Tasmota/tasmota/tasmota_support/support_button_v4.ino

611 lines
27 KiB
C++

/*
support_button.ino - button support for Tasmota
Copyright (C) 2022 Federico Leoni and Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define BUTTON_V4
#ifdef BUTTON_V4
/*********************************************************************************************\
* Button support with input filter
*
* Inspired by (https://github.com/OLIMEX/olimex-iot-firmware-esp8266/blob/master/olimex/user/user_switch2.c)
\*********************************************************************************************/
#define MAX_RELAY_BUTTON1 5 // Max number of relay controlled by BUTTON1
#ifndef DOUBLE_CLICK_WINDOW
#define DOUBLE_CLICK_WINDOW 500 // Define Window size to recognize double clicks
#endif
const uint8_t BUTTON_PROBE_INTERVAL = 10; // Time in milliseconds between button input probe
const uint8_t BUTTON_FAST_PROBE_INTERVAL = 2; // Time in milliseconds between button input probe for AC detection
const uint8_t BUTTON_AC_PERIOD = (20 + BUTTON_FAST_PROBE_INTERVAL - 1) / BUTTON_FAST_PROBE_INTERVAL; // Duration of an AC wave in probe intervals
const char kMultiPress[] PROGMEM = "|SINGLE|DOUBLE|TRIPLE|QUAD|PENTA|CLEAR|";
#include <Ticker.h>
Ticker TickerButton;
struct BUTTON {
uint32_t debounce = 0; // Button debounce timer
uint32_t no_pullup_mask = 0; // key no pullup flag (1 = no pullup)
uint32_t pulldown_mask = 0; // key pulldown flag (1 = pulldown)
uint32_t inverted_mask = 0; // Key inverted flag (1 = inverted)
uint32_t used = 0; // Key used bitmask
uint32_t virtual_pin = 0; // Key state bitmask
uint16_t hold_timer[MAX_KEYS_SET] = { 0 }; // Timer for button hold
uint16_t dual_code = 0; // Sonoff dual received code
uint8_t state[MAX_KEYS_SET] = { 0 };
uint8_t last_state[MAX_KEYS_SET]; // Last button states
uint8_t debounced_state[MAX_KEYS_SET]; // Button debounced states
uint8_t window_timer[MAX_KEYS_SET] = { 0 }; // Max time between button presses to record press count
uint8_t press_counter[MAX_KEYS_SET] = { 0 }; // Number of button presses within Button.window_timer
uint8_t dual_receive_count = 0; // Sonoff dual input flag
uint8_t first_change = 0;
bool probe_mutex;
} Button;
#if defined(SOC_TOUCH_VERSION_1) || defined(SOC_TOUCH_VERSION_2)
struct TOUCH_BUTTON {
uint32_t touch_mask = 0; // Touch flag (1 = enabled)
uint32_t calibration = 0; // Bitfield
uint8_t hits[MAX_KEYS_SET] = { 0 }; // Hits in a row to filter out noise
} TouchButton;
#endif // ESP32 SOC_TOUCH_VERSION_1 or SOC_TOUCH_VERSION_2
/********************************************************************************************/
void ButtonPullupFlag(uint32_t button_bit) {
bitSet(Button.no_pullup_mask, button_bit);
}
void ButtonPulldownFlag(uint32_t button_bit) {
bitSet(Button.pulldown_mask, button_bit);
}
void ButtonInvertFlag(uint32_t button_bit) {
bitSet(Button.inverted_mask, button_bit);
}
#if defined(SOC_TOUCH_VERSION_1) || defined(SOC_TOUCH_VERSION_2)
void ButtonTouchFlag(uint32_t button_bit) {
bitSet(TouchButton.touch_mask, button_bit);
}
#endif // ESP32 SOC_TOUCH_VERSION_1 or SOC_TOUCH_VERSION_2
/*------------------------------------------------------------------------------------------*/
void ButtonSetVirtualPinState(uint32_t index, uint32_t state) {
