mirror of https://github.com/arendst/Tasmota.git
1566 lines
65 KiB
C++
1566 lines
65 KiB
C++
/*
|
|
xdrv_03_energy.ino - Energy sensor support for Tasmota
|
|
|
|
Copyright (C) 2021 Theo Arends
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifdef ESP8266
|
|
#ifdef USE_ENERGY_SENSOR
|
|
/*********************************************************************************************\
|
|
* Energy for ESP8266 and legacy ESP32 with max three phases/channels using Settings from flash
|
|
\*********************************************************************************************/
|
|
|
|
#define XDRV_03 3
|
|
#define XSNS_03 3
|
|
|
|
//#define USE_ENERGY_MARGIN_DETECTION
|
|
// #define USE_ENERGY_POWER_LIMIT
|
|
|
|
#define ENERGY_NONE 0
|
|
#define ENERGY_WATCHDOG 4 // Allow up to 4 seconds before deciding no valid data present
|
|
|
|
#undef ENERGY_MAX_PHASES
|
|
#define ENERGY_MAX_PHASES 3
|
|
|
|
#include <Ticker.h>
|
|
|
|
#define D_CMND_POWERCAL "PowerCal"
|
|
#define D_CMND_VOLTAGECAL "VoltageCal"
|
|
#define D_CMND_CURRENTCAL "CurrentCal"
|
|
#define D_CMND_FREQUENCYCAL "FrequencyCal"
|
|
#define D_CMND_TARIFF "Tariff"
|
|
#define D_CMND_MODULEADDRESS "ModuleAddress"
|
|
|
|
enum EnergyCalibration {
|
|
ENERGY_POWER_CALIBRATION, ENERGY_VOLTAGE_CALIBRATION, ENERGY_CURRENT_CALIBRATION, ENERGY_FREQUENCY_CALIBRATION };
|
|
|
|
enum EnergyCommands {
|
|
CMND_POWERCAL, CMND_VOLTAGECAL, CMND_CURRENTCAL, CMND_FREQUENCYCAL,
|
|
CMND_POWERSET, CMND_VOLTAGESET, CMND_CURRENTSET, CMND_FREQUENCYSET, CMND_MODULEADDRESS, CMND_ENERGYCONFIG };
|
|
|
|
const char kEnergyCommands[] PROGMEM = "|" // No prefix
|
|
D_CMND_POWERCAL "|" D_CMND_VOLTAGECAL "|" D_CMND_CURRENTCAL "|" D_CMND_FREQUENCYCAL "|"
|
|
D_CMND_POWERSET "|" D_CMND_VOLTAGESET "|" D_CMND_CURRENTSET "|" D_CMND_FREQUENCYSET "|" D_CMND_MODULEADDRESS "|" D_CMND_ENERGYCONFIG "|"
|
|
#ifdef USE_ENERGY_MARGIN_DETECTION
|
|
D_CMND_POWERDELTA "|" D_CMND_POWERLOW "|" D_CMND_POWERHIGH "|" D_CMND_VOLTAGELOW "|" D_CMND_VOLTAGEHIGH "|" D_CMND_CURRENTLOW "|" D_CMND_CURRENTHIGH "|"
|
|
#ifdef USE_ENERGY_POWER_LIMIT
|
|
D_CMND_MAXENERGY "|" D_CMND_MAXENERGYSTART "|"
|
|
D_CMND_MAXPOWER "|" D_CMND_MAXPOWERHOLD "|" D_CMND_MAXPOWERWINDOW "|"
|
|
#endif // USE_ENERGY_POWER_LIMIT
|
|
#endif // USE_ENERGY_MARGIN_DETECTION
|
|
D_CMND_ENERGYTODAY "|" D_CMND_ENERGYYESTERDAY "|" D_CMND_ENERGYTOTAL "|" D_CMND_ENERGYEXPORTACTIVE "|" D_CMND_ENERGYUSAGE "|" D_CMND_ENERGYEXPORT "|" D_CMND_TARIFF;
|
|
|
|
void (* const EnergyCommand[])(void) PROGMEM = {
|
|
&CmndPowerCal, &CmndVoltageCal, &CmndCurrentCal, &CmndFrequencyCal,
|
|
&CmndPowerSet, &CmndVoltageSet, &CmndCurrentSet, &CmndFrequencySet, &CmndModuleAddress, &CmndEnergyConfig,
|
|
#ifdef USE_ENERGY_MARGIN_DETECTION
|
|
&CmndPowerDelta, &CmndPowerLow, &CmndPowerHigh, &CmndVoltageLow, &CmndVoltageHigh, &CmndCurrentLow, &CmndCurrentHigh,
|
|
#ifdef USE_ENERGY_POWER_LIMIT
|
|
&CmndMaxEnergy, &CmndMaxEnergyStart,
|
|
&CmndMaxPower, &CmndMaxPowerHold, &CmndMaxPowerWindow,
|
|
#endif // USE_ENERGY_POWER_LIMIT
|
|
#endif // USE_ENERGY_MARGIN_DETECTION
|
|
&CmndEnergyToday, &CmndEnergyYesterday, &CmndEnergyTotal, &CmndEnergyExportActive, &CmndEnergyUsage, &CmndEnergyExport, &CmndTariff};
|
|
|
|
typedef struct {
|
|
float voltage[ENERGY_MAX_PHASES]; // 123.1 V
|
|
float current[ENERGY_MAX_PHASES]; // 123.123 A
|
|
float active_power[ENERGY_MAX_PHASES]; // 123.1 W
|
|
float apparent_power[ENERGY_MAX_PHASES]; // 123.1 VA
|
|
float reactive_power[ENERGY_MAX_PHASES]; // 123.1 VAr
|
|
float power_factor[ENERGY_MAX_PHASES]; // 0.12
|
|
float frequency[ENERGY_MAX_PHASES]; // 123.1 Hz
|
|
float import_active[ENERGY_MAX_PHASES]; // 123.123 kWh
|
|
float export_active[ENERGY_MAX_PHASES]; // 123.123 kWh
|
|
float start_energy[ENERGY_MAX_PHASES]; // 12345.12345 kWh total previous
|
|
float daily[ENERGY_MAX_PHASES]; // 123.123 kWh
|
|
float total[ENERGY_MAX_PHASES]; // 12345.12345 kWh total energy
|
|
float daily_sum; // 123.123 kWh
|
|
float total_sum; // 12345.12345 kWh total energy
|
|
float yesterday_sum; // 123.123 kWh
|
|
float daily_sum_import_balanced; // 123.123 kWh
|
|
float daily_sum_export_balanced; // 123.123 kWh
|
|
|
|
int32_t kWhtoday_delta[ENERGY_MAX_PHASES]; // 1212312345 Wh 10^-5 (deca micro Watt hours) - Overflows to Energy->kWhtoday (HLW and CSE only)
|
|
int32_t kWhtoday_offset[ENERGY_MAX_PHASES]; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy->daily
|
|
int32_t kWhtoday[ENERGY_MAX_PHASES]; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy->daily
|
|
int32_t kWhtoday_export[ENERGY_MAX_PHASES]; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy->daily
|
|
int32_t period[ENERGY_MAX_PHASES]; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy->daily
|
|
|
|
char* value;
|
|
|
|
uint8_t fifth_second;
|
|
uint8_t command_code;
|
|
uint8_t data_valid[ENERGY_MAX_PHASES];
|
|
|
|
uint8_t phase_count; // Number of phases active
|
|
bool voltage_common; // Use common voltage
|
|
bool frequency_common; // Use common frequency
|
|
bool use_overtemp; // Use global temperature as overtemp trigger on internal energy monitor hardware
|
|
bool kWhtoday_offset_init;
|
|
|
|
bool voltage_available; // Enable if voltage is measured
|
|
bool current_available; // Enable if current is measured
|
|
bool local_energy_active_export; // Enable if support for storing energy_active
|
|
|
|
bool type_dc;
|
|
bool power_on;
|
|
|
|
#ifdef USE_ENERGY_MARGIN_DETECTION
|
|
uint16_t power_history[3][ENERGY_MAX_PHASES];
|
|
uint8_t power_steady_counter; // Allow for power on stabilization
|
|
uint8_t margin_stable;
|
|
bool min_power_flag;
|
|
bool max_power_flag;
|
|
bool min_voltage_flag;
|
|
bool max_voltage_flag;
|
|
bool min_current_flag;
|
|
bool max_current_flag;
|
|
|
|
#ifdef USE_ENERGY_POWER_LIMIT
|
|
uint16_t mpl_hold_counter;
|
|
uint16_t mpl_window_counter;
|
|
uint8_t mpl_retry_counter;
|
|
uint8_t max_energy_state;
|
|
#endif // USE_ENERGY_POWER_LIMIT
|
|
#endif // USE_ENERGY_MARGIN_DETECTION
|
|
} tEnergy;
|
|
|
|
tEnergy *Energy = nullptr;
|
|
|
|
Ticker ticker_energy;
|
|
|
|
/********************************************************************************************/
|
|
|
|
const uint16_t GUISZ = 300; // Max number of characters in WebEnergyFmt string
|
|
|
|
bool EnergyFmtMalloc(void) {
|
|
if (Energy->value == nullptr) {
|
|
Energy->value = (char*)malloc(GUISZ);
|
|
if (!Energy->value) { return false; }
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void EnergyFmtFree(void) {
|
|
// free(Energy->value); // Let's keep it for future use reducing heap fragmentation
|
|
// Energy->value = nullptr;
|
|
}
|
|
|
|
char* EnergyFmt(float* input, uint32_t resolution, uint32_t single = 0);
|
|
char* EnergyFmt(float* input, uint32_t resolution, uint32_t single) {
