx000B, 0x0002, Z(LocationAge), 1, Z_Nop },
{ Zuint8, Cx000B, 0x0003, Z(QualityMeasure), 1, Z_Nop },
{ Zuint8, Cx000B, 0x0004, Z(NumberOfDevices), 1, Z_Nop },
// Analog Input cluster
// { 0xFF, Cx000C, 0x0004, Z(AnalogInActiveText), 1, Z_Nop },
{ Zstring, Cx000C, 0x001C, Z(AnalogInDescription), 1, Z_Nop },
// { 0xFF, Cx000C, 0x002E, Z(AnalogInInactiveText), 1, Z_Nop },
{ Zsingle, Cx000C, 0x0041, Z(AnalogInMaxValue), 1, Z_Nop },
{ Zsingle, Cx000C, 0x0045, Z(AnalogInMinValue), 1, Z_Nop },
{ Zbool, Cx000C, 0x0051, Z(AnalogInOutOfService), 1, Z_Nop },
{ Zsingle, Cx000C, 0x0055, Z(AqaraRotate), 1, Z_Nop },
// { 0xFF, Cx000C, 0x0057, Z(AnalogInPriorityArray),1, Z_Nop },
{ Zenum8, Cx000C, 0x0067, Z(AnalogInReliability), 1, Z_Nop },
// { 0xFF, Cx000C, 0x0068, Z(AnalogInRelinquishDefault),1, Z_Nop },
{ Zsingle, Cx000C, 0x006A, Z(AnalogInResolution), 1, Z_Nop },
{ Zmap8, Cx000C, 0x006F, Z(AnalogInStatusFlags), 1, Z_Nop },
{ Zenum16, Cx000C, 0x0075, Z(AnalogInEngineeringUnits),1, Z_Nop },
{ Zuint32, Cx000C, 0x0100, Z(AnalogInApplicationType),1, Z_Nop },
{ Zuint16, Cx000C, 0xFF05, Z(Aqara_FF05), 1, Z_Nop },
// Analog Output cluster
{ Zstring, Cx000D, 0x001C, Z(AnalogOutDescription), 1, Z_Nop },
{ Zsingle, Cx000D, 0x0041, Z(AnalogOutMaxValue), 1, Z_Nop },
{ Zsingle, Cx000D, 0x0045, Z(AnalogOutMinValue), 1, Z_Nop },
{ Zbool, Cx000D, 0x0051, Z(AnalogOutOutOfService),1, Z_Nop },
{ Zsingle, Cx000D, 0x0055, Z(AnalogOutValue), 1, Z_Nop },
// { Zunk, Cx000D, 0x0057, Z(AnalogOutPriorityArray),1, Z_Nop },
{ Zenum8, Cx000D, 0x0067, Z(AnalogOutReliability), 1, Z_Nop },
{ Zsingle, Cx000D, 0x0068, Z(AnalogOutRelinquishDefault),1, Z_Nop },
{ Zsingle, Cx000D, 0x006A, Z(AnalogOutResolution), 1, Z_Nop },
{ Zmap8, Cx000D, 0x006F, Z(AnalogOutStatusFlags), 1, Z_Nop },
{ Zenum16, Cx000D, 0x0075, Z(AnalogOutEngineeringUnits),1, Z_Nop },
{ Zuint32, Cx000D, 0x0100, Z(AnalogOutApplicationType),1, Z_Nop },
// Analog Value cluster
{ Zstring, Cx000E, 0x001C, Z(AnalogDescription), 1, Z_Nop },
{ Zbool, Cx000E, 0x0051, Z(AnalogOutOfService), 1, Z_Nop },
{ Zsingle, Cx000E, 0x0055, Z(AnalogValue), 1, Z_Nop },
{ Zunk, Cx000E, 0x0057, Z(AnalogPriorityArray), 1, Z_Nop },
{ Zenum8, Cx000E, 0x0067, Z(AnalogReliability), 1, Z_Nop },
{ Zsingle, Cx000E, 0x0068, Z(AnalogRelinquishDefault),1, Z_Nop },
{ Zmap8, Cx000E, 0x006F, Z(AnalogStatusFlags), 1, Z_Nop },
{ Zenum16, Cx000E, 0x0075, Z(AnalogEngineeringUnits),1, Z_Nop },
{ Zuint32, Cx000E, 0x0100, Z(AnalogApplicationType),1, Z_Nop },
// Binary Input cluster
{ Zstring, Cx000F, 0x0004, Z(BinaryInActiveText), 1, Z_Nop },
{ Zstring, Cx000F, 0x001C, Z(BinaryInDescription), 1, Z_Nop },
{ Zstring, Cx000F, 0x002E, Z(BinaryInInactiveText),1, Z_Nop },
{ Zbool, Cx000F, 0x0051, Z(BinaryInOutOfService),1, Z_Nop },
{ Zenum8, Cx000F, 0x0054, Z(BinaryInPolarity), 1, Z_Nop },
{ Zstring, Cx000F, 0x0055, Z(BinaryInValue), 1, Z_Nop },
// { 0xFF, Cx000F, 0x0057, Z(BinaryInPriorityArray),1, Z_Nop },
{ Zenum8, Cx000F, 0x0067, Z(BinaryInReliability), 1, Z_Nop },
{ Zmap8, Cx000F, 0x006F, Z(BinaryInStatusFlags), 1, Z_Nop },
{ Zuint32, Cx000F, 0x0100, Z(BinaryInApplicationType),1, Z_Nop },
// Binary Output cluster
{ Zstring, Cx0010, 0x0004, Z(BinaryOutActiveText), 1, Z_Nop },
{ Zstring, Cx0010, 0x001C, Z(BinaryOutDescription), 1, Z_Nop },
{ Zstring, Cx0010, 0x002E, Z(BinaryOutInactiveText),1, Z_Nop },
{ Zuint32, Cx0010, 0x0042, Z(BinaryOutMinimumOffTime),1, Z_Nop },
{ Zuint32, Cx0010, 0x0043, Z(BinaryOutMinimumOnTime),1, Z_Nop },
{ Zbool, Cx0010, 0x0051, Z(BinaryOutOutOfService),1, Z_Nop },
{ Zenum8, Cx0010, 0x0054, Z(BinaryOutPolarity), 1, Z_Nop },
{ Zbool, Cx0010, 0x0055, Z(BinaryOutValue), 1, Z_Nop },
// { Zunk, Cx0010, 0x0057, Z(BinaryOutPriorityArray),1, Z_Nop },
{ Zenum8, Cx0010, 0x0067, Z(BinaryOutReliability), 1, Z_Nop },
{ Zbool, Cx0010, 0x0068, Z(BinaryOutRelinquishDefault),1, Z_Nop },
{ Zmap8, Cx0010, 0x006F, Z(BinaryOutStatusFlags), 1, Z_Nop },
{ Zuint32, Cx0010, 0x0100, Z(BinaryOutApplicationType),1, Z_Nop },
// Binary Value cluster
{ Zstring, Cx0011, 0x0004, Z(BinaryActiveText), 1, Z_Nop },
{ Zstring, Cx0011, 0x001C, Z(BinaryDescription), 1, Z_Nop },
{ Zstring, Cx0011, 0x002E, Z(BinaryInactiveText), 1, Z_Nop },
{ Zuint32, Cx0011, 0x0042, Z(BinaryMinimumOffTime), 1, Z_Nop },
{ Zuint32, Cx0011, 0x0043, Z(BinaryMinimumOnTime), 1, Z_Nop },
{ Zbool, Cx0011, 0x0051, Z(BinaryOutOfService), 1, Z_Nop },
{ Zbool, Cx0011, 0x0055, Z(BinaryValue), 1, Z_Nop },
// { Zunk, Cx0011, 0x0057, Z(BinaryPriorityArray), 1, Z_Nop },
{ Zenum8, Cx0011, 0x0067, Z(BinaryReliability), 1, Z_Nop },
{ Zbool, Cx0011, 0x0068, Z(BinaryRelinquishDefault),1, Z_Nop },
{ Zmap8, Cx0011, 0x006F, Z(BinaryStatusFlags), 1, Z_Nop },
{ Zuint32, Cx0011, 0x0100, Z(BinaryApplicationType),1, Z_Nop },
// Multistate Input cluster
// { Zunk, Cx0012, 0x000E, Z(MultiInStateText), 1, Z_Nop },
{ Zstring, Cx0012, 0x001C, Z(MultiInDescription), 1, Z_Nop },
{ Zuint16, Cx0012, 0x004A, Z(MultiInNumberOfStates),1, Z_Nop },
{ Zbool, Cx0012, 0x0051, Z(MultiInOutOfService), 1, Z_Nop },
{ Zuint16, Cx0012, 0x0055, Z(MultiInValue), 0, Z_AqaraCube },
{ Zenum8, Cx0012, 0x0067, Z(MultiInReliability), 1, Z_Nop },
{ Zmap8, Cx0012, 0x006F, Z(MultiInStatusFlags), 1, Z_Nop },
