Tasmota/lib/lib_display/Arduino_ST7789-gemu-1.0/Arduino_ST7789.cpp

633 lines
15 KiB
C++

/***************************************************
This is a library for the ST7789 IPS SPI display.
Originally written by Limor Fried/Ladyada for
Adafruit Industries.
Modified by Ananev Ilia
****************************************************/
#include "Arduino_ST7789.h"
#include <limits.h>
#include "pins_arduino.h"
#include "wiring_private.h"
#include <SPI.h>
const uint16_t ST7789_colors[]={ST7789_BLACK,ST7789_WHITE,ST7789_RED,ST7789_GREEN,ST7789_BLUE,ST7789_CYAN,ST7789_MAGENTA,\
ST7789_YELLOW,ST7789_NAVY,ST7789_DARKGREEN,ST7789_DARKCYAN,ST7789_MAROON,ST7789_PURPLE,ST7789_OLIVE,\
ST7789_LIGHTGREY,ST7789_DARKGREY,ST7789_ORANGE,ST7789_GREENYELLOW,ST7789_PINK};
#ifdef ESP32
#define ST7789_DIMMER
#endif
uint16_t Arduino_ST7789::GetColorFromIndex(uint8_t index) {
if (index>=sizeof(ST7789_colors)/2) index=0;
return ST7789_colors[index];
}
static const uint8_t PROGMEM
init_cmd[] = { // Initialization commands for 7789 screens
10, // 9 commands in list:
ST7789_SWRESET, ST_CMD_DELAY, // 1: Software reset, no args, w/delay
150, // 150 ms delay
ST7789_SLPOUT , ST_CMD_DELAY, // 2: Out of sleep mode, no args, w/delay
255, // 255 = 500 ms delay
ST7789_COLMOD , 1+ST_CMD_DELAY, // 3: Set color mode, 1 arg + delay:
0x55, // 16-bit color
10, // 10 ms delay
ST7789_MADCTL , 1, // 4: Memory access ctrl (directions), 1 arg:
0x00, // Row addr/col addr, bottom to top refresh
ST7789_INVON , ST_CMD_DELAY, // 7: Inversion ON
10,
ST7789_NORON , ST_CMD_DELAY, // 8: Normal display on, no args, w/delay
10, // 10 ms delay
ST7789_DISPON , ST_CMD_DELAY, // 9: Main screen turn on, no args, w/delay
255 }; // 255 = 500 ms delay
inline uint16_t swapcolor(uint16_t x) {
return (x << 11) | (x & 0x07E0) | (x >> 11);
}
#if defined (SPI_HAS_TRANSACTION)
static SPISettings ST7789_SPISettings;
#elif defined (__AVR__) || defined(CORE_TEENSY)
static uint8_t SPCRbackup;
static uint8_t mySPCR;
#endif
#if defined (SPI_HAS_TRANSACTION)
#define SPI_BEGIN_TRANSACTION() if (_hwSPI) SPI.beginTransaction(ST7789_SPISettings)
#define SPI_END_TRANSACTION() if (_hwSPI) SPI.endTransaction()
#else
#define SPI_BEGIN_TRANSACTION() (void)
#define SPI_END_TRANSACTION() (void)
#endif
// Constructor when using software SPI. All output pins are configurable.
Arduino_ST7789::Arduino_ST7789(int8_t dc, int8_t rst, int8_t sid, int8_t sclk, int8_t cs, int8_t bp)
: Renderer(_width, _height)
{
_cs = cs;
_dc = dc;
_sid = sid;
_sclk = sclk;
_rst = rst;
_hwSPI = false;
_bp = bp;
if(dc == -1) _SPI9bit = true;
else _SPI9bit = false;
}
// Constructor when using hardware SPI. Faster, but must use SPI pins
// specific to each board type (e.g. 11,13 for Uno, 51,52 for Mega, etc.)