|
|
// single = 0 - Energy->phase_count - xx or [xx,xx] or [xx,xx,xx]
|
|
// single = 1 - Energy->voltage_common or Energy->frequency_common - xx
|
|
// single = 2 - Sum of Energy->phase_count if SO129 0 - xx or if SO129 1 - [xx,xx,xx]
|
|
// single = 5 - single &0x03 = 1 - xx
|
|
// single = 6 - single &0x03 = 2 - [xx,xx] - used by tarriff
|
|
// single = 7 - single &0x03 = 3 - [xx,xx,xx]
|
|
|
|
if (!EnergyFmtMalloc()) { return EmptyStr; }
|
|
|
|
uint32_t index = (single > 3) ? single &0x03 : (0 == single) ? Energy->phase_count : 1; // 1,2,3
|
|
if (single > 2) { single = 0; } // 0,1,2
|
|
float input_sum = 0.0f;
|
|
if (single > 1) {
|
|
if (!Settings->flag5.energy_phase) { // SetOption129 - (Energy) Show phase information
|
|
for (uint32_t i = 0; i < Energy->phase_count; i++) {
|
|
if (!isnan(input[i])) {
|
|
input_sum += input[i];
|
|
}
|
|
}
|
|
input = &input_sum;
|
|
} else {
|
|
index = Energy->phase_count;
|
|
}
|
|
}
|
|
Energy->value[0] = '\0';
|
|
for (uint32_t i = 0; i < index; i++) {
|
|
ext_snprintf_P(Energy->value, GUISZ, PSTR("%s%s%*_f%s"), Energy->value, (0==i)?(1==index)?"":"[":",", resolution, &input[i], (index-1==i)?(1==index)?"":"]":"");
|
|
}
|
|
return Energy->value;
|
|
}
|
|
|
|
#ifdef USE_WEBSERVER
|
|
char* WebEnergyFmt(float* input, uint32_t resolution, uint32_t single = 0);
|
|
char* WebEnergyFmt(float* input, uint32_t resolution, uint32_t single) {
|
|
// single = 0 - Energy->phase_count - xx / xx / xx or multi column
|
|
// single = 1 - Energy->voltage_common or Energy->frequency_common - xx or single column using colspan (if needed)
|
|
// single = 2 - Sum of Energy->phase_count if SO129 0 - xx or single column using colspan (if needed) or if SO129 1 - xx / xx / xx or multi column
|
|
// single = 3 - Sum of Energy->phase_count xx or single column using colspan (if needed)
|
|
|
|
if (!EnergyFmtMalloc()) { return EmptyStr; }
|
|
|
|
float input_sum = 0.0f;
|
|
if (single > 1) { // Sum and/or Single column
|
|
if ((3 == single) || !Settings->flag5.energy_phase) { // SetOption129 - (Energy) Show phase information
|
|
for (uint32_t i = 0; i < Energy->phase_count; i++) {
|
|
if (!isnan(input[i])) {
|
|
input_sum += input[i];
|
|
}
|
|
}
|
|
input = &input_sum;
|
|
} else {
|
|
single = 0;
|
|
}
|
|
}
|
|
ext_snprintf_P(Energy->value, GUISZ, PSTR("</td>")); // Skip first column
|
|
if ((Energy->phase_count > 1) && single) { // Need to set colspan so need new columns
|
|
// </td><td colspan='3' style='text-align:right'>1.23</td><td> </td><td>
|
|
// </td><td colspan='5' style='text-align:right'>1.23</td><td> </td><td>
|
|
// </td><td colspan='7' style='text-align:right'>1.23</td><td> </td><td>
|
|
ext_snprintf_P(Energy->value, GUISZ, PSTR("%s<td colspan='%d' style='text-align:%s'>%*_f</td><td> </td>"),
|
|
Energy->value, (Energy->phase_count *2) -1, (Settings->flag5.gui_table_align)?PSTR("right"):PSTR("center"), resolution, &input[0]);
|
|
} else {
|
|
// </td><td style='text-align:right'>1.23</td><td> </td><td>
|
|
// </td><td style='text-align:right'>1.23</td><td> </td><td style='text-align:right'>1.23</td><td> </td><td>
|
|
// </td><td style='text-align:right'>1.23</td><td> </td><td style='text-align:right'>1.23</td><td> </td><td style='text-align:right'>1.23</td><td> </td><td>
|
|
// </td><td style='text-align:right'>1.23</td><td> </td><td style='text-align:right'>1.23</td><td> </td><td style='text-align:right'>1.23</td><td> </td><td style='text-align:right'>1.23</td><td> </td><td>
|
|
for (uint32_t i = 0; i < Energy->phase_count; i++) {
|
|
ext_snprintf_P(Energy->value, GUISZ, PSTR("%s<td style='text-align:%s'>%*_f</td><td> </td>"),
|
|
Energy->value, (Settings->flag5.gui_table_align)?PSTR("right"):PSTR("left"), resolution, &input[i]);
|
|
}
|
|
}
|
|
ext_snprintf_P(Energy->value, GUISZ, PSTR("%s<td>"), Energy->value);
|
|
return Energy->value;
|
|
}
|
|
#endif // USE_WEBSERVER
|
|
|
|
/********************************************************************************************/
|
|
|
|
bool EnergyTariff1Active() { // Off-Peak hours
|
|
if (Settings->mbflag2.tariff_forced) {
|
|
return 1 == Settings->mbflag2.tariff_forced;
|
|
}
|
|
uint8_t dst = 0;
|
|
if (IsDst() && (Settings->tariff[0][1] != Settings->tariff[1][1])) {
|
|
dst = 1;
|
|
}
|
|
if (Settings->tariff[0][dst] != Settings->tariff[1][dst]) {
|
|
if (Settings->flag3.energy_weekend && ((RtcTime.day_of_week == 1) || // CMND_TARIFF
|
|
(RtcTime.day_of_week == 7))) {
|
|
return true;
|
|
}
|
|
uint32_t minutes = MinutesPastMidnight();
|
|
if (Settings->tariff[0][dst] > Settings->tariff[1][dst]) {
|
|
// {"Tariff":{"Off-Peak":{"STD":"22:00","DST":"23:00"},"Standard":{"STD":"06:00","DST":"07:00"},"Weekend":"OFF"}}
|
|
return ((minutes >= Settings->tariff[0][dst]) || (minutes < Settings->tariff[1][dst]));
|
|
} else {
|
|
// {"Tariff":{"Off-Peak":{"STD":"00:29","DST":"01:29"},"Standard":{"STD":"07:29","DST":"08:29"},"Weekend":"OFF"}}
|
|
return ((minutes >= Settings->tariff[0][dst]) && (minutes < Settings->tariff[1][dst]));
|
|
}
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
void EnergyUpdateToday(void) {
|
|
Energy->total_sum = 0.0f;
|
|
Energy->yesterday_sum = 0.0f;
|
|
Energy->daily_sum = 0.0f;
|
|
int32_t delta_sum_balanced = 0;
|
|
|
|
for (uint32_t i = 0; i < Energy->phase_count; i++) {
|
|
if (abs(Energy->kWhtoday_delta[i]) > 1000) {
|
|
int32_t delta = Energy->kWhtoday_delta[i] / 1000;
|
|
delta_sum_balanced += delta;
|
|
Energy->kWhtoday_delta[i] -= (delta * 1000);
|
|
Energy->kWhtoday[i] += delta;
|
|
if (delta < 0) { // Export energy
|
|
Energy->kWhtoday_export[i] += (delta *-1);
|
|
if (Energy->kWhtoday_export[i] > 100) {
|
|
int32_t delta_export = Energy->kWhtoday_export[i] / 100;
|
|
Energy->kWhtoday_export[i] -= (delta_export * 100);
|
|
RtcSettings.energy_kWhexport_ph[i] += delta_export;
|
|
}
|
|
}
|
|
}
|
|
|
|
RtcSettings.energy_kWhtoday_ph[i] = Energy->kWhtoday_offset[i] + Energy->kWhtoday[i];
|
|
Energy->daily[i] = (float)(RtcSettings.energy_kWhtoday_ph[i]) / 100000;
|
|
Energy->total[i] = ((float)(RtcSettings.energy_kWhtotal_ph[i]) / 1000) + ((float)(RtcSettings.energy_kWhtoday_ph[i]) / 100000);
|
|
if (Energy->local_energy_active_export) {
|
|
Energy->export_active[i] = (float)(RtcSettings.energy_kWhexport_ph[i]) / 1000;
|
|
}
|
|
|
|
Energy->total_sum += Energy->total[i];
|
|
Energy->yesterday_sum += (float)Settings->energy_kWhyesterday_ph[i] / 100000;
|
|
Energy->daily_sum += Energy->daily[i];
|
|
}
|
|
|
|
if (delta_sum_balanced > 0) {
|
|
Energy->daily_sum_import_balanced += (float)delta_sum_balanced / 100000;
|
|
} else {
|
|
Energy->daily_sum_export_balanced += (float)abs(delta_sum_balanced) / 100000;
|
|
}
|
|
|
|
if (RtcTime.valid){ // We calc the difference only if we have a valid RTC time.