// Set virtual pin state to be debounced as used by early detected buttons
bitWrite(Button.virtual_pin, index, state);
}
uint8_t ButtonGetState(uint32_t index) {
// Get current state
return Button.debounced_state[index];
}
uint8_t ButtonLastState(uint32_t index) {
// Get last state
return Button.last_state[index];
}
/*------------------------------------------------------------------------------------------*/
bool ButtonUsed(uint32_t index) {
return (PinUsed(GPIO_KEY1, index) || bitRead(Button.used, index));
}
/*********************************************************************************************/
void ButtonProbe(void) {
if (Button.probe_mutex || (TasmotaGlobal.uptime < 4)) { return; } // Block GPIO for 4 seconds after poweron to workaround Wemos D1 / Obi RTS circuit
Button.probe_mutex = true;
uint32_t state_filter;
uint32_t first_change = Button.first_change;
uint32_t debounce_flags = Settings->button_debounce % 10;
bool force_high = (debounce_flags &1); // 51, 101, 151 etc
bool force_low = (debounce_flags &2); // 52, 102, 152 etc
bool ac_detect = (debounce_flags == 9); // 39, 49, 59 etc
if (ac_detect) {
if (Settings->button_debounce < 2 * BUTTON_AC_PERIOD * BUTTON_FAST_PROBE_INTERVAL + 9) {
state_filter = 2 * BUTTON_AC_PERIOD;
} else if (Settings->button_debounce > (0x7f - 2 * BUTTON_AC_PERIOD) * BUTTON_FAST_PROBE_INTERVAL) {
state_filter = 0x7f;
} else {
state_filter = (Settings->button_debounce - 9) / BUTTON_FAST_PROBE_INTERVAL;
}
} else {
state_filter = Settings->button_debounce / BUTTON_PROBE_INTERVAL; // 5, 10, 15
}
uint32_t not_activated;
for (uint32_t i = 0; i < MAX_KEYS_SET; i++) {
if (!bitRead(Button.used, i)) { continue; }
if (PinUsed(GPIO_KEY1, i)) {
#if defined(SOC_TOUCH_VERSION_1) || defined(SOC_TOUCH_VERSION_2)
if (bitRead(TouchButton.touch_mask, i)) {
if (ac_detect || bitRead(TouchButton.calibration, i +1)) { continue; } // Touch is slow. Takes 21mS to read
uint32_t value = touchRead(Pin(GPIO_KEY1, i));
#ifdef SOC_TOUCH_VERSION_2
not_activated = (value < Settings->touch_threshold); // ESPS3 No touch = 24200, Touch > 40000
#else
not_activated = ((value == 0) || (value > Settings->touch_threshold)); // ESP32 No touch = 74, Touch < 40
#endif
} else
#endif // ESP32 SOC_TOUCH_VERSION_1 or SOC_TOUCH_VERSION_2
not_activated = (digitalRead(Pin(GPIO_KEY1, i)) != bitRead(Button.inverted_mask, i));
} else {
not_activated = (bitRead(Button.virtual_pin, i) != bitRead(Button.inverted_mask, i));
}
if (not_activated) {
if (ac_detect) { // Enabled with ButtonDebounce x9
Button.state[i] |= 0x80;
if (Button.state[i] > 0x80) {
Button.state[i]--;
if (0x80 == Button.state[i]) {
Button.debounced_state[i] = 0;
Button.first_change = false;
}
}
} else {
if (force_high) { // Enabled with ButtonDebounce x1
if (1 == Button.debounced_state[i]) {
Button.state[i] = state_filter; // With noisy input keep current state 1 unless constant 0
}
}
if (Button.state[i] < state_filter) {
Button.state[i]++;
if (state_filter == Button.state[i]) {
Button.debounced_state[i] = 1;
}
}
}
} else {
if (ac_detect) { // Enabled with ButtonDebounce x9
/*
* Moes MS-104B and similar devices using an AC detection circuitry
* on their switch inputs generating an ~4 ms long low pulse every
* AC wave. We start the time measurement on the falling edge.