{ Zuint32, Cx0012, 0x0100, Z(MultiInApplicationType),1, Z_Nop },
// Multistate output
// { Zunk, Cx0013, 0x000E, Z(MultiOutStateText), 1, Z_Nop },
{ Zstring, Cx0013, 0x001C, Z(MultiOutDescription), 1, Z_Nop },
{ Zuint16, Cx0013, 0x004A, Z(MultiOutNumberOfStates),1, Z_Nop },
{ Zbool, Cx0013, 0x0051, Z(MultiOutOutOfService), 1, Z_Nop },
{ Zuint16, Cx0013, 0x0055, Z(MultiOutValue), 1, Z_Nop },
// { Zunk, Cx0013, 0x0057, Z(MultiOutPriorityArray),1, Z_Nop },
{ Zenum8, Cx0013, 0x0067, Z(MultiOutReliability), 1, Z_Nop },
{ Zuint16, Cx0013, 0x0068, Z(MultiOutRelinquishDefault),1, Z_Nop },
{ Zmap8, Cx0013, 0x006F, Z(MultiOutStatusFlags), 1, Z_Nop },
{ Zuint32, Cx0013, 0x0100, Z(MultiOutApplicationType),1, Z_Nop },
// Multistate Value cluster
// { Zunk, Cx0014, 0x000E, Z(MultiStateText), 1, Z_Nop },
{ Zstring, Cx0014, 0x001C, Z(MultiDescription), 1, Z_Nop },
{ Zuint16, Cx0014, 0x004A, Z(MultiNumberOfStates), 1, Z_Nop },
{ Zbool, Cx0014, 0x0051, Z(MultiOutOfService), 1, Z_Nop },
{ Zuint16, Cx0014, 0x0055, Z(MultiValue), 1, Z_Nop },
{ Zenum8, Cx0014, 0x0067, Z(MultiReliability), 1, Z_Nop },
{ Zuint16, Cx0014, 0x0068, Z(MultiRelinquishDefault),1, Z_Nop },
{ Zmap8, Cx0014, 0x006F, Z(MultiStatusFlags), 1, Z_Nop },
{ Zuint32, Cx0014, 0x0100, Z(MultiApplicationType), 1, Z_Nop },
// Power Profile cluster
{ Zuint8, Cx001A, 0x0000, Z(TotalProfileNum), 1, Z_Nop },
{ Zbool, Cx001A, 0x0001, Z(MultipleScheduling), 1, Z_Nop },
{ Zmap8, Cx001A, 0x0002, Z(EnergyFormatting), 1, Z_Nop },
{ Zbool, Cx001A, 0x0003, Z(EnergyRemote), 1, Z_Nop },
{ Zmap8, Cx001A, 0x0004, Z(ScheduleMode), 1, Z_Nop },
// Poll Control cluster
{ Zuint32, Cx0020, 0x0000, Z(CheckinInterval), 1, Z_Nop },
{ Zuint32, Cx0020, 0x0001, Z(LongPollInterval), 1, Z_Nop },
{ Zuint16, Cx0020, 0x0002, Z(ShortPollInterval), 1, Z_Nop },
{ Zuint16, Cx0020, 0x0003, Z(FastPollTimeout), 1, Z_Nop },
{ Zuint32, Cx0020, 0x0004, Z(CheckinIntervalMin), 1, Z_Nop },
{ Zuint32, Cx0020, 0x0005, Z(LongPollIntervalMin), 1, Z_Nop },
{ Zuint16, Cx0020, 0x0006, Z(FastPollTimeoutMax), 1, Z_Nop },
// Shade Configuration cluster
{ Zuint16, Cx0100, 0x0000, Z(PhysicalClosedLimit), 1, Z_Nop },
{ Zuint8, Cx0100, 0x0001, Z(MotorStepSize), 1, Z_Nop },
{ Zmap8, Cx0100, 0x0002, Z(Status), 1, Z_Nop },
{ Zuint16, Cx0100, 0x0010, Z(ClosedLimit), 1, Z_Nop },
{ Zenum8, Cx0100, 0x0011, Z(Mode), 1, Z_Nop },
// Door Lock cluster
{ Zenum8, Cx0101, 0x0000, Z(LockState), 1, Z_Nop },
{ Zenum8, Cx0101, 0x0001, Z(LockType), 1, Z_Nop },
{ Zbool, Cx0101, 0x0002, Z(ActuatorEnabled), 1, Z_Nop },
{ Zenum8, Cx0101, 0x0003, Z(DoorState), 1, Z_Nop },
{ Zuint32, Cx0101, 0x0004, Z(DoorOpenEvents), 1, Z_Nop },
{ Zuint32, Cx0101, 0x0005, Z(DoorClosedEvents), 1, Z_Nop },
{ Zuint16, Cx0101, 0x0006, Z(OpenPeriod), 1, Z_Nop },
// Aqara Lumi Vibration Sensor
{ Zuint16, Cx0101, 0x0055, Z(AqaraVibrationMode), 0, Z_AqaraVibration },
{ Zuint16, Cx0101, 0x0503, Z(AqaraVibrationsOrAngle), 1, Z_Nop },
{ Zuint32, Cx0101, 0x0505, Z(AqaraVibration505), 1, Z_Nop },
{ Zuint48, Cx0101, 0x0508, Z(AqaraAccelerometer), 0, Z_AqaraVibration },
// Window Covering cluster
{ Zenum8, Cx0102, 0x0000, Z(WindowCoveringType), 1, Z_Nop },
{ Zuint16, Cx0102, 0x0001, Z(PhysicalClosedLimitLift),1, Z_Nop },
{ Zuint16, Cx0102, 0x0002, Z(PhysicalClosedLimitTilt),1, Z_Nop },
{ Zuint16, Cx0102, 0x0003, Z(CurrentPositionLift), 1, Z_Nop },
{ Zuint16, Cx0102, 0x0004, Z(CurrentPositionTilt), 1, Z_Nop },
{ Zuint16, Cx0102, 0x0005, Z(NumberofActuationsLift),1, Z_Nop },
{ Zuint16, Cx0102, 0x0006, Z(NumberofActuationsTilt),1, Z_Nop },
{ Zmap8, Cx0102, 0x0007, Z(ConfigStatus), 1, Z_Nop },
{ Zuint8, Cx0102, 0x0008, Z(CurrentPositionLiftPercentage),1, Z_Nop },
{ Zuint8, Cx0102, 0x0009, Z(CurrentPositionTiltPercentage),1, Z_Nop },
{ Zuint16, Cx0102, 0x0010, Z(InstalledOpenLimitLift),1, Z_Nop },
{ Zuint16, Cx0102, 0x0011, Z(InstalledClosedLimitLift),1, Z_Nop },
{ Zuint16, Cx0102, 0x0012, Z(InstalledOpenLimitTilt),1, Z_Nop },
{ Zuint16, Cx0102, 0x0013, Z(InstalledClosedLimitTilt),1, Z_Nop },
{ Zuint16, Cx0102, 0x0014, Z(VelocityLift), 1, Z_Nop },
{ Zuint16, Cx0102, 0x0015, Z(AccelerationTimeLift),1, Z_Nop },
{ Zuint16, Cx0102, 0x0016, Z(DecelerationTimeLift), 1, Z_Nop },
{ Zmap8, Cx0102, 0x0017, Z(Mode), 1, Z_Nop },
{ Zoctstr, Cx0102, 0x0018, Z(IntermediateSetpointsLift),1, Z_Nop },
{ Zoctstr, Cx0102, 0x0019, Z(IntermediateSetpointsTilt),1, Z_Nop },
// Color Control cluster
{ Zuint8, Cx0300, 0x0000, Z(Hue), 1, Z_Nop },
{ Zuint8, Cx0300, 0x0001, Z(Sat), 1, Z_Nop },
{ Zuint16, Cx0300, 0x0002, Z(RemainingTime), 1, Z_Nop },
{ Zuint16, Cx0300, 0x0003, Z(X), 1, Z_Nop },
{ Zuint16, Cx0300, 0x0004, Z(Y), 1, Z_Nop },
{ Zenum8, Cx0300, 0x0005, Z(DriftCompensation), 1, Z_Nop },
{ Zstring, Cx0300, 0x0006, Z(CompensationText), 1, Z_Nop },
{ Zuint16, Cx0300, 0x0007, Z(CT), 1, Z_Nop },
{ Zenum8, Cx0300, 0x0008, Z(ColorMode), 1, Z_Nop },
{ Zuint8, Cx0300, 0x0010, Z(NumberOfPrimaries), 1, Z_Nop },
{ Zuint16, Cx0300, 0x0011, Z(Primary1X), 1, Z_Nop },
{ Zuint16, Cx0300, 0x0012, Z(Primary1Y), 1, Z_Nop },
{ Zuint8, Cx0300, 0x0013, Z(Primary1Intensity), 1, Z_Nop },
{ Zuint16, Cx0300, 0x0015, Z(Primary2X), 1, Z_Nop },
{ Zuint16, Cx0300, 0x0016, Z(Primary2Y), 1, Z_Nop },