|
|
|
|
uint32_t energy_diff = (uint32_t)(Energy->total_sum * 1000) - RtcSettings.energy_usage.last_usage_kWhtotal;
|
|
RtcSettings.energy_usage.last_usage_kWhtotal = (uint32_t)(Energy->total_sum * 1000);
|
|
|
|
uint32_t return_diff = 0;
|
|
if (!isnan(Energy->export_active[0])) {
|
|
// return_diff = (uint32_t)(Energy->export_active * 1000) - RtcSettings.energy_usage.last_return_kWhtotal;
|
|
// RtcSettings.energy_usage.last_return_kWhtotal = (uint32_t)(Energy->export_active * 1000);
|
|
|
|
float export_active = 0.0f;
|
|
for (uint32_t i = 0; i < Energy->phase_count; i++) {
|
|
if (!isnan(Energy->export_active[i])) {
|
|
export_active += Energy->export_active[i];
|
|
}
|
|
}
|
|
return_diff = (uint32_t)(export_active * 1000) - RtcSettings.energy_usage.last_return_kWhtotal;
|
|
RtcSettings.energy_usage.last_return_kWhtotal = (uint32_t)(export_active * 1000);
|
|
}
|
|
|
|
if (EnergyTariff1Active()) { // Tarrif1 = Off-Peak
|
|
RtcSettings.energy_usage.usage1_kWhtotal += energy_diff;
|
|
RtcSettings.energy_usage.return1_kWhtotal += return_diff;
|
|
} else {
|
|
RtcSettings.energy_usage.usage2_kWhtotal += energy_diff;
|
|
RtcSettings.energy_usage.return2_kWhtotal += return_diff;
|
|
}
|
|
}
|
|
}
|
|
|
|
void EnergyUpdateTotal(void) {
|
|
// Provide total import active energy as float Energy->import_active[phase] in kWh: 98Wh = 0.098kWh
|
|
|
|
for (uint32_t i = 0; i < Energy->phase_count; i++) {
|
|
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NRG: EnergyTotal[%d] %4_f kWh"), i, &Energy->import_active[i]);
|
|
|
|
// Try to fix instable input by verifying allowed bandwidth (#17659)
|
|
if ((Energy->start_energy[i] != 0) &&
|
|
(Settings->param[P_CSE7766_INVALID_POWER] > 0) &&
|
|
(Settings->param[P_CSE7766_INVALID_POWER] < 128)) { // SetOption39 1..127 kWh
|
|
int total = abs((int)Energy->total[i]); // We only use kWh
|
|
int import_active = abs((int)Energy->import_active[i]);
|
|
if ((import_active < (total - Settings->param[P_CSE7766_INVALID_POWER])) ||
|
|
(import_active > (total + Settings->param[P_CSE7766_INVALID_POWER]))) {
|
|
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NRG: Outside bandwidth"));
|
|
continue; // No valid energy value received
|
|
}
|
|
}
|
|
|
|
if (0 == Energy->start_energy[i] || (Energy->import_active[i] < Energy->start_energy[i])) {
|
|
Energy->start_energy[i] = Energy->import_active[i]; // Init after restart and handle roll-over if any
|
|
}
|
|
else if (Energy->import_active[i] != Energy->start_energy[i]) {
|
|
Energy->kWhtoday[i] = (int32_t)((Energy->import_active[i] - Energy->start_energy[i]) * 100000);
|
|
}
|
|
|
|
if ((Energy->total[i] < (Energy->import_active[i] - 0.01f)) && // We subtract a little offset of 10Wh to avoid continuous updates
|
|
Settings->flag3.hardware_energy_total) { // SetOption72 - Enable hardware energy total counter as reference (#6561)
|
|
// The following calculation allows total usage (Energy->import_active[i]) up to +/-2147483.647 kWh
|
|
RtcSettings.energy_kWhtotal_ph[i] = (int32_t)((Energy->import_active[i] * 1000) - ((Energy->kWhtoday_offset[i] + Energy->kWhtoday[i]) / 100));
|
|
Settings->energy_kWhtotal_ph[i] = RtcSettings.energy_kWhtotal_ph[i];
|
|
Energy->total[i] = Energy->import_active[i];
|
|
Settings->energy_kWhtotal_time = (!Energy->kWhtoday_offset[i]) ? LocalTime() : Midnight();
|
|
// AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Energy Total updated with hardware value"));
|
|
}
|
|
}
|
|
|
|
EnergyUpdateToday();
|
|
}
|
|
|
|
/*********************************************************************************************/
|
|
|
|
void Energy200ms(void) {
|
|
Energy->power_on = (TasmotaGlobal.power != 0) | Settings->flag.no_power_on_check; // SetOption21 - Show voltage even if powered off
|
|
|
|
Energy->fifth_second++;
|
|
if (5 == Energy->fifth_second) {
|
|
Energy->fifth_second = 0;
|
|
|
|
XnrgCall(FUNC_ENERGY_EVERY_SECOND);
|
|
|
|
if (RtcTime.valid) {
|
|
if (!Settings->energy_kWhtotal_time) {
|
|
Settings->energy_kWhtotal_time = LocalTime();
|
|
}
|
|
|
|
if (!Energy->kWhtoday_offset_init && (RtcTime.day_of_year == Settings->energy_kWhdoy)) {
|
|
Energy->kWhtoday_offset_init = true;
|
|
for (uint32_t i = 0; i < 3; i++) {
|
|
Energy->kWhtoday_offset[i] = Settings->energy_kWhtoday_ph[i];
|
|
// RtcSettings.energy_kWhtoday_ph[i] = 0;
|
|
}
|
|
}
|
|
|
|
bool midnight = (LocalTime() == Midnight());
|
|
if (midnight || (RtcTime.day_of_year > Settings->energy_kWhdoy)) {
|
|
Energy->kWhtoday_offset_init = true;
|
|
Settings->energy_kWhdoy = RtcTime.day_of_year;
|
|
|
|
for (uint32_t i = 0; i < 3; i++) {
|
|
Settings->energy_kWhyesterday_ph[i] = RtcSettings.energy_kWhtoday_ph[i];
|
|
|
|
RtcSettings.energy_kWhtotal_ph[i] += (RtcSettings.energy_kWhtoday_ph[i] / 100);
|
|
Settings->energy_kWhtotal_ph[i] = RtcSettings.energy_kWhtotal_ph[i];
|
|
|
|
Settings->energy_kWhexport_ph[i] = RtcSettings.energy_kWhexport_ph[i];
|
|
|
|
Energy->period[i] -= RtcSettings.energy_kWhtoday_ph[i]; // this becomes a large unsigned, effectively a negative for EnergyShow calculation
|
|
Energy->kWhtoday[i] = 0;
|
|
Energy->kWhtoday_offset[i] = 0;
|
|
RtcSettings.energy_kWhtoday_ph[i] = 0;
|
|
Settings->energy_kWhtoday_ph[i] = 0;
|
|
|
|
Energy->start_energy[i] = 0;
|
|
// Energy->kWhtoday_delta = 0; // dont zero this, we need to carry the remainder over to tomorrow
|
|
Energy->daily_sum_import_balanced = 0.0;
|
|
Energy->daily_sum_export_balanced = 0.0;
|
|
}
|
|
EnergyUpdateToday();
|
|
}
|
|
#if defined(USE_ENERGY_MARGIN_DETECTION) && defined(USE_ENERGY_POWER_LIMIT)
|
|
if (midnight) {
|
|
Energy->max_energy_state = 3;
|
|
}
|
|
if ((RtcTime.hour == Settings->energy_max_energy_start) && (3 == Energy->max_energy_state )) {
|
|
Energy->max_energy_state = 0;
|
|
}
|
|
#endif // USE_ENERGY_POWER_LIMIT
|
|
|
|
}
|
|
}
|
|
|
|
XnrgCall(FUNC_EVERY_200_MSECOND);
|
|
}
|
|
|
|
void EnergySaveState(void) {
|
|
Settings->energy_kWhdoy = (RtcTime.valid) ? RtcTime.day_of_year : 0;
|
|
|
|
for (uint32_t i = 0; i < 3; i++) {
|
|
Settings->energy_kWhtoday_ph[i] = RtcSettings.energy_kWhtoday_ph[i];
|
|
Settings->energy_kWhtotal_ph[i] = RtcSettings.energy_kWhtotal_ph[i];
|
|
Settings->energy_kWhexport_ph[i] = RtcSettings.energy_kWhexport_ph[i];
|
|
}
|
|
|
|
Settings->energy_usage = RtcSettings.energy_usage;
|
|
}
|
|
|
|
#ifdef USE_ENERGY_MARGIN_DETECTION
|
|
bool EnergyMargin(bool type, uint16_t margin, uint16_t value, bool &flag, bool &save_flag) {
|
|
bool change;
|
|
|
|
if (!margin) return false;
|
|
change = save_flag;
|
|
if (type) {
|
|
flag = (value > margin);
|
|
} else {
|
|
flag = (value < margin);
|
|
}
|
|
save_flag = flag;
|
|
return (change != save_flag);
|
|
}
|
|
|
|
void EnergyMarginCheck(void) {
|
|
if (!Energy->phase_count || (TasmotaGlobal.uptime < 8)) { return; }
|
|
if (Energy->power_steady_counter) {
|
|
Energy->power_steady_counter--;
|
|
return;
|
|
}
|
|
|
|
bool jsonflg = false;
|
|
Response_P(PSTR("{\"" D_RSLT_MARGINS "\":{"));
|
|
|
|
int16_t power_diff[ENERGY_MAX_PHASES] = { 0 };
|
|
for (uint32_t phase = 0; phase < Energy->phase_count; phase++) {
|
|
uint16_t active_power = (uint16_t)(Energy->active_power[phase]);
|
|
|
|
// AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: APower %d, HPower0 %d, HPower1 %d, HPower2 %d"), active_power, Energy->power_history[0][phase], Energy->power_history[1][phase], Energy->power_history[2][phase]);
|
|
|
|
if (Settings->energy_power_delta[phase]) {
|
|
power_diff[phase] = active_power - Energy->power_history[0][phase];
|
|
uint16_t delta = abs(power_diff[phase]);
|
|
bool threshold_met = false;
|
|
if (delta > 0) {
|
|
if (Settings->energy_power_delta[phase] < 101) { // 1..100 = Percentage
|
|
uint16_t min_power = (Energy->power_history[0][phase] > active_power) ? active_power : Energy->power_history[0][phase];
|
|
if (0 == min_power) { min_power++; } // Fix divide by 0 exception (#6741)
|
|
delta = (delta * 100) / min_power;
|
|