*
* state: bit7: previous state, bit6..0: counter
*/
if (Button.state[i] & 0x80) {
Button.state[i] &= 0x7f;
if (Button.state[i] < state_filter - 2 * BUTTON_AC_PERIOD) {
Button.state[i] += 2 * BUTTON_AC_PERIOD;
} else {
Button.state[i] = state_filter;
Button.debounced_state[i] = 1;
if (first_change) {
Button.last_state[i] = 1;
Button.first_change = false;
}
}
} else {
if (Button.state[i] > 0x00) {
Button.state[i]--;
if (0x00 == Button.state[i]) {
Button.debounced_state[i] = 0;
Button.first_change = false;
}
}
}
} else {
if (force_low) { // Enabled with ButtonDebounce x2
if (0 == Button.debounced_state[i]) {
Button.state[i] = 0; // With noisy input keep current state 0 unless constant 1
}
}
if (Button.state[i] > 0) {
Button.state[i]--;
if (0 == Button.state[i]) {
Button.debounced_state[i] = 0;
}
}
}
}
}
Button.probe_mutex = false;
}
void ButtonInit(void) {
bool ac_detect = (Settings->button_debounce % 10 == 9);
Button.used = 0;
/*
uint32_t last_used = 0;
*/
for (uint32_t i = 0; i < MAX_KEYS_SET; i++) {
Button.last_state[i] = NOT_PRESSED;
#ifdef ESP8266
if ((0 == i) && ((SONOFF_DUAL == TasmotaGlobal.module_type) || (CH4 == TasmotaGlobal.module_type))) {
bitSet(Button.used, i); // This pin is used
} else
#endif // ESP8266
if (PinUsed(GPIO_KEY1, i)) {
bitSet(Button.used, i); // This pin is used
#ifdef ESP8266
pinMode(Pin(GPIO_KEY1, i), bitRead(Button.no_pullup_mask, i) ? INPUT : ((16 == Pin(GPIO_KEY1, i)) ? INPUT_PULLDOWN_16 : INPUT_PULLUP));
#endif // ESP8266
#ifdef ESP32
pinMode(Pin(GPIO_KEY1, i), bitRead(Button.pulldown_mask, i) ? INPUT_PULLDOWN : bitRead(Button.no_pullup_mask, i) ? INPUT : INPUT_PULLUP);
#endif // ESP32
// Set global now so doesn't change the saved power state on first button check
Button.last_state[i] = (digitalRead(Pin(GPIO_KEY1, i)) != bitRead(Button.inverted_mask, i));
if (ac_detect) {
Button.state[i] = 0x80 + 2 * BUTTON_AC_PERIOD;
Button.last_state[i] = 0; // Will set later in the debouncing code
}
}
#ifdef USE_ADC
else if (PinUsed(GPIO_ADC_BUTTON, i) || PinUsed(GPIO_ADC_BUTTON_INV, i)) {
bitSet(Button.used, i); // This pin is used
}
#endif // USE_ADC
else {
// Insert, Skip and Append virtual buttons
XdrvMailbox.index = i;
if (XdrvCall(FUNC_ADD_BUTTON)) {
// At entry:
// XdrvMailbox.index = button index
// At exit:
// XdrvMailbox.index bit 0 = current state
bitSet(Button.used, i); // This pin is used
bool state = (XdrvMailbox.index &1);
ButtonSetVirtualPinState(i, state); // Virtual hardware pin state
if (!state) { ButtonInvertFlag(i); } // Set inverted flag
// last_state[i] must be 1 to indicate no button pressed
Button.last_state[i] = (bitRead(Button.virtual_pin, i) != bitRead(Button.inverted_mask, i));
AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Add vButton%d, State %d"), i +1, Button.last_state[i]);
}
}
Button.debounced_state[i] = Button.last_state[i];
/*
if (bitRead(Button.used, i)) {
last_used = i +1;
}
*/
}
/*
// Append virtual buttons
for (uint32_t i = last_used; i < MAX_KEYS_SET; i++) {
Button.last_state[i] = NOT_PRESSED;
XdrvMailbox.index = i;
if (XdrvCall(FUNC_ADD_BUTTON)) {
// At entry:
// XdrvMailbox.index = button index
// At exit:
// XdrvMailbox.index bit 0 = current state
bitSet(Button.used, i); // This pin is used
bool state = (XdrvMailbox.index &1);
ButtonSetVirtualPinState(i, state); // Virtual hardware pin state
if (!state) { ButtonInvertFlag(i); } // Set inverted flag
// last_state[i] must be 1 to indicate no button pressed
Button.last_state[i] = (bitRead(Button.virtual_pin, i) != bitRead(Button.inverted_mask, i));
AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Add vButton%d, State %d"), i +1, Button.last_state[i]);
}
Button.debounced_state[i] = Button.last_state[i];
}
*/
// AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: vPinUsed %08X, State %08X, Invert %08X"), Button.used, Button.virtual_pin, Button.inverted_mask);
if (Button.used) { // Any bit set
Button.first_change = true;
TickerButton.attach_ms((ac_detect) ? BUTTON_FAST_PROBE_INTERVAL : BUTTON_PROBE_INTERVAL, ButtonProbe);