{ Zuint8, Cx0300, 0x0017, Z(Primary2Intensity), 1, Z_Nop },
{ Zuint16, Cx0300, 0x0019, Z(Primary3X), 1, Z_Nop },
{ Zuint16, Cx0300, 0x001A, Z(Primary3Y), 1, Z_Nop },
{ Zuint8, Cx0300, 0x001B, Z(Primary3Intensity), 1, Z_Nop },
{ Zuint16, Cx0300, 0x0030, Z(WhitePointX), 1, Z_Nop },
{ Zuint16, Cx0300, 0x0031, Z(WhitePointY), 1, Z_Nop },
{ Zuint16, Cx0300, 0x0032, Z(ColorPointRX), 1, Z_Nop },
{ Zuint16, Cx0300, 0x0033, Z(ColorPointRY), 1, Z_Nop },
{ Zuint8, Cx0300, 0x0034, Z(ColorPointRIntensity), 1, Z_Nop },
{ Zuint16, Cx0300, 0x0036, Z(ColorPointGX), 1, Z_Nop },
{ Zuint16, Cx0300, 0x0037, Z(ColorPointGY), 1, Z_Nop },
{ Zuint8, Cx0300, 0x0038, Z(ColorPointGIntensity), 1, Z_Nop },
{ Zuint16, Cx0300, 0x003A, Z(ColorPointBX), 1, Z_Nop },
{ Zuint16, Cx0300, 0x003B, Z(ColorPointBY), 1, Z_Nop },
{ Zuint8, Cx0300, 0x003C, Z(ColorPointBIntensity), 1, Z_Nop },
// Illuminance Measurement cluster
{ Zuint16, Cx0400, 0x0000, Z(Illuminance), 1, Z_Nop }, // Illuminance (in Lux)
{ Zuint16, Cx0400, 0x0001, Z(IlluminanceMinMeasuredValue), 1, Z_Nop }, //
{ Zuint16, Cx0400, 0x0002, Z(IlluminanceMaxMeasuredValue), 1, Z_Nop }, //
{ Zuint16, Cx0400, 0x0003, Z(IlluminanceTolerance), 1, Z_Nop }, //
{ Zenum8, Cx0400, 0x0004, Z(IlluminanceLightSensorType), 1, Z_Nop }, //
{ Zunk, Cx0400, 0xFFFF, nullptr, 0, Z_Nop }, // Remove all other values
// Illuminance Level Sensing cluster
{ Zenum8, Cx0401, 0x0000, Z(IlluminanceLevelStatus), 1, Z_Nop }, // Illuminance (in Lux)
{ Zenum8, Cx0401, 0x0001, Z(IlluminanceLightSensorType), 1, Z_Nop }, // LightSensorType
{ Zuint16, Cx0401, 0x0010, Z(IlluminanceTargetLevel), 1, Z_Nop }, //
{ Zunk, Cx0401, 0xFFFF, nullptr, 0, Z_Nop }, // Remove all other values
// Temperature Measurement cluster
{ Zint16, Cx0402, 0x0000, Z(Temperature), -100, Z_Nop }, // divide by 100
{ Zint16, Cx0402, 0x0001, Z(TemperatureMinMeasuredValue), -100, Z_Nop }, //
{ Zint16, Cx0402, 0x0002, Z(TemperatureMaxMeasuredValue), -100, Z_Nop }, //
{ Zuint16, Cx0402, 0x0003, Z(TemperatureTolerance), -100, Z_Nop }, //
{ Zunk, Cx0402, 0xFFFF, nullptr, 0, Z_Nop }, // Remove all other values
// Pressure Measurement cluster
{ Zunk, Cx0403, 0x0000, Z(PressureUnit), 0, Z_AddPressureUnit }, // Pressure Unit
{ Zint16, Cx0403, 0x0000, Z(Pressure), 1, Z_Nop }, // Pressure
{ Zint16, Cx0403, 0x0001, Z(PressureMinMeasuredValue), 1, Z_Nop }, //
{ Zint16, Cx0403, 0x0002, Z(PressureMaxMeasuredValue), 1, Z_Nop }, //
{ Zuint16, Cx0403, 0x0003, Z(PressureTolerance), 1, Z_Nop }, //
{ Zint16, Cx0403, 0x0010, Z(PressureScaledValue), 1, Z_Nop }, //
{ Zint16, Cx0403, 0x0011, Z(PressureMinScaledValue), 1, Z_Nop }, //
{ Zint16, Cx0403, 0x0012, Z(PressureMaxScaledValue), 1, Z_Nop }, //
{ Zuint16, Cx0403, 0x0013, Z(PressureScaledTolerance), 1, Z_Nop }, //
{ Zint8, Cx0403, 0x0014, Z(PressureScale), 1, Z_Nop }, //
{ Zunk, Cx0403, 0xFFFF, nullptr, 0, Z_Nop }, // Remove all other Pressure values
// Flow Measurement cluster
{ Zuint16, Cx0404, 0x0000, Z(FlowRate), -10, Z_Nop }, // Flow (in m3/h)
{ Zuint16, Cx0404, 0x0001, Z(FlowMinMeasuredValue), 1, Z_Nop }, //
{ Zuint16, Cx0404, 0x0002, Z(FlowMaxMeasuredValue), 1, Z_Nop }, //
{ Zuint16, Cx0404, 0x0003, Z(FlowTolerance), 1, Z_Nop }, //
{ Zunk, Cx0404, 0xFFFF, nullptr, 0, Z_Nop }, // Remove all other values
// Relative Humidity Measurement cluster
{ Zuint16, Cx0405, 0x0000, Z(Humidity), -100, Z_Nop }, // Humidity
{ Zuint16, Cx0405, 0x0001, Z(HumidityMinMeasuredValue), 1, Z_Nop }, //
{ Zuint16, Cx0405, 0x0002, Z(HumidityMaxMeasuredValue), 1, Z_Nop }, //
{ Zuint16, Cx0405, 0x0003, Z(HumidityTolerance), 1, Z_Nop }, //
{ Zunk, Cx0405, 0xFFFF, nullptr, 0, Z_Nop }, // Remove all other values
// Occupancy Sensing cluster
{ Zmap8, Cx0406, 0x0000, Z(Occupancy), 1, Z_Nop }, // Occupancy (map8)
{ Zenum8, Cx0406, 0x0001, Z(OccupancySensorType), 1, Z_Nop }, // OccupancySensorType
{ Zunk, Cx0406, 0xFFFF, nullptr, 0, Z_Nop }, // Remove all other values
// Meter Identification cluster
{ Zstring, Cx0B01, 0x0000, Z(CompanyName), 1, Z_Nop },
{ Zuint16, Cx0B01, 0x0001, Z(MeterTypeID), 1, Z_Nop },
{ Zuint16, Cx0B01, 0x0004, Z(DataQualityID), 1, Z_Nop },
{ Zstring, Cx0B01, 0x0005, Z(CustomerName), 1, Z_Nop },
{ Zoctstr, Cx0B01, 0x0006, Z(Model), 1, Z_Nop },
{ Zoctstr, Cx0B01, 0x0007, Z(PartNumber), 1, Z_Nop },
{ Zoctstr, Cx0B01, 0x0008, Z(ProductRevision), 1, Z_Nop },
{ Zoctstr, Cx0B01, 0x000A, Z(SoftwareRevision), 1, Z_Nop },
{ Zstring, Cx0B01, 0x000B, Z(UtilityName), 1, Z_Nop },
{ Zstring, Cx0B01, 0x000C, Z(POD), 1, Z_Nop },
{ Zint24, Cx0B01, 0x000D, Z(AvailablePower), 1, Z_Nop },
{ Zint24, Cx0B01, 0x000E, Z(PowerThreshold), 1, Z_Nop },
// Diagnostics cluster
{ Zuint16, Cx0B05, 0x0000, Z(NumberOfResets), 1, Z_Nop },
{ Zuint16, Cx0B05, 0x0001, Z(PersistentMemoryWrites),1, Z_Nop },
{ Zuint8, Cx0B05, 0x011C, Z(LastMessageLQI), 1, Z_Nop },
{ Zuint8, Cx0B05, 0x011D, Z(LastMessageRSSI), 1, Z_Nop },
};
typedef union ZCLHeaderFrameControl_t {
struct {
uint8_t frame_type : 2; // 00 = across entire profile, 01 = cluster specific
uint8_t manuf_specific : 1; // Manufacturer Specific Sub-field
uint8_t direction : 1; // 0 = tasmota to zigbee, 1 = zigbee to tasmota
uint8_t disable_def_resp : 1; // don't send back default response