Arduino_ST7789::Arduino_ST7789(int8_t dc, int8_t rst, int8_t cs, int8_t bp)
: Renderer(_width, _height) {
_cs = cs;
_dc = dc;
_rst = rst;
_hwSPI = true;
_SPI9bit = false;
_sid = _sclk = -1;
_bp = bp;
}
void Arduino_ST7789::DisplayInit(int8_t p,int8_t size,int8_t rot,int8_t font) {
setRotation(rot);
if (_width==320 || _height==320) {
invertDisplay(false);
} else {
invertDisplay(true);
}
//setTextWrap(false); // Allow text to run off edges
//cp437(true);
setTextFont(font&3);
setTextSize(size&7);
setTextColor(ST7789_WHITE,ST7789_BLACK);
setCursor(0,0);
fillScreen(ST7789_BLACK);
}
inline void Arduino_ST7789::spiwrite(uint8_t c)
{
//Serial.println(c, HEX);
if (_hwSPI)
{
#if defined (SPI_HAS_TRANSACTION)
SPI.transfer(c);
#elif defined (__AVR__) || defined(CORE_TEENSY)
SPCRbackup = SPCR;
SPCR = mySPCR;
SPI.transfer(c);
SPCR = SPCRbackup;
#elif defined (__arm__)
SPI.setClockDivider(21); //4MHz
SPI.setDataMode(SPI_MODE2);
SPI.transfer(c);
#endif
}
else
{
if(_SPI9bit)
{
//9s bit send first
#if defined(USE_FAST_IO)
*clkport &= ~clkpinmask;
if(_DCbit) *dataport |= datapinmask;
else *dataport &= ~datapinmask;
*clkport |= clkpinmask;
#else
digitalWrite(_sclk, LOW);
if(_DCbit) digitalWrite(_sid, HIGH);
else digitalWrite(_sid, LOW);
digitalWrite(_sclk, HIGH);
#endif
// Fast SPI bitbang swiped from LPD8806 library
for(uint8_t bit = 0x80; bit; bit >>= 1) {
#if defined(USE_FAST_IO)
*clkport &= ~clkpinmask;
if(c & bit) *dataport |= datapinmask;
else *dataport &= ~datapinmask;
*clkport |= clkpinmask;
#else
digitalWrite(_sclk, LOW);
if(c & bit) digitalWrite(_sid, HIGH);
else digitalWrite(_sid, LOW);
digitalWrite(_sclk, HIGH);
#endif
}
}
else
{
// Fast SPI bitbang swiped from LPD8806 library
for(uint8_t bit = 0x80; bit; bit >>= 1) {
#if defined(USE_FAST_IO)
*clkport &= ~clkpinmask;
if(c & bit) *dataport |= datapinmask;
else *dataport &= ~datapinmask;
*clkport |= clkpinmask;
#else
digitalWrite(_sclk, LOW);
if(c & bit) digitalWrite(_sid, HIGH);
else digitalWrite(_sid, LOW);
digitalWrite(_sclk, HIGH);
#endif
}
}
}
}
void Arduino_ST7789::writecommand(uint8_t c) {
DC_LOW();
CS_LOW();
SPI_BEGIN_TRANSACTION();
spiwrite(c);
CS_HIGH();
SPI_END_TRANSACTION();
}
void Arduino_ST7789::writedata(uint8_t c) {
SPI_BEGIN_TRANSACTION();
DC_HIGH();
CS_LOW();
spiwrite(c);
CS_HIGH();
SPI_END_TRANSACTION();
}
// Companion code to the above tables. Reads and issues
// a series of LCD commands stored in PROGMEM byte array.
void Arduino_ST7789::displayInit(const uint8_t *addr) {
uint8_t numCommands, numArgs;
uint16_t ms;
//<-----------------------------------------------------------------------------------------
DC_HIGH();
if (!_hwSPI) {
#if defined(USE_FAST_IO)
*clkport |= clkpinmask;
#else
digitalWrite(_sclk, HIGH);
#endif
}
//<-----------------------------------------------------------------------------------------
numCommands = pgm_read_byte(addr++); // Number of commands to follow
while (numCommands--) { // For each command...
