Tasmota/tasmota/tasmota_xsns_sensor/xsns_14_sht3x.ino

242 lines
8.3 KiB
C++

/*
xsns_14_sht3x.ino - SHT3X, SHT4X and SHTCX temperature and humidity sensor support for Tasmota
Copyright (C) 2024 Theo Arends, Stefan Tibus, Jan-David Förster
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_I2C
#ifdef USE_SHT3X
/*********************************************************************************************\
* Sensirion I2C temperature and humidity sensors
*
* This driver supports the following sensors:
* - SHT3x series: SHT30, SHT31, SHT35 (addresses: A: 0x44, B: 0x45)
* - SHTC series: SHTC1, SHTC3 (address: 0x70)
* - SHT4x series: SHT40, SHT41, SHT45 (addresses: A: 0x44, B: 0x45, C: 0x46)
\*********************************************************************************************/
#define XSNS_14 14
#define XI2C_15 15 // See I2CDEVICES.md
#define SHT3X_TYPES 3 // SHT3X, SHTCX and SHT4X
#define SHT3X_ADDRESSES 4 // 0x44, 0x45, 0x46 and 0x70
enum SHT3X_Types { SHT3X_TYPE_SHT3X, SHT3X_TYPE_SHTCX, SHT3X_TYPE_SHT4X };
const char kSht3xTypes[] PROGMEM = "SHT3X|SHTC3|SHT4X";
uint8_t sht3x_addresses[] = { 0x44, 0x45, 0x46, 0x70 };
uint8_t sht3x_count = 0;
struct SHT3XSTRUCT {
float humi = NAN;
float temp = NAN;
uint8_t valid = 0;
uint8_t type; // Sensor type
uint8_t address; // I2C bus address
uint8_t bus;
char types[6]; // Sensor type name and address, e.g. "SHT3X"
} sht3x_sensors[SHT3X_ADDRESSES];
uint8_t Sht3xComputeCrc(uint8_t data[], uint8_t len) {
// Compute CRC as per datasheet
uint8_t crc = 0xFF;
for (uint8_t x = 0; x < len; x++) {
crc ^= data[x];
for (uint8_t i = 0; i < 8; i++) {
if (crc & 0x80) {
crc = (crc << 1) ^ 0x31;
} else {
crc <<= 1;
}
}
}
return crc;
}
bool Sht3xRead(uint32_t sensor) {
if (sht3x_sensors[sensor].valid) { sht3x_sensors[sensor].valid--; }
/*
TwoWire& myWire = I2cGetWire(sht3x_sensors[sensor].bus);
if (&myWire == nullptr) { return false; } // No valid I2c bus
uint32_t type = sht3x_sensors[sensor].type;
uint8_t i2c_address = sht3x_sensors[sensor].address;
myWire.beginTransmission(i2c_address);
switch (type) {
case SHT3X_TYPE_SHT3X:
// TODO: Clock stretching is used for SHT3x but not for SHTC3. Why?
myWire.write(0x2C); // Enable clock stretching
myWire.write(0x06); // High repeatability measurement
break;
case SHT3X_TYPE_SHTCX:
myWire.write(0x35); // Wake from
myWire.write(0x17); // sleep
myWire.endTransmission();
myWire.beginTransmission(i2c_address);
// TODO: Clock stretching is used for SHT3x but not for SHTC3. Why?
myWire.write(0x78); // Disable clock stretching
myWire.write(0x66); // Normal mode measurement
break;
case SHT3X_TYPE_SHT4X:
myWire.write(0xFD); // High repeatability measurement
break;
}
if (myWire.endTransmission() != 0) { // Stop I2C transmission
return false;
}
*/
uint32_t type = sht3x_sensors[sensor].type;
uint8_t i2c_address = sht3x_sensors[sensor].address;
uint8_t i2c_bus = sht3x_sensors[sensor].bus;
switch (type) {
case SHT3X_TYPE_SHT3X:
// TODO: Clock stretching is used for SHT3x but not for SHTC3. Why?
if (!I2cWrite8(i2c_address, 0x2C, 0x06, i2c_bus)) { // Enable clock stretching / High repeatability measurement
return false;
}
break;
case SHT3X_TYPE_SHTCX:
if (!I2cWrite8(i2c_address, 0x35, 0x17, i2c_bus)) { // Wake from sleep
return false;
}
// TODO: Clock stretching is used for SHT3x but not for SHTC3. Why?