uint8_t reserved : 3;
} b;
uint32_t d8; // raw 8 bits field
} ZCLHeaderFrameControl_t;
class ZCLFrame {
public:
ZCLFrame(uint8_t frame_control, uint16_t manuf_code, uint8_t transact_seq, uint8_t cmd_id,
const char *buf, size_t buf_len, uint16_t clusterid, uint16_t groupaddr,
uint16_t srcaddr, uint8_t srcendpoint, uint8_t dstendpoint, uint8_t wasbroadcast,
uint8_t linkquality, uint8_t securityuse, uint8_t seqnumber,
uint32_t timestamp):
_manuf_code(manuf_code), _transact_seq(transact_seq), _cmd_id(cmd_id),
_payload(buf_len ? buf_len : 250), // allocate the data frame from source or preallocate big enough
_cluster_id(clusterid), _groupaddr(groupaddr),
_srcaddr(srcaddr), _srcendpoint(srcendpoint), _dstendpoint(dstendpoint), _wasbroadcast(wasbroadcast),
_linkquality(linkquality), _securityuse(securityuse), _seqnumber(seqnumber),
_timestamp(timestamp)
{
_frame_control.d8 = frame_control;
_payload.addBuffer(buf, buf_len);
};
void log(void) {
char hex_char[_payload.len()*2+2];
ToHex_P((unsigned char*)_payload.getBuffer(), _payload.len(), hex_char, sizeof(hex_char));
Response_P(PSTR("{\"" D_JSON_ZIGBEEZCL_RECEIVED "\":{"
"\"groupid\":%d," "\"clusterid\":%d," "\"srcaddr\":\"0x%04X\","
"\"srcendpoint\":%d," "\"dstendpoint\":%d," "\"wasbroadcast\":%d,"
"\"" D_CMND_ZIGBEE_LINKQUALITY "\":%d," "\"securityuse\":%d," "\"seqnumber\":%d,"
"\"timestamp\":%d,"
"\"fc\":\"0x%02X\",\"manuf\":\"0x%04X\",\"transact\":%d,"
"\"cmdid\":\"0x%02X\",\"payload\":\"%s\"}}"),
_groupaddr, _cluster_id, _srcaddr,
_srcendpoint, _dstendpoint, _wasbroadcast,
_linkquality, _securityuse, _seqnumber,
_timestamp,
_frame_control, _manuf_code, _transact_seq, _cmd_id,
hex_char);
if (Settings.flag3.tuya_serial_mqtt_publish) {
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR));
XdrvRulesProcess();
} else {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "%s"), mqtt_data);
}
}
static ZCLFrame parseRawFrame(const SBuffer &buf, uint8_t offset, uint8_t len, uint16_t clusterid, uint16_t groupid,
uint16_t srcaddr, uint8_t srcendpoint, uint8_t dstendpoint, uint8_t wasbroadcast,
uint8_t linkquality, uint8_t securityuse, uint8_t seqnumber,
uint32_t timestamp) { // parse a raw frame and build the ZCL frame object
uint32_t i = offset;
ZCLHeaderFrameControl_t frame_control;
uint16_t manuf_code = 0;
uint8_t transact_seq;
uint8_t cmd_id;
frame_control.d8 = buf.get8(i++);
if (frame_control.b.manuf_specific) {
manuf_code = buf.get16(i);
i += 2;
}
transact_seq = buf.get8(i++);
cmd_id = buf.get8(i++);
ZCLFrame zcl_frame(frame_control.d8, manuf_code, transact_seq, cmd_id,
(const char *)(buf.buf() + i), len + offset - i,
clusterid, groupid,
srcaddr, srcendpoint, dstendpoint, wasbroadcast,
linkquality, securityuse, seqnumber,
timestamp);
return zcl_frame;
}
bool isClusterSpecificCommand(void) {
return _frame_control.b.frame_type & 1;
}
static void generateAttributeName(const JsonObject& json, uint16_t cluster, uint16_t attr, char *key, size_t key_len);
void parseReportAttributes(JsonObject& json, uint8_t offset = 0);
void parseReadAttributes(JsonObject& json, uint8_t offset = 0);
void parseReadAttributesResponse(JsonObject& json, uint8_t offset = 0);
void parseResponse(void);
void parseClusterSpecificCommand(JsonObject& json, uint8_t offset = 0);
void postProcessAttributes(uint16_t shortaddr, JsonObject& json);
inline void setGroupId(uint16_t groupid) {
_groupaddr = groupid;
}
inline void setClusterId(uint16_t clusterid) {
_cluster_id = clusterid;
}
inline uint8_t getCmdId(void) const {
return _cmd_id;
}
inline uint16_t getClusterId(void) const {
return _cluster_id;
}
inline uint16_t getSrcEndpoint(void) const {
return _srcendpoint;
}
const SBuffer &getPayload(void) const {
return _payload;
}
uint16_t getManufCode(void) const {
return _manuf_code;
}
private:
ZCLHeaderFrameControl_t _frame_control = { .d8 = 0 };
uint16_t _manuf_code = 0; // optional
uint8_t _transact_seq = 0; // transaction sequence number
uint8_t _cmd_id = 0;
SBuffer _payload;
uint16_t _cluster_id = 0;
uint16_t _groupaddr = 0;
// information from decoded ZCL frame
uint16_t _srcaddr;
uint8_t _srcendpoint;
uint8_t _dstendpoint;
uint8_t _wasbroadcast;
uint8_t _linkquality;
uint8_t _securityuse;
uint8_t _seqnumber;
uint32_t _timestamp;
};
// Zigbee ZCL converters
// from https://github.com/Koenkk/zigbee-shepherd-converters/blob/638d29f0cace6343052b9a4e7fd60980fa785479/converters/fromZigbee.js#L55
// Input voltage in mV, i.e. 3000 = 3.000V
// Output percentage from 0 to 100 as int
uint8_t toPercentageCR2032(uint32_t voltage) {
uint32_t percentage;
if (voltage < 2100) {
percentage = 0;
} else if (voltage < 2440) {
percentage = 6 - ((2440 - voltage) * 6) / 340;
} else if (voltage < 2740) {
percentage = 18 - ((2740 - voltage) * 12) / 300;
} else if (voltage < 2900) {
percentage = 42 - ((2900 - voltage) * 24) / 160;
} else if (voltage < 3000) {
percentage = 100 - ((3000 - voltage) * 58) / 100;
} else if (voltage >= 3000) {
percentage = 100;
}
return percentage;
}
//
// Appends the attribute value to Write or to Report
// Adds to buf:
// - 2 bytes: attribute identigier
// - 1 byte: attribute type
// - n bytes: value (typically between 1 and 4 bytes, or bigger for strings)