}
}
uint8_t ButtonSerial(uint8_t serial_in_byte) {
if (Button.dual_receive_count) {
Button.dual_receive_count--;
if (Button.dual_receive_count) {
Button.dual_code = (Button.dual_code << 8) | serial_in_byte;
serial_in_byte = 0;
} else {
if (serial_in_byte != 0xA1) {
Button.dual_code = 0; // 0xA1 - End of Sonoff dual button code
}
}
}
if (0xA0 == serial_in_byte) { // 0xA0 - Start of Sonoff dual button code
serial_in_byte = 0;
Button.dual_code = 0;
Button.dual_receive_count = 3;
}
return serial_in_byte;
}
/*********************************************************************************************\
* Button handler with single press only or multi-press and hold on all buttons
*
* ButtonDebounce (50) - Debounce time in mSec
* SetOption1 (0) - If set do not execute commands WifiConfig and Reset
* SetOption11 (0) - If set perform single press action on double press and reverse (on two relay devices only)
* SetOption13 (0) - If set act on single press only
* SetOption32 (40) - Button held for factor times longer
* SetOption40 (0) - Do not ignore button hold
* SetOption73 (0) - Decouple button from relay and send just mqtt topic
\*********************************************************************************************/
void ButtonHandler(void) {
if (TasmotaGlobal.uptime < 4) { return; } // Block GPIO for 4 seconds after poweron to workaround Wemos D1 / Obi RTS circuit
uint8_t hold_time_extent = IMMINENT_RESET_FACTOR; // Extent hold time factor in case of iminnent Reset command
uint16_t loops_per_second = 1000 / Settings->button_debounce; // ButtonDebounce (50)
char scmnd[20];
for (uint32_t button_index = 0; button_index < MAX_KEYS_SET; button_index++) {
if (!bitRead(Button.used, button_index)) { continue; }
uint8_t button = Button.debounced_state[button_index];
#ifdef ESP8266
if (!button_index && ((SONOFF_DUAL == TasmotaGlobal.module_type) || (CH4 == TasmotaGlobal.module_type))) {
if (Button.dual_code) {
AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Code %04X"), Button.dual_code);
button = PRESSED;
if (0xF500 == Button.dual_code) { // Button hold
Button.hold_timer[button_index] = (loops_per_second * Settings->param[P_HOLD_TIME] / 10) -1; // SetOption32 (40)
hold_time_extent = 1;
}
Button.dual_code = 0;
} else {
button = NOT_PRESSED;
}
} else
#endif // ESP8266
if (PinUsed(GPIO_KEY1, button_index)) {
#if defined(SOC_TOUCH_VERSION_1) || defined(SOC_TOUCH_VERSION_2)
if (bitRead(TouchButton.touch_mask, button_index) && bitRead(TouchButton.calibration, button_index +1)) { // Touch
uint32_t _value = touchRead(Pin(GPIO_KEY1, button_index));
#ifdef SOC_TOUCH_VERSION_2
if (_value > Settings->touch_threshold) { // ESPS3 No touch = 24200, Touch = 100000
#else
if ((_value > 0) && (_value < Settings->touch_threshold)) { // ESP32 No touch = 74, Touch = 20 (Probably read-error (0))
#endif
TouchButton.hits[button_index]++;
} else {
TouchButton.hits[button_index] = 0;
}
AddLog(LOG_LEVEL_INFO, PSTR("PLOT: %u, %u, %u,"), button_index +1, _value, TouchButton.hits[button_index]); // Button number (1..4), value, continuous hits under threshold
continue;
}
#endif // ESP32 SOC_TOUCH_VERSION_1 or SOC_TOUCH_VERSION_2
}
#ifdef USE_ADC
#ifndef FIRMWARE_MINIMAL
else if (PinUsed(GPIO_ADC_BUTTON, button_index)) {
button = AdcGetButton(Pin(GPIO_ADC_BUTTON, button_index));
}
else if (PinUsed(GPIO_ADC_BUTTON_INV, button_index)) {
button = AdcGetButton(Pin(GPIO_ADC_BUTTON_INV, button_index));
}
#endif // FIRMWARE_MINIMAL
#endif // USE_ADC
XdrvMailbox.index = button_index;
XdrvMailbox.payload = button;
XdrvMailbox.command_code = Button.last_state[button_index];
if (XdrvCall(FUNC_BUTTON_PRESSED)) {
// Serviced
}
#ifdef ESP8266
else if (SONOFF_4CHPRO == TasmotaGlobal.module_type) {
if (Button.hold_timer[button_index]) { Button.hold_timer[button_index]--; }
bool button_pressed = false;
if ((PRESSED == button) && (NOT_PRESSED == Button.last_state[button_index])) {
AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Button%d level 1-0"), button_index +1);