writecommand(pgm_read_byte(addr++)); // Read, issue command
numArgs = pgm_read_byte(addr++); // Number of args to follow
ms = numArgs & ST_CMD_DELAY; // If hibit set, delay follows args
numArgs &= ~ST_CMD_DELAY; // Mask out delay bit
while (numArgs--) { // For each argument...
writedata(pgm_read_byte(addr++)); // Read, issue argument
}
if (ms) {
ms = pgm_read_byte(addr++); // Read post-command delay time (ms)
if (ms == 255) ms = 500; // If 255, delay for 500 ms
delay(ms);
}
}
}
// Initialization code common to all ST7789 displays
void Arduino_ST7789::commonInit(const uint8_t *cmdList) {
_ystart = _xstart = 0;
_colstart = _rowstart = 0; // May be overridden in init func
pinMode(_dc, OUTPUT);
if (_cs>=0) {
pinMode(_cs, OUTPUT);
}
if (_bp>=0) {
#define ESP32_PWM_CHANNEL 1
#ifdef ST7789_DIMMER
ledcSetup(ESP32_PWM_CHANNEL,4000,8);
ledcAttachPin(_bp,ESP32_PWM_CHANNEL);
ledcWrite(ESP32_PWM_CHANNEL,128);
#else
pinMode(_bp, OUTPUT);
#endif
}
#if defined(USE_FAST_IO)
dcport = portOutputRegister(digitalPinToPort(_dc));
dcpinmask = digitalPinToBitMask(_dc);
if (_cs>=0) {
csport = portOutputRegister(digitalPinToPort(_cs));
cspinmask = digitalPinToBitMask(_cs);
}
#endif
if(_hwSPI) { // Using hardware SPI
#if defined (SPI_HAS_TRANSACTION)
SPI.begin();
// ST7789_SPISettings = SPISettings(24000000, MSBFIRST, SPI_MODE2);
ST7789_SPISettings = SPISettings(1000000, MSBFIRST, SPI_MODE2);
#elif defined (__AVR__) || defined(CORE_TEENSY)
SPCRbackup = SPCR;
SPI.begin();
SPI.setClockDivider(SPI_CLOCK_DIV4);
SPI.setDataMode(SPI_MODE2);
mySPCR = SPCR; // save our preferred state
SPCR = SPCRbackup; // then restore
#elif defined (__SAM3X8E__)
SPI.begin();
SPI.setClockDivider(21); //4MHz
SPI.setDataMode(SPI_MODE2);
#endif
} else {
pinMode(_sclk, OUTPUT);
pinMode(_sid , OUTPUT);
digitalWrite(_sclk, LOW);
digitalWrite(_sid, LOW);
#if defined(USE_FAST_IO)
clkport = portOutputRegister(digitalPinToPort(_sclk));
dataport = portOutputRegister(digitalPinToPort(_sid));
clkpinmask = digitalPinToBitMask(_sclk);
datapinmask = digitalPinToBitMask(_sid);
#endif
}
// toggle RST low to reset; CS low so it'll listen to us
CS_LOW();
if (_rst != -1) {
pinMode(_rst, OUTPUT);
digitalWrite(_rst, HIGH);
delay(50);
digitalWrite(_rst, LOW);
delay(50);
digitalWrite(_rst, HIGH);
delay(50);
}
if (cmdList)
displayInit(cmdList);
}
void Arduino_ST7789::setRotation(uint8_t m) {
writecommand(ST7789_MADCTL);
rotation = m % 4; // can't be higher than 3
switch (rotation) {
case 0:
writedata(ST7789_MADCTL_MX | ST7789_MADCTL_MY | ST7789_MADCTL_RGB);
_xstart = 0;
_ystart = 0;
if (_width==240 && _height==240) {
_xstart = ST7789_240x240_XSTART_R0;
_ystart = ST7789_240x240_YSTART_R0;
}
if (_width==135 && _height==240) {
_xstart = ST7789_135x240_XSTART_R0;