// returns number of bytes of attribute, or <0 if error
// status: shall we insert a status OK (0x00) as required by ReadResponse
int32_t encodeSingleAttribute(class SBuffer &buf, const JsonVariant &val, float val_f, uint16_t attr, uint8_t attrtype, bool status = false) {
uint32_t len = Z_getDatatypeLen(attrtype); // pre-compute lenght, overloaded for variable length attributes
uint32_t u32;
int32_t i32;
float f32;
if (&val) {
u32 = val.as<uint32_t>();
i32 = val.as<int32_t>();
f32 = val.as<float>();
} else {
u32 = val_f;
i32 = val_f;
f32 = val_f;
}
buf.add16(attr); // prepend with attribute identifier
if (status) {
buf.add8(Z_SUCCESS); // status OK = 0x00
}
buf.add8(attrtype); // prepend with attribute type
switch (attrtype) {
// unsigned 8
case Zbool: // bool
case Zuint8: // uint8
case Zenum8: // enum8
case Zdata8: // data8
case Zmap8: // map8
buf.add8(u32);
break;
// unsigned 16
case Zuint16: // uint16
case Zenum16: // enum16
case Zdata16: // data16
case Zmap16: // map16
buf.add16(u32);
break;
// unisgned 32
case Zuint32: // uint32
case Zdata32: // data32
case Zmap32: // map32
case ZUTC: // UTC - epoch 32 bits, seconds since 1-Jan-2000
buf.add32(u32);
break;
// signed 8
case Zint8: // int8
buf.add8(i32);
break;
case Zint16: // int16
buf.add16(i32);
break;
case Zint32: // int32
buf.add32(i32);
break;
case Zsingle: // float
uint32_t *f_ptr;
buf.add32( *((uint32_t*)&f32) ); // cast float as uint32_t
break;
case Zstring:
case Zstring16:
{
const char * val_str = (&val) ? val.as<const char*>() : ""; // avoid crash if &val is null
if (nullptr == val_str) { return -2; }
size_t val_len = strlen(val_str);
if (val_len > 32) { val_len = 32; }
len = val_len + 1;
buf.add8(val_len);
if (Zstring16 == attrtype) {
buf.add8(0); // len is on 2 bytes
len++;
}
for (uint32_t i = 0; i < val_len; i++) {
buf.add8(val_str[i]);
}
}
break;
default:
// remove the attribute type we just added
buf.setLen(buf.len() - (status ? 4 : 3));
return -1;
}
return len + (status ? 4 : 3);
}
uint32_t parseSingleAttribute(JsonObject& json, char *attrid_str, class SBuffer &buf,
uint32_t offset, uint32_t buflen) {
uint32_t i = offset;
uint32_t attrtype = buf.get8(i++);
// fallback - enter a null value
json[attrid_str] = (char*) nullptr;
uint32_t len = Z_getDatatypeLen(attrtype); // pre-compute lenght, overloaded for variable length attributes
// now parse accordingly to attr type
switch (attrtype) {
// case Znodata: // nodata
// case Zunk: // unk
// break;
case Zbool: // bool
case Zuint8: // uint8
case Zenum8: // enum8
{
uint8_t uint8_val = buf.get8(i);
// i += 1;
if (0xFF != uint8_val) {
json[attrid_str] = uint8_val;
}
}
break;
case Zuint16: // uint16
case Zenum16: // enum16
{
uint16_t uint16_val = buf.get16(i);
// i += 2;
if (0xFFFF != uint16_val) {
json[attrid_str] = uint16_val;
}
}
break;
case Zuint32: // uint32
case ZUTC: // UTC
{
uint32_t uint32_val = buf.get32(i);
// i += 4;
if (0xFFFFFFFF != uint32_val) {
json[attrid_str] = uint32_val;
}
}
break;
// Note: uint40, uint48, uint56, uint64 are displayed as Hex
// Note: int40, int48, int56, int64 are displayed as Hex
case Zuint40: // uint40
case Zuint48: // uint48
case Zuint56: // uint56
case Zuint64: // uint64
case Zint40: // int40
case Zint48: // int48
case Zint56: // int56
case Zint64: // int64
{
// uint8_t len = attrtype - 0x27; // 5 - 8
// print as HEX
char hex[2*len+1];
ToHex_P(buf.buf(i), len, hex, sizeof(hex));
json[attrid_str] = hex;
// i += len;
}
break;
case Zint8: // int8
{
int8_t int8_val = buf.get8(i);
// i += 1;
if (0x80 != int8_val) {
json[attrid_str] = int8_val;
}
}
break;
case Zint16: // int16
{
int16_t int16_val = buf.get16(i);
// i += 2;
if (0x8000 != int16_val) {
json[attrid_str] = int16_val;
}
}
break;
case Zint32: // int32
{
int32_t int32_val = buf.get32(i);
// i += 4;
if (0x80000000 != int32_val) {
json[attrid_str] = int32_val;
}
}
break;
case Zoctstr: // octet string, 1 byte len
case Zstring: // char string, 1 byte len
case Zoctstr16: // octet string, 2 bytes len
case Zstring16: // char string, 2 bytes len
// For strings, default is to try to do a real string, but reverts to octet stream if null char is present or on some exceptions
{
bool parse_as_string = true;
len = (attrtype <= 0x42) ? buf.get8(i) : buf.get16(i); // len is 8 or 16 bits
i += (attrtype <= 0x42) ? 1 : 2; // increment pointer
if (i + len > buf.len()) { // make sure we don't get past the buffer
len = buf.len() - i;
}
// check if we can safely use a string
if ((0x41 == attrtype) || (0x43 == attrtype)) { parse_as_string = false; }
if (parse_as_string) {
char str[len+1];
strncpy(str, buf.charptr(i), len);
str[len] = 0x00;
json[attrid_str] = str;
} else {
// print as HEX
char hex[2*len+1];
ToHex_P(buf.buf(i), len, hex, sizeof(hex));
json[attrid_str] = hex;
}
// i += len;
// break;
}
// i += buf.get8(i) + 1;
break;
case Zdata8: // data8
case Zmap8: // map8
{
uint8_t uint8_val = buf.get8(i);
// i += 1;
json[attrid_str] = uint8_val;
}
break;
case Zdata16: // data16
case Zmap16: // map16
{
uint16_t uint16_val = buf.get16(i);
// i += 2;
json[attrid_str] = uint16_val;
}
break;
case Zdata32: // data32
case Zmap32: // map32
{
uint32_t uint32_val = buf.get32(i);
// i += 4;