if (delta >= Settings->energy_power_delta[phase]) {
|
|
threshold_met = true;
|
|
}
|
|
} else { // 101..32000 = Absolute
|
|
if (delta >= (Settings->energy_power_delta[phase] -100)) {
|
|
threshold_met = true;
|
|
}
|
|
}
|
|
}
|
|
if (threshold_met) {
|
|
Energy->power_history[1][phase] = active_power; // We only want one report so reset history
|
|
Energy->power_history[2][phase] = active_power;
|
|
jsonflg = true;
|
|
} else {
|
|
power_diff[phase] = 0;
|
|
}
|
|
}
|
|
Energy->power_history[0][phase] = Energy->power_history[1][phase]; // Shift in history every second allowing power changes to settle for up to three seconds
|
|
Energy->power_history[1][phase] = Energy->power_history[2][phase];
|
|
Energy->power_history[2][phase] = active_power;
|
|
}
|
|
if (jsonflg) {
|
|
float power_diff_f[Energy->phase_count];
|
|
for (uint32_t phase = 0; phase < Energy->phase_count; phase++) {
|
|
power_diff_f[phase] = power_diff[phase];
|
|
}
|
|
ResponseAppend_P(PSTR("\"" D_CMND_POWERDELTA "\":%s"), EnergyFmt(power_diff_f, 0));
|
|
}
|
|
|
|
uint16_t energy_power_u = (uint16_t)(Energy->active_power[0]);
|
|
|
|
if (Energy->power_on && (Settings->energy_min_power || Settings->energy_max_power || Settings->energy_min_voltage || Settings->energy_max_voltage || Settings->energy_min_current || Settings->energy_max_current)) {
|
|
uint16_t energy_voltage_u = (uint16_t)(Energy->voltage[0]);
|
|
uint16_t energy_current_u = (uint16_t)(Energy->current[0] * 1000);
|
|
|
|
DEBUG_DRIVER_LOG(PSTR("NRG: W %d, U %d, I %d"), energy_power_u, energy_voltage_u, energy_current_u);
|
|
|
|
bool flag;
|
|
if (EnergyMargin(false, Settings->energy_min_power, energy_power_u, flag, Energy->min_power_flag)) {
|
|
ResponseAppend_P(PSTR("%s\"" D_CMND_POWERLOW "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
|
|
jsonflg = true;
|
|
}
|
|
if (EnergyMargin(true, Settings->energy_max_power, energy_power_u, flag, Energy->max_power_flag)) {
|
|
ResponseAppend_P(PSTR("%s\"" D_CMND_POWERHIGH "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
|
|
jsonflg = true;
|
|
}
|
|
if (EnergyMargin(false, Settings->energy_min_voltage, energy_voltage_u, flag, Energy->min_voltage_flag)) {
|
|
ResponseAppend_P(PSTR("%s\"" D_CMND_VOLTAGELOW "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
|
|
jsonflg = true;
|
|
}
|
|
if (EnergyMargin(true, Settings->energy_max_voltage, energy_voltage_u, flag, Energy->max_voltage_flag)) {
|
|
ResponseAppend_P(PSTR("%s\"" D_CMND_VOLTAGEHIGH "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
|
|
jsonflg = true;
|
|
}
|
|
if (EnergyMargin(false, Settings->energy_min_current, energy_current_u, flag, Energy->min_current_flag)) {
|
|
ResponseAppend_P(PSTR("%s\"" D_CMND_CURRENTLOW "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
|
|
jsonflg = true;
|
|
}
|
|
if (EnergyMargin(true, Settings->energy_max_current, energy_current_u, flag, Energy->max_current_flag)) {
|
|
ResponseAppend_P(PSTR("%s\"" D_CMND_CURRENTHIGH "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
|
|
jsonflg = true;
|
|
}
|
|
}
|
|
if (jsonflg) {
|
|
ResponseJsonEndEnd();
|
|
MqttPublishTele(PSTR(D_RSLT_MARGINS));
|
|
EnergyMqttShow();
|
|
Energy->margin_stable = 3; // Allow 2 seconds to stabilize before reporting
|
|
}
|
|
|
|
#ifdef USE_ENERGY_POWER_LIMIT
|
|
// Max Power
|
|
if (Settings->energy_max_power_limit) {
|
|
if (energy_power_u > Settings->energy_max_power_limit) {
|
|
if (!Energy->mpl_hold_counter) {
|
|
Energy->mpl_hold_counter = Settings->energy_max_power_limit_hold +1;
|
|
}
|
|
Energy->mpl_hold_counter--;
|
|
if (!Energy->mpl_hold_counter) {
|
|
if (!Energy->mpl_retry_counter) {
|
|
Energy->mpl_retry_counter = Settings->param[P_MAX_POWER_RETRY] +1; // SetOption33 - Max Power Retry count
|
|
}
|
|
Energy->mpl_retry_counter--;
|
|
if (Energy->mpl_retry_counter) {
|
|
ResponseTime_P(PSTR(",\"" D_JSON_MAXPOWERREACHED "\":%d}"), energy_power_u);
|
|
} else {
|
|
ResponseTime_P(PSTR(",\"" D_JSON_MAXPOWERREACHEDRETRY "\":\"%s\"}"), GetStateText(0));
|
|
}
|
|
MqttPublishPrefixTopicRulesProcess_P(STAT, S_RSLT_WARNING);
|
|
EnergyMqttShow();
|
|
SetAllPower(POWER_OFF_FORCE, SRC_MAXPOWER);
|
|
Energy->mpl_window_counter = Settings->energy_max_power_limit_window;
|
|
}
|
|
}
|
|
else if (TasmotaGlobal.power && (energy_power_u <= Settings->energy_max_power_limit)) {
|
|
Energy->mpl_hold_counter = 0;
|
|
Energy->mpl_retry_counter = 0;
|
|
Energy->mpl_window_counter = 0;
|
|
}
|
|
if (!TasmotaGlobal.power) {
|
|
if (Energy->mpl_window_counter) {
|
|
Energy->mpl_window_counter--;
|
|
} else {
|
|
if (Energy->mpl_retry_counter) {
|
|
ResponseTime_P(PSTR(",\"" D_JSON_POWERMONITOR "\":\"%s\"}"), GetStateText(1));
|
|
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_JSON_POWERMONITOR));
|
|
RestorePower(true, SRC_MAXPOWER);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Max Energy
|
|
if (Settings->energy_max_energy) {
|
|
uint16_t energy_daily_u = (uint16_t)(Energy->daily_sum * 1000);
|
|
if (!Energy->max_energy_state && (RtcTime.hour == Settings->energy_max_energy_start)) {
|
|
Energy->max_energy_state = 1;
|
|
ResponseTime_P(PSTR(",\"" D_JSON_ENERGYMONITOR "\":\"%s\"}"), GetStateText(1));
|
|
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_JSON_ENERGYMONITOR));
|
|
RestorePower(true, SRC_MAXENERGY);
|
|
}
|
|
else if ((1 == Energy->max_energy_state ) && (energy_daily_u >= Settings->energy_max_energy)) {
|
|
Energy->max_energy_state = 2;
|
|
ResponseTime_P(PSTR(",\"" D_JSON_MAXENERGYREACHED "\":%3_f}"), &Energy->daily_sum);
|
|
MqttPublishPrefixTopicRulesProcess_P(STAT, S_RSLT_WARNING);
|
|
EnergyMqttShow();
|
|
SetAllPower(POWER_OFF_FORCE, SRC_MAXENERGY);
|
|
}
|
|
}
|
|
#endif // USE_ENERGY_POWER_LIMIT
|
|
EnergyFmtFree();
|
|
}
|
|
|
|
void EnergyMqttShow(void) {
|
|
// {"Time":"2017-12-16T11:48:55","ENERGY":{"Total":0.212,"Yesterday":0.000,"Today":0.014,"Period":2.0,"Power":22.0,"Factor":1.00,"Voltage":213.6,"Current":0.100}}
|
|
int tele_period_save = TasmotaGlobal.tele_period;
|
|
TasmotaGlobal.tele_period = 2;
|
|
ResponseClear();
|
|
ResponseAppendTime();
|
|
EnergyShow(true);
|
|
TasmotaGlobal.tele_period = tele_period_save;
|
|
ResponseJsonEnd();
|
|
MqttPublishTeleSensor();
|
|
}
|
|
#endif // USE_ENERGY_MARGIN_DETECTION
|
|
|
|
void EnergyEverySecond(void) {
|
|
// Overtemp check
|
|
if (Energy->use_overtemp && TasmotaGlobal.global_update) {
|
|
if (TasmotaGlobal.power && !isnan(TasmotaGlobal.temperature_celsius) && (TasmotaGlobal.temperature_celsius > (float)Settings->param[P_OVER_TEMP])) { // SetOption42 Device overtemp, turn off relays
|
|
|
|
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Temperature %1_f"), &TasmotaGlobal.temperature_celsius);
|
|
|
|
SetAllPower(POWER_OFF_FORCE, SRC_OVERTEMP);
|
|
}
|
|
}
|
|
|
|
// Invalid data reset
|
|
if (TasmotaGlobal.uptime > ENERGY_WATCHDOG) {
|
|
uint32_t data_valid = Energy->phase_count;
|
|
for (uint32_t i = 0; i < Energy->phase_count; i++) {
|
|
if (Energy->data_valid[i] <= ENERGY_WATCHDOG) {
|
|
Energy->data_valid[i]++;
|
|
if (Energy->data_valid[i] > ENERGY_WATCHDOG) {
|
|
// Reset energy registers
|
|
Energy->voltage[i] = 0;
|
|
Energy->current[i] = 0;
|
|
Energy->active_power[i] = 0;
|
|
if (!isnan(Energy->apparent_power[i])) { Energy->apparent_power[i] = 0; }
|
|
if (!isnan(Energy->reactive_power[i])) { Energy->reactive_power[i] = 0; }
|
|
if (!isnan(Energy->frequency[i])) { Energy->frequency[i] = 0; }
|
|
if (!isnan(Energy->power_factor[i])) { Energy->power_factor[i] = 0; }
|
|
if (!isnan(Energy->export_active[i])) { Energy->export_active[i] = 0; }
|
|
data_valid--;
|
|
}
|
|
}
|
|
}
|
|
if (!data_valid) {
|
|
//Energy->start_energy = 0;
|
|
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Energy reset by invalid data"));
|
|
|
|
XnrgCall(FUNC_ENERGY_RESET);
|
|
}
|
|
}
|
|
|
|
#ifdef USE_ENERGY_MARGIN_DETECTION
|
|
EnergyMarginCheck();
|
|
if (Energy->margin_stable) {
|
|
Energy->margin_stable--;
|
|
if (!Energy->margin_stable) {
|
|
EnergyMqttShow();