Button.hold_timer[button_index] = loops_per_second;
button_pressed = true;
}
if ((NOT_PRESSED == button) && (PRESSED == Button.last_state[button_index])) {
AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Button%d level 0-1"), button_index +1);
if (!Button.hold_timer[button_index]) { button_pressed = true; } // Do not allow within 1 second
}
if (button_pressed) {
if (!Settings->flag3.mqtt_buttons) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic
if (!SendKey(KEY_BUTTON, button_index +1, POWER_TOGGLE)) { // Execute Toggle command via MQTT if ButtonTopic is set
ExecuteCommandPower(button_index +1, POWER_TOGGLE, SRC_BUTTON); // Execute Toggle command internally
}
} else {
MqttButtonTopic(button_index +1, 1, 0); // SetOption73 (0) - Decouple button from relay and send just mqtt topic
}
}
}
#endif // ESP8266
else {
if ((PRESSED == button) && (NOT_PRESSED == Button.last_state[button_index])) {
if (Settings->flag.button_single) { // SetOption13 (0) - Allow only single button press for immediate action,
if (!Settings->flag3.mqtt_buttons) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic
AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Button%d immediate"), button_index +1);
if (!SendKey(KEY_BUTTON, button_index +1, POWER_TOGGLE)) { // Execute Toggle command via MQTT if ButtonTopic is set
ExecuteCommandPower(button_index +1, POWER_TOGGLE, SRC_BUTTON); // Execute Toggle command internally
}
} else {
MqttButtonTopic(button_index +1, 1, 0); // SetOption73 1 - Decouple button from relay and send just mqtt topic
}
} else {
Button.press_counter[button_index] = (Button.window_timer[button_index]) ? Button.press_counter[button_index] +1 : 1;
AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: Button%d multi-press %d"), button_index +1, Button.press_counter[button_index]);
Button.window_timer[button_index] = uint32_t(DOUBLE_CLICK_WINDOW * loops_per_second) / 1000;
}
TasmotaGlobal.blinks = 201;
}
if (NOT_PRESSED == button) {
Button.hold_timer[button_index] = 0;
if (Settings->flag3.mqtt_buttons && (PRESSED == Button.last_state[button_index]) && !Button.press_counter[button_index]) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic
MqttButtonTopic(button_index +1, 6, 0);
}
} else {
Button.hold_timer[button_index]++;
if (Settings->flag.button_single) { // SetOption13 (0) - Allow only single button press for immediate action
if (Button.hold_timer[button_index] == loops_per_second * hold_time_extent * Settings->param[P_HOLD_TIME] / 10) { // SetOption32 (40) - Button held for factor times longer
snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_SETOPTION "13 0")); // Disable single press only
ExecuteCommand(scmnd, SRC_BUTTON);
}
} else {
if (Button.hold_timer[button_index] == loops_per_second * Settings->param[P_HOLD_TIME] / 10) { // SetOption32 (40) - Button hold
Button.press_counter[button_index] = 0;
if (Settings->flag3.mqtt_buttons) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic
MqttButtonTopic(button_index +1, 3, 1);
} else {
SendKey(KEY_BUTTON, button_index +1, POWER_HOLD); // Execute Hold command via MQTT if ButtonTopic is set
}
} else {
if (Settings->flag.button_restrict) { // SetOption1 (0) - Control button multipress
if (Settings->param[P_HOLD_IGNORE] > 0) { // SetOption40 (0) - Do not ignore button hold
if (Button.hold_timer[button_index] > loops_per_second * Settings->param[P_HOLD_IGNORE] / 10) {
Button.hold_timer[button_index] = 0; // Reset button hold counter to stay below hold trigger
Button.press_counter[button_index] = 0; // Discard button press to disable functionality
}
}
} else {
if ((Button.hold_timer[button_index] == loops_per_second * hold_time_extent * Settings->param[P_HOLD_TIME] / 10)) { // SetOption32 (40) - Button held for factor times longer
Button.press_counter[button_index] = 0;
snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_RESET " 1"));
ExecuteCommand(scmnd, SRC_BUTTON);
}
}
}
}
}
if (!Settings->flag.button_single) { // SetOption13 (0) - Allow multi-press