json[attrid_str] = uint32_val;
}
break;
case Zsingle: // float
{
uint32_t uint32_val = buf.get32(i);
float * float_val = (float*) &uint32_val;
// i += 4;
json[attrid_str] = *float_val;
}
break;
// TODO
case ZToD: // ToD
case Zdate: // date
case ZclusterId: // clusterId
case ZattribId: // attribId
case ZbacOID: // bacOID
case ZEUI64: // EUI64
case Zkey128: // key128
case Zsemi: // semi (float on 2 bytes)
break;
// Other un-implemented data types
case Zdata24: // data24
case Zdata40: // data40
case Zdata48: // data48
case Zdata56: // data56
case Zdata64: // data64
break;
// map<x>
case Zmap24: // map24
case Zmap40: // map40
case Zmap48: // map48
case Zmap56: // map56
case Zmap64: // map64
break;
case Zdouble: // double precision
{
uint64_t uint64_val = buf.get64(i);
double * double_val = (double*) &uint64_val;
// i += 8;
json[attrid_str] = *double_val;
}
break;
}
i += len;
// String pp; // pretty print
// json[attrid_str].prettyPrintTo(pp);
// // now store the attribute
// AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZCL attribute decoded, id %s, type 0x%02X, val=%s"),
// attrid_str, attrtype, pp.c_str());
return i - offset; // how much have we increased the index
}
// Generate an attribute name based on cluster number, attribute, and suffix if duplicates
void ZCLFrame::generateAttributeName(const JsonObject& json, uint16_t cluster, uint16_t attr, char *key, size_t key_len) {
uint32_t suffix = 1;
snprintf_P(key, key_len, PSTR("%04X/%04X"), cluster, attr);
while (json.containsKey(key)) {
suffix++;
snprintf_P(key, key_len, PSTR("%04X/%04X+%d"), cluster, attr, suffix); // add "0008/0001+2" suffix if duplicate
}
}
// First pass, parse all attributes in their native format
void ZCLFrame::parseReportAttributes(JsonObject& json, uint8_t offset) {
uint32_t i = offset;
uint32_t len = _payload.len();
while (len >= i + 3) {
uint16_t attrid = _payload.get16(i);
i += 2;
char key[16];
generateAttributeName(json, _cluster_id, attrid, key, sizeof(key));
// exception for Xiaomi lumi.weather - specific field to be treated as octet and not char
if ((0x0000 == _cluster_id) && (0xFF01 == attrid)) {
if (0x42 == _payload.get8(i)) {
_payload.set8(i, 0x41); // change type from 0x42 to 0x41
}
}
i += parseSingleAttribute(json, key, _payload, i, len);
}
}
// ZCL_READ_ATTRIBUTES
// TODO
void ZCLFrame::parseReadAttributes(JsonObject& json, uint8_t offset) {
uint32_t i = offset;
uint32_t len = _payload.len();
json[F(D_CMND_ZIGBEE_CLUSTER)] = _cluster_id;
JsonArray &attr_list = json.createNestedArray(F("Read"));
JsonObject &attr_names = json.createNestedObject(F("ReadNames"));
while (len - i >= 2) {
uint16_t attrid = _payload.get16(i);
attr_list.add(attrid);
// find the attribute name
for (uint32_t i = 0; i < ARRAY_SIZE(Z_PostProcess); i++) {
const Z_AttributeConverter *converter = &Z_PostProcess[i];
uint16_t conv_cluster = CxToCluster(pgm_read_byte(&converter->cluster_short));
uint16_t conv_attribute = pgm_read_word(&converter->attribute);
if ((conv_cluster == _cluster_id) && (conv_attribute == attrid)) {
attr_names[(const __FlashStringHelper*) converter->name] = true;
break;
}
}
i += 2;
}
}
// ZCL_READ_ATTRIBUTES_RESPONSE
void ZCLFrame::parseReadAttributesResponse(JsonObject& json, uint8_t offset) {
uint32_t i = offset;
uint32_t len = _payload.len();
while (len >= i + 4) {
uint16_t attrid = _payload.get16(i);
i += 2;
uint8_t status = _payload.get8(i++);
if (0 == status) {
char key[16];
generateAttributeName(json, _cluster_id, attrid, key, sizeof(key));
i += parseSingleAttribute(json, key, _payload, i, len);
}
}
}
// ZCL_DEFAULT_RESPONSE
void ZCLFrame::parseResponse(void) {
if (_payload.len() < 2) { return; } // wrong format
uint8_t cmd = _payload.get8(0);
uint8_t status = _payload.get8(1);
DynamicJsonBuffer jsonBuffer;
JsonObject& json = jsonBuffer.createObject();
// "Device"
char s[12];
snprintf_P(s, sizeof(s), PSTR("0x%04X"), _srcaddr);
json[F(D_JSON_ZIGBEE_DEVICE)] = s;
// "Name"
const char * friendlyName = zigbee_devices.getFriendlyName(_srcaddr);
if (friendlyName) {
json[F(D_JSON_ZIGBEE_NAME)] = (char*) friendlyName;
}
// "Command"
snprintf_P(s, sizeof(s), PSTR("%04X!%02X"), _cluster_id, cmd);
json[F(D_JSON_ZIGBEE_CMD)] = s;
// "Status"
json[F(D_JSON_ZIGBEE_STATUS)] = status;
// "StatusMessage"
json[F(D_JSON_ZIGBEE_STATUS_MSG)] = getZigbeeStatusMessage(status);
// Add Endpoint
json[F(D_CMND_ZIGBEE_ENDPOINT)] = _srcendpoint;
// Add Group if non-zero
if (_groupaddr) {
json[F(D_CMND_ZIGBEE_GROUP)] = _groupaddr;
}
// Add linkquality
json[F(D_CMND_ZIGBEE_LINKQUALITY)] = _linkquality;
String msg("");
msg.reserve(100);
json.printTo(msg);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_RESPONSE "\":%s}"), msg.c_str());
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
XdrvRulesProcess();
}
// Parse non-normalized attributes
void ZCLFrame::parseClusterSpecificCommand(JsonObject& json, uint8_t offset) {
convertClusterSpecific(json, _cluster_id, _cmd_id, _frame_control.b.direction, _payload);
sendHueUpdate(_srcaddr, _groupaddr, _cluster_id, _cmd_id, _frame_control.b.direction);
}
// ======================================================================
// Record Manuf