|
|
}
|
|
}
|
|
#endif // USE_ENERGY_MARGIN_DETECTION
|
|
}
|
|
|
|
/*********************************************************************************************\
|
|
* Commands
|
|
\*********************************************************************************************/
|
|
|
|
void ResponseCmndEnergyTotalYesterdayToday(void) {
|
|
float energy_yesterday_ph[3];
|
|
for (uint32_t i = 0; i < Energy->phase_count; i++) {
|
|
energy_yesterday_ph[i] = (float)Settings->energy_kWhyesterday_ph[i] / 100000;
|
|
Energy->total[i] = ((float)(RtcSettings.energy_kWhtotal_ph[i]) / 1000) + ((float)(Energy->kWhtoday_offset[i] + Energy->kWhtoday[i]) / 100000);
|
|
if (Energy->local_energy_active_export) {
|
|
Energy->export_active[i] = (float)(RtcSettings.energy_kWhexport_ph[i]) / 1000;
|
|
}
|
|
}
|
|
|
|
Response_P(PSTR("{\"%s\":{\"" D_JSON_TOTAL "\":%s"),
|
|
XdrvMailbox.command,
|
|
EnergyFmt(Energy->total, Settings->flag2.energy_resolution));
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_YESTERDAY "\":%s"),
|
|
EnergyFmt(energy_yesterday_ph, Settings->flag2.energy_resolution));
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_TODAY "\":%s"),
|
|
EnergyFmt(Energy->daily, Settings->flag2.energy_resolution));
|
|
if (Energy->local_energy_active_export) {
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_EXPORT_ACTIVE "\":%s"),
|
|
EnergyFmt(Energy->export_active, Settings->flag2.energy_resolution));
|
|
}
|
|
ResponseJsonEndEnd();
|
|
EnergyFmtFree();
|
|
}
|
|
|
|
void CmndEnergyTotal(void) {
|
|
uint32_t values[2] = { 0 };
|
|
uint32_t params = ParseParameters(2, values);
|
|
|
|
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy->phase_count) && (params > 0)) {
|
|
uint32_t phase = XdrvMailbox.index -1;
|
|
// Reset Energy Total
|
|
RtcSettings.energy_kWhtotal_ph[phase] = (int32_t)values[0];
|
|
Settings->energy_kWhtotal_ph[phase] = RtcSettings.energy_kWhtotal_ph[phase];
|
|
if (params > 1) {
|
|
Settings->energy_kWhtotal_time = values[1];
|
|
} else {
|
|
Settings->energy_kWhtotal_time = (!Energy->kWhtoday_offset[phase]) ? LocalTime() : Midnight();
|
|
}
|
|
RtcSettings.energy_usage.last_usage_kWhtotal = (uint32_t)(Energy->total[phase] * 1000);
|
|
}
|
|
ResponseCmndEnergyTotalYesterdayToday();
|
|
}
|
|
|
|
void CmndEnergyYesterday(void) {
|
|
uint32_t values[2] = { 0 };
|
|
uint32_t params = ParseParameters(2, values);
|
|
|
|
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy->phase_count) && (params > 0)) {
|
|
uint32_t phase = XdrvMailbox.index -1;
|
|
// Reset Energy Yesterday
|
|
Settings->energy_kWhyesterday_ph[phase] = (int32_t)values[0] * 100;
|
|
if (params > 1) {
|
|
Settings->energy_kWhtotal_time = values[1];
|
|
}
|
|
}
|
|
ResponseCmndEnergyTotalYesterdayToday();
|
|
}
|
|
|
|
void CmndEnergyToday(void) {
|
|
// EnergyToday 22 = 0.022 kWh
|
|
uint32_t values[2] = { 0 };
|
|
uint32_t params = ParseParameters(2, values);
|
|
|
|
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy->phase_count) && (params > 0)) {
|
|
uint32_t phase = XdrvMailbox.index -1;
|
|
// Reset Energy Today
|
|
Energy->kWhtoday_offset[phase] = (int32_t)values[0] * 100;
|
|
Energy->kWhtoday[phase] = 0;
|
|
Energy->kWhtoday_delta[phase] = 0;
|
|
Energy->start_energy[phase] = 0;
|
|
Energy->period[phase] = Energy->kWhtoday_offset[phase];
|
|
Settings->energy_kWhtoday_ph[phase] = Energy->kWhtoday_offset[phase];
|
|
RtcSettings.energy_kWhtoday_ph[phase] = Energy->kWhtoday_offset[phase];
|
|
Energy->daily[phase] = (float)Energy->kWhtoday_offset[phase] / 100000;
|
|
if (params > 1) {
|
|
Settings->energy_kWhtotal_time = values[1];
|
|
}
|
|
else if (!RtcSettings.energy_kWhtotal_ph[phase] && !Energy->kWhtoday_offset[phase]) {
|
|
Settings->energy_kWhtotal_time = LocalTime();
|
|
}
|
|
}
|
|
ResponseCmndEnergyTotalYesterdayToday();
|
|
}
|
|
|
|
void CmndEnergyExportActive(void) {
|
|
if (Energy->local_energy_active_export) {
|
|
// EnergyExportActive1 24
|
|
// EnergyExportActive1 24,1650111291
|
|
uint32_t values[2] = { 0 };
|
|
uint32_t params = ParseParameters(2, values);
|
|
|
|
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy->phase_count) && (params > 0)) {
|
|
uint32_t phase = XdrvMailbox.index -1;
|
|
// Reset Energy Export Active
|
|
RtcSettings.energy_kWhexport_ph[phase] = (int32_t)values[0];
|
|
Settings->energy_kWhexport_ph[phase] = RtcSettings.energy_kWhexport_ph[phase];
|
|
if (params > 1) {
|
|
Settings->energy_kWhtotal_time = values[1];
|
|
}
|
|
}
|
|
ResponseCmndEnergyTotalYesterdayToday();
|
|
}
|
|
}
|
|
|
|
void ResponseCmndEnergyUsageExport(void) {
|
|
float usage1_kWhtotal = (float)Settings->energy_usage.usage1_kWhtotal / 1000;
|
|
float usage2_kWhtotal = (float)Settings->energy_usage.usage2_kWhtotal / 1000;
|
|
float return1_kWhtotal = (float)Settings->energy_usage.return1_kWhtotal / 1000;
|
|
float return2_kWhtotal = (float)Settings->energy_usage.return2_kWhtotal / 1000;
|
|
|
|
Response_P(PSTR("{\"%s\":{\"" D_JSON_USAGE "\":[%*_f,%*_f],\"" D_JSON_EXPORT "\":[%*_f,%*_f]}}"),
|
|
XdrvMailbox.command,
|
|
Settings->flag2.energy_resolution, &usage1_kWhtotal,
|
|
Settings->flag2.energy_resolution, &usage2_kWhtotal,
|
|
Settings->flag2.energy_resolution, &return1_kWhtotal,
|
|
Settings->flag2.energy_resolution, &return2_kWhtotal);
|
|
}
|
|
|
|
void CmndEnergyUsage(void) {
|
|
uint32_t values[2] = { 0 };
|
|
uint32_t params = ParseParameters(2, values);
|
|
if (params > 0) {
|
|
// Reset energy_usage.usage totals
|
|
RtcSettings.energy_usage.usage1_kWhtotal = (int32_t)values[0];
|
|
if (params > 1) {
|
|
RtcSettings.energy_usage.usage2_kWhtotal = (int32_t)values[1];
|
|
}
|
|
Settings->energy_usage.usage1_kWhtotal = RtcSettings.energy_usage.usage1_kWhtotal;
|
|
Settings->energy_usage.usage2_kWhtotal = RtcSettings.energy_usage.usage2_kWhtotal;
|
|
}
|
|
ResponseCmndEnergyUsageExport();
|
|
}
|
|
|
|
void CmndEnergyExport(void) {
|
|
uint32_t values[2] = { 0 };
|
|
uint32_t params = ParseParameters(2, values);
|
|
if (params > 0) {
|
|
// Reset energy_usage.return totals
|
|
RtcSettings.energy_usage.return1_kWhtotal = (int32_t)values[0] * 100;
|
|
if (params > 1) {
|
|
RtcSettings.energy_usage.return2_kWhtotal = (int32_t)values[1] * 100;
|
|
}
|
|
Settings->energy_usage.return1_kWhtotal = RtcSettings.energy_usage.return1_kWhtotal;
|
|
Settings->energy_usage.return2_kWhtotal = RtcSettings.energy_usage.return2_kWhtotal;
|
|
}
|
|
ResponseCmndEnergyUsageExport();
|
|
}
|
|
|
|
void CmndTariff(void) {
|
|
// Tariff1 22:00,23:00 - Tariff1 start hour for Standard Time and Daylight Savings Time
|
|
// Tariff2 6:00,7:00 - Tariff2 start hour for Standard Time and Daylight Savings Time
|
|
// Tariffx 1320, 1380 = minutes and also 22:00, 23:00
|
|
// Tariffx 22, 23 = hours and also 22:00, 23:00
|
|
// Tariff9 0/1
|
|
|
|
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= 2)) {
|
|
uint32_t tariff = XdrvMailbox.index -1;
|
|
uint32_t time_type = 0;
|
|
char *p;
|
|
if (POWER_OFF == XdrvMailbox.payload)
|
|
Settings->mbflag2.tariff_forced = 0;
|
|
else if (POWER_ON == XdrvMailbox.payload)
|
|
Settings->mbflag2.tariff_forced = tariff + 1;
|
|
else {
|
|
char *str = strtok_r(XdrvMailbox.data, ", ", &p); // 23:15, 22:30
|
|
while ((str != nullptr) && (time_type < 2)) {
|
|
char *q;
|
|
uint32_t value = strtol(str, &q, 10); // 23 or 22
|
|
Settings->tariff[tariff][time_type] = value;
|
|
if (value < 24) { // Below 24 is hours
|
|
Settings->tariff[tariff][time_type] *= 60; // Multiply hours by 60 minutes
|
|
char *minute = strtok_r(nullptr, ":", &q);
|
|
if (minute) {
|
|
value = strtol(minute, nullptr, 10); // 15 or 30
|
|
if (value > 59) {
|
|
value = 59;
|
|
}
|
|
Settings->tariff[tariff][time_type] += value;
|
|
}
|
|
}
|
|
if (Settings->tariff[tariff][time_type] > 1439) {
|
|
Settings->tariff[tariff][time_type] = 1439; // Max is 23:59
|
|
}
|
|
str = strtok_r(nullptr, ", ", &p);
|
|
time_type++;
|
|
}
|
|
}
|
|
}
|
|
else if (XdrvMailbox.index == 9) {
|
|