_ystart = ST7789_135x240_YSTART_R0;
}
break;
case 1:
writedata(ST7789_MADCTL_MY | ST7789_MADCTL_MV | ST7789_MADCTL_RGB);
_ystart = 0;
_xstart = 0;
if (_width==240 && _height==240) {
_xstart = ST7789_240x240_XSTART_R1;
_ystart = ST7789_240x240_YSTART_R1;
}
if (_width==240 && _height==135) {
_xstart = ST7789_135x240_XSTART_R1;
_ystart = ST7789_135x240_YSTART_R1;
}
break;
case 2:
writedata(ST7789_MADCTL_RGB);
_xstart = 0;
_ystart = 0;
if (_width==240 && _height==240) {
_xstart = ST7789_240x240_XSTART_R2;
_ystart = ST7789_240x240_YSTART_R2;
}
if (_width==135 && _height==240) {
_xstart = ST7789_135x240_XSTART_R2;
_ystart = ST7789_135x240_YSTART_R2;
}
break;
case 3:
writedata(ST7789_MADCTL_MX | ST7789_MADCTL_MV | ST7789_MADCTL_RGB);
_xstart = 0;
_ystart = 0;
if (_width==240 && _height==240) {
_xstart = ST7789_240x240_XSTART_R3;
_ystart = ST7789_240x240_YSTART_R3;
}
if (_width==240 && _height==135) {
_xstart = ST7789_135x240_XSTART_R3;
_ystart = ST7789_135x240_YSTART_R3;
}
break;
}
}
void Arduino_ST7789::setAddrWindow(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1) {
setAddrWindow_int(x0,y0,x1-1,y1-1);
}
void Arduino_ST7789::setAddrWindow_int(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1) {
uint16_t x_start = x0 + _xstart, x_end = x1 + _xstart;
uint16_t y_start = y0 + _ystart, y_end = y1 + _ystart;
writecommand(ST7789_CASET); // Column addr set
writedata(x_start >> 8);
writedata(x_start & 0xFF); // XSTART
writedata(x_end >> 8);
writedata(x_end & 0xFF); // XEND
writecommand(ST7789_RASET); // Row addr set
writedata(y_start >> 8);
writedata(y_start & 0xFF); // YSTART
writedata(y_end >> 8);
writedata(y_end & 0xFF); // YEND
writecommand(ST7789_RAMWR); // write to RAM
}
void Arduino_ST7789::drawPixel(int16_t x, int16_t y, uint16_t color) {
if((x < 0) ||(x >= _width) || (y < 0) || (y >= _height)) return;
setAddrWindow_int(x,y,x+1,y+1);
SPI_BEGIN_TRANSACTION();
DC_HIGH();
CS_LOW();
spiwrite(color >> 8);
spiwrite(color);
CS_HIGH();
SPI_END_TRANSACTION();
}
void Arduino_ST7789::drawFastVLine(int16_t x, int16_t y, int16_t h,
uint16_t color) {
// Rudimentary clipping
if((x >= _width) || (y >= _height)) return;
if((y+h-1) >= _height) h = _height-y;
setAddrWindow_int(x, y, x, y+h-1);
uint8_t hi = color >> 8, lo = color;
SPI_BEGIN_TRANSACTION();
DC_HIGH();
CS_LOW();
while (h--) {
spiwrite(hi);
spiwrite(lo);
}
CS_HIGH();
SPI_END_TRANSACTION();
}
void Arduino_ST7789::drawFastHLine(int16_t x, int16_t y, int16_t w,
uint16_t color) {
// Rudimentary clipping
if((x >= _width) || (y >= _height)) return;
if((x+w-1) >= _width) w = _width-x;
setAddrWindow_int(x, y, x+w-1, y);
uint8_t hi = color >> 8, lo = color;
SPI_BEGIN_TRANSACTION();
DC_HIGH();
CS_LOW();
while (w--) {
spiwrite(hi);