int32_t Z_ManufKeepFunc(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) {
json[new_name] = value;
zigbee_devices.setManufId(shortaddr, value.as<const char*>());
return 1;
}
//
int32_t Z_ModelKeepFunc(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) {
json[new_name] = value;
zigbee_devices.setModelId(shortaddr, value.as<const char*>());
return 1;
}
// Add pressure unit
int32_t Z_AddPressureUnitFunc(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) {
json[new_name] = F(D_UNIT_PRESSURE);
return 0; // keep original key
}
// Convert int to float and divide by 100
int32_t Z_FloatDiv100Func(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) {
json[new_name] = ((float)value) / 100.0f;
return 1; // remove original key
}
// Convert int to float and divide by 10
int32_t Z_FloatDiv10Func(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) {
json[new_name] = ((float)value) / 10.0f;
return 1; // remove original key
}
// Convert int to float and divide by 10
int32_t Z_FloatDiv2Func(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) {
json[new_name] = ((float)value) / 2.0f;
return 1; // remove original key
}
// Publish a message for `"Occupancy":0` when the timer expired
int32_t Z_OccupancyCallback(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) {
DynamicJsonBuffer jsonBuffer;
JsonObject& json = jsonBuffer.createObject();
json[F(OCCUPANCY)] = 0;
zigbee_devices.jsonPublishNow(shortaddr, json);
}
// Aqara Cube
int32_t Z_AqaraCubeFunc(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) {
json[new_name] = value; // copy the original value
const char * modelId_c = zigbee_devices.getModelId(shortaddr); // null if unknown
String modelId((char*) modelId_c);
if (modelId.startsWith(F("lumi.sensor_cube."))) { // only for Aqara cube
int32_t val = value;
const __FlashStringHelper *aqara_cube = F("AqaraCube");
const __FlashStringHelper *aqara_cube_side = F("AqaraCubeSide");
const __FlashStringHelper *aqara_cube_from_side = F("AqaraCubeFromSide");
switch (val) {
case 0:
json[aqara_cube] = F("shake");
break;
case 2:
json[aqara_cube] = F("wakeup");
break;
case 3:
json[aqara_cube] = F("fall");
break;
case 64 ... 127:
json[aqara_cube] = F("flip90");
json[aqara_cube_side] = val % 8;
json[aqara_cube_from_side] = (val - 64) / 8;
break;
case 128 ... 132:
json[aqara_cube] = F("flip180");
json[aqara_cube_side] = val - 128;
break;
case 256 ... 261:
json[aqara_cube] = F("slide");
json[aqara_cube_side] = val - 256;
break;
case 512 ... 517:
json[aqara_cube] = F("tap");
json[aqara_cube_side] = val - 512;
break;
}
}
// Source: https://github.com/kirovilya/ioBroker.zigbee
// +---+
// | 2 |
// +---+---+---+
// | 4 | 0 | 1 |
// +---+---+---+
// |M5I|
// +---+
// | 3 |
// +---+
// Side 5 is with the MI logo, side 3 contains the battery door.
// presentValue = 0 = shake
// presentValue = 2 = wakeup
// presentValue = 3 = fly/fall
// presentValue = y + x * 8 + 64 = 90º Flip from side x on top to side y on top
// presentValue = x + 128 = 180º flip to side x on top
// presentValue = x + 256 = push/slide cube while side x is on top
// presentValue = x + 512 = double tap while side x is on top
return 1;
}
// Aqara Vibration Sensor - special proprietary attributes
int32_t Z_AqaraVibrationFunc(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) {
//json[new_name] = value;
switch (attr) {
case 0x0055:
{
int32_t ivalue = value;
const __FlashStringHelper * svalue;
switch (ivalue) {
case 1: svalue = F("vibrate"); break;
case 2: svalue = F("tilt"); break;
case 3: svalue = F("drop"); break;
default: svalue = F("unknown"); break;
}
json[new_name] = svalue;
}
break;
// case 0x0503:
// break;
// case 0x0505:
// break;
case 0x0508:
{
// see https://github.com/Koenkk/zigbee2mqtt/issues/295 and http://faire-ca-soi-meme.fr/domotique/2018/09/03/test-xiaomi-aqara-vibration-sensor/
// report accelerometer measures
String hex = value;
SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
int16_t x, y, z;
z = buf2.get16(0);
y = buf2.get16(2);
x = buf2.get16(4);
JsonArray& xyz = json.createNestedArray(new_name);
xyz.add(x);
xyz.add(y);
xyz.add(z);
// calculate angles
float X = x;
float Y = y;
float Z = z;
int32_t Angle_X = 0.5f + atanf(X/sqrtf(z*z+y*y)) * f_180pi;
int32_t Angle_Y = 0.5f + atanf(Y/sqrtf(x*x+z*z)) * f_180pi;
int32_t Angle_Z = 0.5f + atanf(Z/sqrtf(x*x+y*y)) * f_180pi;
JsonArray& angles = json.createNestedArray(F("AqaraAngles"));
angles.add(Angle_X);
angles.add(Angle_Y);
angles.add(Angle_Z);
}
break;
}
return 1; // remove original key
}
int32_t Z_AqaraSensorFunc(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) {
String hex = value;
SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
uint32_t i = 0;
uint32_t len = buf2.len();
char tmp[] = "tmp"; // for obscure reasons, it must be converted from const char* to char*, otherwise ArduinoJson gets confused
JsonVariant sub_value;
const char * modelId_c = zigbee_devices.getModelId(shortaddr); // null if unknown
String modelId((char*) modelId_c);
while (len - i >= 2) {
uint8_t attrid = buf2.get8(i++);
i += parseSingleAttribute(json, tmp, buf2, i, len);
float val = json[tmp];
json.remove(tmp);
bool translated = false; // were we able to translate to a known format?