if (Button.window_timer[button_index]) {
Button.window_timer[button_index]--;
} else {
if (!TasmotaGlobal.restart_flag && !Button.hold_timer[button_index] && (Button.press_counter[button_index] > 0) && (Button.press_counter[button_index] < 7)) {
bool single_press = false;
if (Button.press_counter[button_index] < 3) { // Single or Double press
#ifdef ESP8266
if ((SONOFF_DUAL_R2 == TasmotaGlobal.module_type) || (SONOFF_DUAL == TasmotaGlobal.module_type) || (CH4 == TasmotaGlobal.module_type)) {
single_press = true;
} else
#endif // ESP8266
{
single_press = (Settings->flag.button_swap +1 == Button.press_counter[button_index]); // SetOption11 (0)
if ((1 == Button.used) && (2 == TasmotaGlobal.devices_present)) { // Single Button with two devices only
if (Settings->flag.button_swap) { // SetOption11 (0)
Button.press_counter[button_index] = (single_press) ? 1 : 2;
}
}
}
}
XdrvMailbox.index = button_index;
XdrvMailbox.payload = Button.press_counter[button_index];
if (XdrvCall(FUNC_BUTTON_MULTI_PRESSED)) {
// Serviced
// AddLog(LOG_LEVEL_DEBUG, PSTR("BTN: FUNC_BUTTON_MULTI_PRESSED serviced"));
} else
#ifdef ROTARY_V1
if (!RotaryButtonPressed(button_index)) {
#endif
if (!Settings->flag3.mqtt_buttons && single_press && SendKey(KEY_BUTTON, button_index + Button.press_counter[button_index], POWER_TOGGLE)) { // Execute Toggle command via MQTT if ButtonTopic is set
// Success
} else {
if (Button.press_counter[button_index] < 6) { // Single to Penta press
// if (WifiState() > WIFI_RESTART) { // Wifimanager active
// TasmotaGlobal.restart_flag = 1;
// }
if (!Settings->flag3.mqtt_buttons) { // SetOption73 - Detach buttons from relays and enable MQTT action state for multipress
if (Button.press_counter[button_index] == 1) { // By default first press always send a TOGGLE (2)
ExecuteCommandPower(button_index + Button.press_counter[button_index], POWER_TOGGLE, SRC_BUTTON);
} else {
SendKey(KEY_BUTTON, button_index +1, Button.press_counter[button_index] +9); // 2,3,4 and 5 press send just the key value (11,12,13 and 14) for rules
if (0 == button_index) { // BUTTON1 can toggle up to 5 relays if present. If a relay is not present will send out the key value (2,11,12,13 and 14) for rules
uint32_t max_device = (TasmotaGlobal.devices_present < MAX_RELAY_BUTTON1) ? TasmotaGlobal.devices_present : MAX_RELAY_BUTTON1;
if ((Button.press_counter[button_index] > 1) && (Button.press_counter[button_index] <= max_device)) {
ExecuteCommandPower(button_index + Button.press_counter[button_index], POWER_TOGGLE, SRC_BUTTON); // Execute Toggle command internally
}
}
}
}
} else { // 6 press start wificonfig 2
if (!Settings->flag.button_restrict) { // SetOption1 - Control button multipress
snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_WIFICONFIG " 2"));
ExecuteCommand(scmnd, SRC_BUTTON);
}
}
if (Settings->flag3.mqtt_buttons) { // SetOption73 (0) - Decouple button from relay and send just mqtt topic
if (Button.press_counter[button_index] >= 1 && Button.press_counter[button_index] <= 5) {
MqttButtonTopic(button_index +1, Button.press_counter[button_index], 0);
}
}
}
#ifdef ROTARY_V1
}
#endif
Button.press_counter[button_index] = 0;
}
}
}
}
Button.last_state[button_index] = button;
}
}
void MqttButtonTopic(uint32_t button_id, uint32_t action, uint32_t hold) {
SendKey(KEY_BUTTON, button_id, (hold) ? 3 : action +9);
if (!Settings->flag.hass_discovery) { // SetOption19 - Control Home Assistant automatic discovery (See SetOption59)
char scommand[10];
snprintf_P(scommand, sizeof(scommand), PSTR(D_JSON_BUTTON "%d"), button_id);
char mqttstate[7];
Response_P(S_JSON_SVALUE_ACTION_SVALUE, scommand, (hold) ? SettingsText(SET_STATE_TXT4) : GetTextIndexed(mqttstate, sizeof(mqttstate), action, kMultiPress));
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, scommand);
}
}
void ButtonLoop(void) {
if (Button.used) {
if (TimeReached(Button.debounce)) {
SetNextTimeInterval(Button.debounce, Settings->button_debounce); // ButtonDebounce (50)
ButtonHandler();
}
}
}
#endif // BUTTON_V4