spiwrite(lo);
}
CS_HIGH();
SPI_END_TRANSACTION();
}
void Arduino_ST7789::fillScreen(uint16_t color) {
fillRect(0, 0, _width, _height, color);
}
// fill a rectangle
void Arduino_ST7789::fillRect(int16_t x, int16_t y, int16_t w, int16_t h,
uint16_t color) {
// rudimentary clipping (drawChar w/big text requires this)
if((x >= _width) || (y >= _height)) return;
if((x + w - 1) >= _width) w = _width - x;
if((y + h - 1) >= _height) h = _height - y;
setAddrWindow_int(x, y, x+w-1, y+h-1);
uint8_t hi = color >> 8, lo = color;
SPI_BEGIN_TRANSACTION();
DC_HIGH();
CS_LOW();
for(y=h; y>0; y--) {
for(x=w; x>0; x--) {
spiwrite(hi);
spiwrite(lo);
}
delay(0);
}
CS_HIGH();
SPI_END_TRANSACTION();
}
// Pass 8-bit (each) R,G,B, get back 16-bit packed color
uint16_t Arduino_ST7789::Color565(uint8_t r, uint8_t g, uint8_t b) {
return ((r & 0xF8) << 8) | ((g & 0xFC) << 3) | (b >> 3);
}
void Arduino_ST7789::invertDisplay(boolean i) {
writecommand(i ? ST7789_INVON : ST7789_INVOFF);
}
/******** low level bit twiddling **********/
inline void Arduino_ST7789::CS_HIGH(void) {
if(_cs>=0) {
#if defined(USE_FAST_IO)
*csport |= cspinmask;
#else
digitalWrite(_cs, HIGH);
#endif
}
}
inline void Arduino_ST7789::CS_LOW(void) {
if(_cs>=0) {
#if defined(USE_FAST_IO)
*csport &= ~cspinmask;
#else
digitalWrite(_cs, LOW);
#endif
}
}
inline void Arduino_ST7789::DC_HIGH(void) {
_DCbit = true;
#if defined(USE_FAST_IO)
*dcport |= dcpinmask;
#else
digitalWrite(_dc, HIGH);
#endif
}
inline void Arduino_ST7789::DC_LOW(void) {
_DCbit = false;
#if defined(USE_FAST_IO)
*dcport &= ~dcpinmask;
#else
digitalWrite(_dc, LOW);
#endif
}
void Arduino_ST7789::init(uint16_t width, uint16_t height) {
commonInit(NULL);
_height = height;
_width = width;
displayInit(init_cmd);
setRotation(2);
}
void Arduino_ST7789::DisplayOnff(int8_t on) {
if (on) {
writecommand(ST7789_DISPON); //Display on
if (_bp>=0) {
#ifdef ST7789_DIMMER
ledcWrite(ESP32_PWM_CHANNEL,dimmer);
#else
digitalWrite(_bp,HIGH);
#endif
}
} else {
writecommand(ST7789_DISPOFF);
if (_bp>=0) {
#ifdef ST7789_DIMMER
ledcWrite(ESP32_PWM_CHANNEL,0);
#else
digitalWrite(_bp,LOW);
#endif
}
}
}
// dimmer 0-100
void Arduino_ST7789::dim(uint8_t dim) {
dimmer = dim;
if (dimmer>15) dimmer=15;
dimmer=((float)dimmer/15.0)*255.0;
#ifdef ESP32
ledcWrite(ESP32_PWM_CHANNEL,dimmer);
#endif
}
void Arduino_ST7789::pushColor(uint16_t color) {
SPI_BEGIN_TRANSACTION();
DC_HIGH();
CS_LOW();
spiwrite(color >> 8);
spiwrite(color);
CS_HIGH();
SPI_END_TRANSACTION();
}
void Arduino_ST7789::pushColors(uint16_t *data, uint16_t len, boolean first) {
uint16_t color;
SPI_BEGIN_TRANSACTION();
DC_HIGH();
CS_LOW();
while (len--) {
color = *data++;
spiwrite(color >> 8);
spiwrite(color);
}
CS_HIGH();
SPI_END_TRANSACTION();
}