if (0x01 == attrid) {
json[F(D_JSON_VOLTAGE)] = val / 1000.0f;
json[F("Battery")] = toPercentageCR2032(val);
} else if ((nullptr != modelId) && (0 == zcl->getManufCode())) {
translated = true;
if (modelId.startsWith(F("lumi.sensor_ht")) ||
modelId.startsWith(F("lumi.weather"))) { // Temp sensor
// Filter according to prefix of model name
// onla Aqara Temp/Humidity has manuf_code of zero. If non-zero we skip the parameters
if (0x64 == attrid) {
json[F(D_JSON_TEMPERATURE)] = val / 100.0f;
} else if (0x65 == attrid) {
json[F(D_JSON_HUMIDITY)] = val / 100.0f;
} else if (0x66 == attrid) {
json[F(D_JSON_PRESSURE)] = val / 100.0f;
json[F(D_JSON_PRESSURE_UNIT)] = F(D_UNIT_PRESSURE); // hPa
}
} else if (modelId.startsWith(F("lumi.sensor_smoke"))) { // gas leak
if (0x64 == attrid) {
json[F("SmokeDensity")] = val;
}
} else if (modelId.startsWith(F("lumi.sensor_natgas"))) { // gas leak
if (0x64 == attrid) {
json[F("GasDensity")] = val;
}
} else {
translated = false; // we didn't find a match
}
// } else if (0x115F == zcl->getManufCode()) { // Aqara Motion Sensor, still unknown field
}
if (!translated) {
if (attrid >= 100) { // payload is always above 0x64 or 100
char attr_name[12];
snprintf_P(attr_name, sizeof(attr_name), PSTR("Xiaomi_%02X"), attrid);
json[attr_name] = val;
}
}
}
return 1; // remove original key
}
// ======================================================================
// apply the transformation from the converter
int32_t Z_ApplyConverter(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name,
uint16_t cluster, uint16_t attr, int16_t multiplier, uint16_t cb) {
// apply multiplier if needed
if (1 == multiplier) { // copy unchanged
json[new_name] = value;
} else if (0 != multiplier) {
if (multiplier > 0) {
json[new_name] = ((float)value) * multiplier;
} else {
json[new_name] = ((float)value) / (-multiplier);
}
}
// apply callback if needed
Z_AttrConverter func = nullptr;
switch (cb) {
case Z_Nop:
return 1; // drop original key
case Z_AddPressureUnit:
func = &Z_AddPressureUnitFunc;
break;
case Z_ManufKeep:
func = &Z_ManufKeepFunc;
break;
case Z_ModelKeep:
func = &Z_ModelKeepFunc;
break;
case Z_AqaraSensor:
func = &Z_AqaraSensorFunc;
break;
case Z_AqaraVibration:
func = &Z_AqaraVibrationFunc;
break;
case Z_AqaraCube:
func = &Z_AqaraCubeFunc;
break;
};
if (func) {
return (*func)(zcl, shortaddr, json, name, value, new_name, cluster, attr);
}
}
void ZCLFrame::postProcessAttributes(uint16_t shortaddr, JsonObject& json) {
// iterate on json elements
for (auto kv : json) {
String key_string = kv.key;
const char * key = key_string.c_str();
JsonVariant& value = kv.value;
// Check that format looks like "CCCC/AAAA" or "CCCC/AAAA+d"
char * delimiter = strchr(key, '/');
char * delimiter2 = strchr(key, '+');
if (delimiter) {
uint16_t attribute;
uint16_t suffix = 1;
uint16_t cluster = strtoul(key, &delimiter, 16);
if (!delimiter2) {
attribute = strtoul(delimiter+1, nullptr, 16);
} else {
attribute = strtoul(delimiter+1, &delimiter2, 16);
suffix = strtoul(delimiter2+1, nullptr, 10);
}
// see if we need to update the Hue bulb status
if ((cluster == 0x0006) && ((attribute == 0x0000) || (attribute == 0x8000))) {
bool power = value;
zigbee_devices.updateHueState(shortaddr, &power, nullptr, nullptr, nullptr,
nullptr, nullptr, nullptr, nullptr, nullptr);
} else if ((cluster == 0x0008) && (attribute == 0x0000)) {
uint8_t dimmer = value;
zigbee_devices.updateHueState(shortaddr, nullptr, nullptr, &dimmer, nullptr,
nullptr, nullptr, nullptr, nullptr, nullptr);
} else if ((cluster == 0x0300) && (attribute == 0x0000)) {
uint16_t hue8 = value;
uint16_t hue = changeUIntScale(hue8, 0, 254, 0, 360); // change range from 0..254 to 0..360
zigbee_devices.updateHueState(shortaddr, nullptr, nullptr, nullptr, nullptr,
nullptr, &hue, nullptr, nullptr, nullptr);
} else if ((cluster == 0x0300) && (attribute == 0x0001)) {
uint8_t sat = value;
zigbee_devices.updateHueState(shortaddr, nullptr, nullptr, nullptr, &sat,
nullptr, nullptr, nullptr, nullptr, nullptr);
} else if ((cluster == 0x0300) && (attribute == 0x0003)) {
uint16_t x = value;
zigbee_devices.updateHueState(shortaddr, nullptr, nullptr, nullptr, nullptr,
nullptr, nullptr, &x, nullptr, nullptr);
} else if ((cluster == 0x0300) && (attribute == 0x0004)) {
uint16_t y = value;
zigbee_devices.updateHueState(shortaddr, nullptr, nullptr, nullptr, nullptr,
nullptr, nullptr, nullptr, &y, nullptr), nullptr;
} else if ((cluster == 0x0300) && (attribute == 0x0007)) {
uint16_t ct = value;
zigbee_devices.updateHueState(shortaddr, nullptr, nullptr, nullptr, nullptr,
&ct, nullptr, nullptr, nullptr, nullptr);
} else if ((cluster == 0x0300) && (attribute == 0x0008)) {
uint8_t colormode = value;
zigbee_devices.updateHueState(shortaddr, nullptr, &colormode, nullptr, nullptr,
nullptr, nullptr, nullptr, nullptr, nullptr);
}
// Iterate on filter
for (uint32_t i = 0; i < sizeof(Z_PostProcess) / sizeof(Z_PostProcess[0]); i++) {
const Z_AttributeConverter *converter = &Z_PostProcess[i];
uint16_t conv_cluster = CxToCluster(pgm_read_byte(&converter->cluster_short));
uint16_t conv_attribute = pgm_read_word(&converter->attribute);
int16_t conv_multiplier = pgm_read_word(&converter->multiplier);
uint16_t conv_cb = pgm_read_word(&converter->cb); // callback id
if ((conv_cluster == cluster) &&
((conv_attribute == attribute) || (conv_attribute == 0xFFFF)) ) {
String new_name_str = (const __FlashStringHelper*) converter->name;
if (suffix > 1) { new_name_str += suffix; } // append suffix number
// apply the transformation
int32_t drop = Z_ApplyConverter(this, shortaddr, json, key, value, new_name_str, conv_cluster, conv_attribute, conv_multiplier, conv_cb);
if (drop) {
json.remove(key);
}
}
}
}
}
}
#endif // USE_ZIGBEE