Settings->flag3.energy_weekend = XdrvMailbox.payload & 1; // CMND_TARIFF
|
|
}
|
|
Response_P(PSTR("{\"%s\":{\"Off-Peak\":{\"STD\":\"%s\",\"DST\":\"%s\"},\"Standard\":{\"STD\":\"%s\",\"DST\":\"%s\"},\"Weekend\":\"%s\",\"Forced\":\"%d\"}}"),
|
|
XdrvMailbox.command,
|
|
GetMinuteTime(Settings->tariff[0][0]).c_str(),GetMinuteTime(Settings->tariff[0][1]).c_str(),
|
|
GetMinuteTime(Settings->tariff[1][0]).c_str(),GetMinuteTime(Settings->tariff[1][1]).c_str(),
|
|
GetStateText(Settings->flag3.energy_weekend), // Tariff9
|
|
Settings->mbflag2.tariff_forced); // Tariff<x> ON|OFF
|
|
}
|
|
|
|
uint32_t EnergyGetCalibration(uint32_t cal_type, uint32_t chan = 0) {
|
|
uint32_t channel = ((1 == chan) && (2 == Energy->phase_count)) ? 1 : 0;
|
|
if (channel) {
|
|
switch (cal_type) {
|
|
case ENERGY_POWER_CALIBRATION: return Settings->energy_power_calibration2;
|
|
case ENERGY_VOLTAGE_CALIBRATION: return Settings->energy_voltage_calibration2;
|
|
case ENERGY_CURRENT_CALIBRATION: return Settings->energy_current_calibration2;
|
|
}
|
|
} else {
|
|
switch (cal_type) {
|
|
case ENERGY_POWER_CALIBRATION: return Settings->energy_power_calibration;
|
|
case ENERGY_VOLTAGE_CALIBRATION: return Settings->energy_voltage_calibration;
|
|
case ENERGY_CURRENT_CALIBRATION: return Settings->energy_current_calibration;
|
|
}
|
|
}
|
|
return Settings->energy_frequency_calibration;
|
|
}
|
|
|
|
void EnergySetCalibration(uint32_t cal_type, uint32_t value, uint32_t chan = 0) {
|
|
uint32_t channel = ((1 == chan) && (2 == Energy->phase_count)) ? 1 : 0;
|
|
if (channel) {
|
|
switch (cal_type) {
|
|
case ENERGY_POWER_CALIBRATION: Settings->energy_power_calibration2 = value; return;
|
|
case ENERGY_VOLTAGE_CALIBRATION: Settings->energy_voltage_calibration2 = value; return;
|
|
case ENERGY_CURRENT_CALIBRATION: Settings->energy_current_calibration2 = value; return;
|
|
case ENERGY_FREQUENCY_CALIBRATION: Settings->energy_frequency_calibration = value; return;
|
|
}
|
|
} else {
|
|
switch (cal_type) {
|
|
case ENERGY_POWER_CALIBRATION: Settings->energy_power_calibration = value; return;
|
|
case ENERGY_VOLTAGE_CALIBRATION: Settings->energy_voltage_calibration = value; return;
|
|
case ENERGY_CURRENT_CALIBRATION: Settings->energy_current_calibration = value; return;
|
|
case ENERGY_FREQUENCY_CALIBRATION: Settings->energy_frequency_calibration = value; return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void EnergyCommandCalSetResponse(uint32_t cal_type) {
|
|
if (XdrvMailbox.payload > 99) {
|
|
EnergySetCalibration(cal_type, XdrvMailbox.payload, XdrvMailbox.index -1);
|
|
}
|
|
if (ENERGY_FREQUENCY_CALIBRATION == cal_type) {
|
|
ResponseAppend_P(PSTR("%d}"), Settings->energy_frequency_calibration);
|
|
} else {
|
|
if (2 == Energy->phase_count) {
|
|
ResponseAppend_P(PSTR("[%d,%d]}"), EnergyGetCalibration(cal_type), EnergyGetCalibration(cal_type, 1));
|
|
} else {
|
|
ResponseAppend_P(PSTR("%d}"), EnergyGetCalibration(cal_type));
|
|
}
|
|
}
|
|
}
|
|
|
|
void EnergyCommandCalResponse(uint32_t cal_type) {
|
|
Energy->command_code = cal_type; // Is XxxCal command too
|
|
if (XnrgCall(FUNC_COMMAND)) { // XxxCal
|
|
ResponseCmnd();
|
|
EnergyCommandCalSetResponse(cal_type);
|
|
}
|
|
}
|
|
|
|
void CmndPowerCal(void) {
|
|
EnergyCommandCalResponse(ENERGY_POWER_CALIBRATION);
|
|
}
|
|
void CmndVoltageCal(void) {
|
|
EnergyCommandCalResponse(ENERGY_VOLTAGE_CALIBRATION);
|
|
}
|
|
void CmndCurrentCal(void) {
|
|
EnergyCommandCalResponse(ENERGY_CURRENT_CALIBRATION);
|
|
}
|
|
void CmndFrequencyCal(void) {
|
|
EnergyCommandCalResponse(ENERGY_FREQUENCY_CALIBRATION);
|
|
}
|
|
|
|
void EnergyCommandSetCalResponse(uint32_t cal_type) {
|
|
Energy->command_code = CMND_POWERSET + cal_type; // Adjust for XxxSet command
|
|
if (XnrgCall(FUNC_COMMAND)) { // XxxSet
|
|
Response_P(PSTR("{\"%sCal\":"), XdrvMailbox.command);
|
|
EnergyCommandCalSetResponse(cal_type);
|
|
}
|
|
}
|
|
|
|
void EnergyCommandSetCal(uint32_t cal_type) {
|
|
if (XdrvMailbox.data_len) {
|
|
// PowerSet 61.2
|
|
// CurrentSet 263
|
|
if (ArgC() > 1) {
|
|
// Calibrate current and power using calibrated voltage and known resistive load voltage and power
|
|
// PowerSet 60.0,230
|
|
// CurrentSet 60.0,230
|
|
char argument[32];
|
|
float Pgoal = CharToFloat(ArgV(argument, 1)); // 60.0 W
|
|
float Ugoal = CharToFloat(ArgV(argument, 2)); // 230 V
|
|
float Igoal = Pgoal / Ugoal; // 0.26087 A
|
|
float R = Ugoal / Igoal; // 881,666 Ohm
|
|
|
|
uint32_t channel = XdrvMailbox.index;
|
|
if (channel > Energy->phase_count) { channel = 1; }
|
|
channel--;
|
|
float Umeas = Energy->voltage[channel]; // 232.0
|
|
// Calculate current and power based on measured voltage
|
|
float Ical = Umeas / R; // 0.26306 A
|
|
float Pcal = Umeas * Ical; // 61.03 W
|
|
Ical *= 1000; // A to mA
|
|
|
|
uint32_t cal_type1 = ENERGY_CURRENT_CALIBRATION;
|
|
float cal1 = Ical;
|
|
float cal2 = Pcal;
|
|
if (ENERGY_CURRENT_CALIBRATION == cal_type) {
|
|
cal_type1 = ENERGY_POWER_CALIBRATION;
|
|
cal1 = Pcal;
|
|
cal2 = Ical;
|
|
}
|
|
XdrvMailbox.data = argument;
|
|
ext_snprintf_P(argument, sizeof(argument), PSTR("%5_f"), &cal1);
|
|
XdrvMailbox.data_len = strlen(argument);
|
|
EnergyCommandSetCalResponse(cal_type1);
|
|
ext_snprintf_P(argument, sizeof(argument), PSTR("%5_f"), &cal2);
|
|
XdrvMailbox.data_len = strlen(argument);
|
|
}
|
|
}
|
|
EnergyCommandSetCalResponse(cal_type);
|
|
}
|
|
|
|
void CmndPowerSet(void) {
|
|
EnergyCommandSetCal(ENERGY_POWER_CALIBRATION);
|
|
}
|
|
void CmndVoltageSet(void) {
|
|
EnergyCommandSetCalResponse(ENERGY_VOLTAGE_CALIBRATION);
|
|
}
|
|
void CmndCurrentSet(void) {
|
|
EnergyCommandSetCal(ENERGY_CURRENT_CALIBRATION);
|
|
}
|
|
void CmndFrequencySet(void) {
|
|
EnergyCommandSetCalResponse(ENERGY_FREQUENCY_CALIBRATION);
|
|
}
|
|
|
|
void CmndModuleAddress(void) {
|
|
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload < 4) && (1 == Energy->phase_count)) {
|
|
Energy->command_code = CMND_MODULEADDRESS;
|
|
if (XnrgCall(FUNC_COMMAND)) { // Module address
|
|
ResponseCmndDone();
|
|
}
|
|
}
|
|
}
|
|
|
|
void CmndEnergyConfig(void) {
|
|
Energy->command_code = CMND_ENERGYCONFIG;
|
|
ResponseClear();
|
|
if (XnrgCall(FUNC_COMMAND)) {
|
|
if (!ResponseLength()) {
|
|
ResponseCmndDone();
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef USE_ENERGY_MARGIN_DETECTION
|
|
/*********************************************************************************************\
|
|
* USE_ENERGY_MARGIN_DETECTION and USE_ENERGY_POWER_LIMIT
|
|
\*********************************************************************************************/
|
|
|
|
void EnergyMarginStatus(void) {
|
|
Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS9_MARGIN "\":{\"" D_CMND_POWERDELTA "\":"));
|
|
if (Energy->phase_count > 1) {
|
|
for (uint32_t i = 0; i < Energy->phase_count; i++) {
|
|
ResponseAppend_P(PSTR("%c%d"), (i)?',':'[', Settings->energy_power_delta[i]);
|
|
}
|
|
ResponseAppend_P(PSTR("]"));
|
|
} else {
|
|
ResponseAppend_P(PSTR("%d"), Settings->energy_power_delta[0]);
|
|
}
|
|
ResponseAppend_P(PSTR(",\"" D_CMND_POWERLOW "\":%d,\"" D_CMND_POWERHIGH "\":%d,\""
|
|
D_CMND_VOLTAGELOW "\":%d,\"" D_CMND_VOLTAGEHIGH "\":%d,\""
|
|
D_CMND_CURRENTLOW "\":%d,\"" D_CMND_CURRENTHIGH "\":%d"),
|
|
Settings->energy_min_power, Settings->energy_max_power,
|
|
Settings->energy_min_voltage, Settings->energy_max_voltage,
|
|
Settings->energy_min_current, Settings->energy_max_current);
|
|
#ifdef USE_ENERGY_POWER_LIMIT
|
|
ResponseAppend_P(PSTR(",\"" D_CMND_MAXPOWER "\":%d,\""
|
|
D_CMND_MAXPOWERHOLD "\":%d,\"" D_CMND_MAXPOWERWINDOW "\":%d,\""
|
|
D_CMND_MAXENERGY "\":%d,\"" D_CMND_MAXENERGYSTART "\":%d"),
|
|
Settings->energy_max_power_limit,
|
|
Settings->energy_max_power_limit_hold, Settings->energy_max_power_limit_window,
|
|
Settings->energy_max_energy, Settings->energy_max_energy_start);
|
|
#endif // USE_ENERGY_POWER_LIMIT
|
|
ResponseJsonEndEnd();
|
|
}
|
|
|
|
void CmndPowerDelta(void) {
|
|