if (!I2cWrite8(i2c_address, 0x78, 0x66, i2c_bus)) { // Disable clock stretching / Normal mode measurement
return false;
}
break;
case SHT3X_TYPE_SHT4X:
if (!I2cWrite0(i2c_address, 0xFD, i2c_bus)) { // High repeatability measurement
return false;
}
break;
}
delay(30); // Timing verified with logic analyzer (10 is too short)
uint8_t data[6];
/*
myWire.requestFrom(i2c_address, (uint8_t)6); // Request 6 bytes of data
for (uint32_t i = 0; i < 6; i++) {
data[i] = myWire.read(); // temperature (MSB, LSB, CRC), humidity (MSB, LSB, CRC)
};
*/
I2cReadBuffer0(i2c_address, data, 6, i2c_bus);
if ((Sht3xComputeCrc(&data[0], 2) != data[2]) || (Sht3xComputeCrc(&data[3], 2) != data[5])) {
return false;
}
int32_t t_100 = ((((data[0] << 8) | data[1]) * 17500) >> 16) - 4500;
int32_t h_100;
if (type == SHT3X_TYPE_SHT4X) {
h_100 = ((((data[3] << 8) | data[4]) * 12500) >> 16) - 600;
} else {
h_100 = ((((data[3] << 8) | data[4]) * 10000) >> 16);
}
sht3x_sensors[sensor].temp = ConvertTemp(t_100/100.0f);
sht3x_sensors[sensor].humi = ConvertHumidity(h_100/100.0f);
if (isnan(sht3x_sensors[sensor].temp) || isnan(sht3x_sensors[sensor].humi)) { return false; }
sht3x_sensors[sensor].valid = SENSOR_MAX_MISS;
return true;
}
/********************************************************************************************/
void Sht3xDetect(void) {
for (uint32_t bus = 0; bus < 2; bus++) {
for (uint32_t k = 0; k < SHT3X_TYPES; k++) {
for (uint32_t i = 0; i < SHT3X_ADDRESSES; i++) {
if (!I2cSetDevice(sht3x_addresses[i], bus)) { continue; }
sht3x_sensors[sht3x_count].type = k;
sht3x_sensors[sht3x_count].address = sht3x_addresses[i];
sht3x_sensors[sht3x_count].bus = bus;
if (Sht3xRead(sht3x_count)) {
GetTextIndexed(sht3x_sensors[sht3x_count].types, sizeof(sht3x_sensors[sht3x_count].types), sht3x_sensors[sht3x_count].type, kSht3xTypes);
I2cSetActiveFound(sht3x_sensors[sht3x_count].address, sht3x_sensors[sht3x_count].types, sht3x_sensors[sht3x_count].bus);
sht3x_count++;
if (SHT3X_ADDRESSES == sht3x_count) {
return;
}
}
}
}
}
}
void Sht3xUpdate(void) {
for (uint32_t idx = 0; idx < sht3x_count; idx++) {
if (!Sht3xRead(idx)) {
AddLogMissed(sht3x_sensors[idx].types, sht3x_sensors[idx].valid);
}
}
}
void Sht3xShow(bool json) {
char types[11];
for (uint32_t idx = 0; idx < sht3x_count; idx++) {
if (sht3x_sensors[idx].valid) {
strlcpy(types, sht3x_sensors[idx].types, sizeof(types));
if (sht3x_count > 1) {
snprintf_P(types, sizeof(types), PSTR("%s%c%02X"), types, IndexSeparator(), sht3x_sensors[idx].address); // "SHT3X-0xXX"
#ifdef ESP32
if (TasmotaGlobal.i2c_enabled_2) {
for (uint32_t i = 1; i < sht3x_count; i++) {
if (sht3x_sensors[0].bus != sht3x_sensors[i].bus) {
snprintf_P(types, sizeof(types), PSTR("%s%c%d"), types, IndexSeparator(), sht3x_sensors[idx].bus + 1); // "SHT3X-0xXX-X"
break;
}
}
}
#endif
}
TempHumDewShow(json, ((0 == TasmotaGlobal.tele_period) && (0 == idx)), types, sht3x_sensors[idx].temp, sht3x_sensors[idx].humi);
}
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns14(uint32_t function) {
if (!I2cEnabled(XI2C_15)) { return false; }
bool result = false;
if (FUNC_INIT == function) {
Sht3xDetect();
}
else if (sht3x_count) {
switch (function) {
case FUNC_EVERY_SECOND:
Sht3xUpdate();
break;
case FUNC_JSON_APPEND:
Sht3xShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
Sht3xShow(0);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_SHT3X
#endif // USE_I2C