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= ENERGY_MAX_PHASES)) {
|
|
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 32000)) {
|
|
Settings->energy_power_delta[XdrvMailbox.index -1] = XdrvMailbox.payload;
|
|
}
|
|
ResponseCmndIdxNumber(Settings->energy_power_delta[XdrvMailbox.index -1]);
|
|
}
|
|
}
|
|
|
|
bool ResponseCmndEnergyMargin(uint16_t* value, uint32_t max_value, uint32_t default_value = 1);
|
|
bool ResponseCmndEnergyMargin(uint16_t* value, uint32_t max_value, uint32_t default_value) {
|
|
bool value_changed = false;
|
|
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= max_value)) {
|
|
*value = (1 == XdrvMailbox.payload) ? default_value : XdrvMailbox.payload;
|
|
value_changed = true;
|
|
}
|
|
ResponseCmndNumber(*value);
|
|
return value_changed;
|
|
}
|
|
|
|
void CmndPowerLow(void) {
|
|
ResponseCmndEnergyMargin(&Settings->energy_min_power, 6000);
|
|
}
|
|
|
|
void CmndPowerHigh(void) {
|
|
ResponseCmndEnergyMargin(&Settings->energy_max_power, 6000);
|
|
}
|
|
|
|
void CmndVoltageLow(void) {
|
|
ResponseCmndEnergyMargin(&Settings->energy_min_voltage, 500);
|
|
}
|
|
|
|
void CmndVoltageHigh(void) {
|
|
ResponseCmndEnergyMargin(&Settings->energy_max_voltage, 500);
|
|
}
|
|
|
|
void CmndCurrentLow(void) {
|
|
ResponseCmndEnergyMargin(&Settings->energy_min_current, 25000);
|
|
}
|
|
|
|
void CmndCurrentHigh(void) {
|
|
ResponseCmndEnergyMargin(&Settings->energy_max_current, 25000);
|
|
}
|
|
|
|
#ifdef USE_ENERGY_POWER_LIMIT
|
|
void CmndMaxPower(void) {
|
|
ResponseCmndEnergyMargin(&Settings->energy_max_power_limit, 6000);
|
|
}
|
|
|
|
void CmndMaxPowerHold(void) {
|
|
ResponseCmndEnergyMargin(&Settings->energy_max_power_limit_hold, 6000, MAX_POWER_HOLD);
|
|
}
|
|
|
|
void CmndMaxPowerWindow(void) {
|
|
ResponseCmndEnergyMargin(&Settings->energy_max_power_limit_window, 6000, MAX_POWER_WINDOW);
|
|
}
|
|
|
|
void CmndMaxEnergy(void) {
|
|
if (ResponseCmndEnergyMargin(&Settings->energy_max_energy, 6000)) {
|
|
Energy->max_energy_state = 3;
|
|
}
|
|
}
|
|
|
|
void CmndMaxEnergyStart(void) {
|
|
ResponseCmndEnergyMargin(&Settings->energy_max_energy_start, 23);
|
|
}
|
|
#endif // USE_ENERGY_POWER_LIMIT
|
|
#endif // USE_ENERGY_MARGIN_DETECTION
|
|
|
|
/********************************************************************************************/
|
|
|
|
void EnergyDrvInit(void) {
|
|
Energy = (tEnergy*)calloc(1, sizeof(tEnergy)); // Need calloc to reset registers to 0/false
|
|
if (!Energy) { return; }
|
|
|
|
Energy->value = nullptr;
|
|
// Energy->voltage_common = false;
|
|
// Energy->frequency_common = false;
|
|
// Energy->use_overtemp = false;
|
|
for (uint32_t phase = 0; phase < ENERGY_MAX_PHASES; phase++) {
|
|
Energy->apparent_power[phase] = NAN;
|
|
Energy->reactive_power[phase] = NAN;
|
|
Energy->power_factor[phase] = NAN;
|
|
Energy->frequency[phase] = NAN;
|
|
Energy->export_active[phase] = NAN;
|
|
}
|
|
Energy->phase_count = 1; // Number of phases active
|
|
Energy->voltage_available = true; // Enable if voltage is measured
|
|
Energy->current_available = true; // Enable if current is measured
|
|
Energy->power_on = true;
|
|
|
|
TasmotaGlobal.energy_driver = ENERGY_NONE;
|
|
XnrgCall(FUNC_PRE_INIT); // Find first energy driver
|
|
if (TasmotaGlobal.energy_driver) {
|
|
AddLog(LOG_LEVEL_INFO, PSTR("NRG: Init driver %d"), TasmotaGlobal.energy_driver);
|
|
}
|
|
}
|
|
|
|
void EnergySnsInit(void)
|
|
{
|
|
XnrgCall(FUNC_INIT);
|
|
|
|
if (TasmotaGlobal.energy_driver) {
|
|
/*
|
|
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Rtc valid %d, kWhtoday_ph Rtc %d/%d/%d, Set %d/%d/%d"),
|
|
RtcSettingsValid(),
|
|
RtcSettings.energy_kWhtoday_ph[0],RtcSettings.energy_kWhtoday_ph[1],RtcSettings.energy_kWhtoday_ph[2],
|
|
Settings->energy_kWhtoday_ph[0],Settings->energy_kWhtoday_ph[1],Settings->energy_kWhtoday_ph[2]
|
|
);
|
|
*/
|
|
for (uint32_t i = 0; i < 3; i++) {
|
|
// Energy->kWhtoday_offset[i] = 0; // Reset by EnergyDrvInit()
|
|
// 20220805 - Change from https://github.com/arendst/Tasmota/issues/16118
|
|
if (RtcSettingsValid()) {
|
|
Energy->kWhtoday_offset[i] = RtcSettings.energy_kWhtoday_ph[i];
|
|
RtcSettings.energy_kWhtoday_ph[i] = 0;
|
|
Energy->kWhtoday_offset_init = true;
|
|
}
|
|
// Energy->kWhtoday_ph[i] = 0; // Reset by EnergyDrvInit()
|
|
// Energy->kWhtoday_delta[i] = 0; // Reset by EnergyDrvInit()
|
|
Energy->period[i] = Energy->kWhtoday_offset[i];
|
|
if (Energy->local_energy_active_export) {
|
|
Energy->export_active[i] = 0; // Was set to NAN by EnergyDrvInit()
|
|
}
|
|
}
|
|
EnergyUpdateToday();
|
|
ticker_energy.attach_ms(200, Energy200ms);
|
|
}
|
|
}
|
|
|
|
void EnergyShow(bool json) {
|
|
bool voltage_common = (Settings->flag6.no_voltage_common) ? false : Energy->voltage_common;
|
|
bool frequency_common = (Settings->flag6.no_voltage_common) ? false : Energy->frequency_common;
|
|
|
|
if (voltage_common) {
|
|
for (uint32_t i = 0; i < Energy->phase_count; i++) {
|
|
Energy->voltage[i] = Energy->voltage[0];
|
|
}
|
|
}
|
|
|
|
float apparent_power[Energy->phase_count];
|
|
float reactive_power[Energy->phase_count];
|
|
float power_factor[Energy->phase_count];
|
|
if (!Energy->type_dc) {
|
|
if (Energy->current_available && Energy->voltage_available) {
|
|
for (uint32_t i = 0; i < Energy->phase_count; i++) {
|
|
if (0 == Energy->current[i]) {
|
|
Energy->active_power[i] = 0;
|
|
}
|
|
|
|
apparent_power[i] = Energy->apparent_power[i];
|
|
if (isnan(apparent_power[i])) {
|
|
apparent_power[i] = Energy->voltage[i] * Energy->current[i];
|
|
}
|
|
else if (0 == Energy->current[i]) {
|
|
apparent_power[i] = 0;
|
|
}
|
|
/*
|
|
if (apparent_power[i] < Energy->active_power[i]) { // Should be impossible
|
|
Energy->active_power[i] = apparent_power[i];
|
|
}
|
|
power_factor[i] = Energy->power_factor[i];
|
|
if (isnan(power_factor[i])) {
|
|
power_factor[i] = (Energy->active_power[i] && apparent_power[i]) ? Energy->active_power[i] / apparent_power[i] : 0;
|
|
if (power_factor[i] > 1) { // Should not happen (Active > Apparent)
|
|
power_factor[i] = 1;
|
|
}
|
|
}
|
|
*/
|
|
power_factor[i] = Energy->power_factor[i];
|
|
if (isnan(power_factor[i])) {
|
|
power_factor[i] = (Energy->active_power[i] && apparent_power[i]) ? Energy->active_power[i] / apparent_power[i] : 0;
|
|
}
|
|
if (apparent_power[i] < Energy->active_power[i]) { // Should be impossible
|
|
if (apparent_power[i]) {
|
|
if ((power_factor[i] >= 1.02f) && (power_factor[i] < 2.0f)) { // Skip below 2% and don't expect 50% differences
|
|
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NRG: Calibrate as Active %3_fW > Apparent %3_fVA (PF = %4_f)"),
|
|
&Energy->active_power[i], &apparent_power[i], &power_factor[i]);
|
|
}
|
|
}
|
|
apparent_power[i] = Energy->active_power[i]; // Force apparent equal to active as mis-calibrated
|
|
if (power_factor[i] > 1) { // Should not happen (Active > Apparent)
|
|
power_factor[i] = 1;
|
|
}
|
|
}
|
|
|
|
reactive_power[i] = Energy->reactive_power[i];
|
|
if (isnan(reactive_power[i])) {
|
|
reactive_power[i] = 0;
|
|
uint32_t difference = ((uint32_t)(apparent_power[i] * 100) - (uint32_t)(Energy->active_power[i] * 100)) / 10;
|
|
if ((Energy->current[i] > 0.005f) && ((difference > 15) || (difference > (uint32_t)(apparent_power[i] * 100 / 1000)))) {
|
|
// calculating reactive power only if current is greater than 0.005A and
|
|
// difference between active and apparent power is greater than 1.5W or 1%
|
|
//reactive_power[i] = (float)(RoundSqrtInt((uint64_t)(apparent_power[i] * apparent_power[i] * 100) - (uint64_t)(Energy->active_power[i] * Energy->active_power[i] * 100))) / 10;
|
|
float power_diff = apparent_power[i] * apparent_power[i] - Energy->active_power[i] * Energy->active_power[i];
|
|
if (power_diff < 10737418) // 2^30 / 100 (RoundSqrtInt is limited to 2^30-1)
|
|
reactive_power[i] = (float)(RoundSqrtInt((uint32_t)(power_diff * 100.0f))) / 10.0f;
|
|
else
|
|
reactive_power[i] = (float)(SqrtInt((uint32_t)(power_diff)));
|
|
}
|
|
}
|
|
else if (0 == Energy->current[i]) {
|
|
reactive_power[i] = 0;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
float energy_yesterday_ph[Energy->phase_count];
|
|
float active_power_sum = 0.0f;
|
|
int negative_phases = 0;
|
|
for (uint32_t i = 0; i < Energy->phase_count; i++) {
|
|
energy_yesterday_ph[i] = (float)Settings->energy_kWhyesterday_ph[i] / 100000;
|
|
active_power_sum += Energy->active_power[i];
|
|
negative_phases += (Energy->active_power[i] < 0) ? -1 : 1;
|
|
}
|
|
|
|
bool energy_tariff = false;
|
|
float energy_usage[2];
|
|
float energy_return[2];
|
|
if (Settings->mbflag2.tariff_forced || (Settings->tariff[0][0] != Settings->tariff[1][0])) {
|
|
energy_usage[0] = (float)RtcSettings.energy_usage.usage1_kWhtotal / 1000; // Tariff1
|
|
energy_usage[1] = (float)RtcSettings.energy_usage.usage2_kWhtotal / 1000; // Tariff2
|
|
energy_return[0] = (float)RtcSettings.energy_usage.return1_kWhtotal / 1000; // Tariff1
|
|
energy_return[1] = (float)RtcSettings.energy_usage.return2_kWhtotal / 1000; // Tariff2
|
|
energy_tariff = true;
|
|
}
|
|
|
|
if (json) {
|
|
bool show_energy_period = (0 == TasmotaGlobal.tele_period);
|
|
|
|
ResponseAppend_P(PSTR(",\"" D_RSLT_ENERGY "\":{\"" D_JSON_TOTAL_START_TIME "\":\"%s\",\"" D_JSON_TOTAL "\":%s"),
|
|
GetDT(Settings->energy_kWhtotal_time).c_str(),
|
|
EnergyFmt(Energy->total, Settings->flag2.energy_resolution, 2));
|
|
|
|
if (energy_tariff) {
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_TOTAL D_CMND_TARIFF "\":%s"),
|
|
EnergyFmt(energy_usage, Settings->flag2.energy_resolution, 6));
|
|
}
|
|
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_YESTERDAY "\":%s"),
|
|
EnergyFmt(energy_yesterday_ph, Settings->flag2.energy_resolution, 2));
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_TODAY "\":%s"),
|
|
EnergyFmt(Energy->daily, Settings->flag2.energy_resolution, 2));
|
|
|
|
/*
|
|
#if defined(SDM630_IMPORT) || defined(SDM72_IMPEXP)
|
|
if (!isnan(Energy->import_active[0])) {
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_IMPORT_ACTIVE "\":%s"),
|
|
EnergyFmt(Energy->import_active, Settings->flag2.energy_resolution));
|
|
if (energy_tariff) {
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_IMPORT D_CMND_TARIFF "\":%s"),
|
|
EnergyFmt(energy_return, Settings->flag2.energy_resolution, 6));
|
|
}
|
|
}
|
|
#endif // SDM630_IMPORT || SDM72_IMPEXP
|
|
*/
|
|
|
|
if (!isnan(Energy->export_active[0])) {
|
|
uint32_t single = (!isnan(Energy->export_active[1]) && !isnan(Energy->export_active[2])) ? 0 : 1;
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_TODAY_SUM_IMPORT "\":%s"),
|
|
EnergyFmt(&Energy->daily_sum_import_balanced, Settings->flag2.energy_resolution, 1));
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_TODAY_SUM_EXPORT "\":%s"),
|
|
EnergyFmt(&Energy->daily_sum_export_balanced, Settings->flag2.energy_resolution, 1));
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_EXPORT_ACTIVE "\":%s"),
|
|
EnergyFmt(Energy->export_active, Settings->flag2.energy_resolution, single));
|
|
|
|
if (energy_tariff) {
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_EXPORT D_CMND_TARIFF "\":%s"),
|
|
EnergyFmt(energy_return, Settings->flag2.energy_resolution, 6));
|
|
}
|
|
}
|
|
|
|
if (show_energy_period) {
|
|
float energy_period[Energy->phase_count];
|
|
for (uint32_t i = 0; i < Energy->phase_count; i++) {
|
|
energy_period[i] = (float)(RtcSettings.energy_kWhtoday_ph[i] - Energy->period[i]) / 100; // Wh
|
|
Energy->period[i] = RtcSettings.energy_kWhtoday_ph[i];
|
|
}
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_PERIOD "\":%s"),
|
|
EnergyFmt(energy_period, Settings->flag2.wattage_resolution));
|
|
}
|
|
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_POWERUSAGE "\":%s"),
|
|
EnergyFmt(Energy->active_power, Settings->flag2.wattage_resolution));
|
|
if (!Energy->type_dc) {
|
|
if (Energy->current_available && Energy->voltage_available) {
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_APPARENT_POWERUSAGE "\":%s"),
|
|
EnergyFmt(apparent_power, Settings->flag2.wattage_resolution));
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_REACTIVE_POWERUSAGE "\":%s"),
|
|
EnergyFmt(reactive_power, Settings->flag2.wattage_resolution));
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_POWERFACTOR "\":%s"),
|
|
EnergyFmt(power_factor, 2));
|
|
}
|
|
}
|
|
if (!isnan(Energy->frequency[0])) {
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_FREQUENCY "\":%s"),
|
|
EnergyFmt(Energy->frequency, Settings->flag2.frequency_resolution, frequency_common));
|
|
}
|
|
if (Energy->voltage_available) {
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_VOLTAGE "\":%s"),
|
|
EnergyFmt(Energy->voltage, Settings->flag2.voltage_resolution, voltage_common));
|
|
}
|
|
if (Energy->current_available) {
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_CURRENT "\":%s"),
|
|
EnergyFmt(Energy->current, Settings->flag2.current_resolution));
|
|
}
|
|
XnrgCall(FUNC_JSON_APPEND);
|
|
ResponseJsonEnd();
|
|
|
|
#ifdef USE_DOMOTICZ
|
|
if (show_energy_period) { // Only send if telemetry
|
|
char temp_chr[FLOATSZ];
|
|
if (Energy->voltage_available) {
|
|
dtostrfd(Energy->voltage[0], Settings->flag2.voltage_resolution, temp_chr);
|
|
DomoticzSensor(DZ_VOLTAGE, temp_chr); // Voltage
|
|
}
|
|
if (Energy->current_available) {
|
|
dtostrfd(Energy->current[0], Settings->flag2.current_resolution, temp_chr);
|
|
DomoticzSensor(DZ_CURRENT, temp_chr); // Current
|
|
}
|
|
dtostrfd(Energy->total_sum * 1000, 1, temp_chr);
|
|
DomoticzSensorPowerEnergy((int)active_power_sum, temp_chr); // PowerUsage, EnergyToday
|
|
|
|
char energy_usage_chr[2][FLOATSZ];
|
|
char energy_return_chr[2][FLOATSZ];
|
|
dtostrfd((float)RtcSettings.energy_usage.usage1_kWhtotal, 1, energy_usage_chr[0]); // Tariff1
|
|
dtostrfd((float)RtcSettings.energy_usage.usage2_kWhtotal, 1, energy_usage_chr[1]); // Tariff2
|
|
dtostrfd((float)RtcSettings.energy_usage.return1_kWhtotal, 1, energy_return_chr[0]);
|
|
dtostrfd((float)RtcSettings.energy_usage.return2_kWhtotal, 1, energy_return_chr[1]);
|
|
DomoticzSensorP1SmartMeter(energy_usage_chr[0], energy_usage_chr[1], energy_return_chr[0], energy_return_chr[1], (int)active_power_sum);
|
|
|
|
}
|
|
#endif // USE_DOMOTICZ
|
|
#ifdef USE_KNX
|
|
if (show_energy_period) {
|
|
if (Energy->voltage_available) {
|
|
KnxSensor(KNX_ENERGY_VOLTAGE, Energy->voltage[0]);
|
|
}
|
|
if (Energy->current_available) {
|
|
KnxSensor(KNX_ENERGY_CURRENT, Energy->current[0]);
|
|
}
|
|
KnxSensor(KNX_ENERGY_POWER, active_power_sum);
|
|
if (!Energy->type_dc) {
|
|
KnxSensor(KNX_ENERGY_POWERFACTOR, power_factor[0]);
|
|
}
|
|
KnxSensor(KNX_ENERGY_DAILY, Energy->daily_sum);
|
|
KnxSensor(KNX_ENERGY_TOTAL, Energy->total_sum);
|
|
KnxSensor(KNX_ENERGY_YESTERDAY, Energy->yesterday_sum);
|
|
}
|
|
#endif // USE_KNX
|
|
#ifdef USE_WEBSERVER
|
|
} else {
|
|
// Need a new table supporting more columns using empty columns (with in data rows) as easy column spacing
|
|
// {s}</th><th></th><th>Head1</th><th></th><td>{e}
|
|
// {s}</th><th></th><th>Head1</th><th></th><th>Head2</th><th></th><td>{e}
|
|
// {s}</th><th></th><th>Head1</th><th></th><th>Head2</th><th></th><th>Head3</th><th></th><td>{e}
|
|
// {s}</th><th></th><th>Head1</th><th></th><th>Head2</th><th></th><th>Head3</th><th></th><th>Head4</th><th></th><td>{e}
|
|
WSContentSend_P(PSTR("</table>{t}{s}</th><th></th>")); // First column is empty ({t} = <table style='width:100%'>, {s} = <tr><th>)
|
|
bool label_o = voltage_common;
|
|
bool no_label = (1 == Energy->phase_count);
|
|
char number[4];
|
|
for (uint32_t i = 0; i < Energy->phase_count; i++) {
|
|
WSContentSend_P(PSTR("<th style='text-align:center'>%s%s<th></th>"), (no_label)?"":(label_o)?"O":"L", (no_label)?"":itoa(i +1, number, 10));
|
|
}
|
|
WSContentSend_P(PSTR("<td>{e}")); // Last column is units ({e} = </td></tr>)
|
|
if (Energy->voltage_available) {
|
|
WSContentSend_PD(HTTP_SNS_VOLTAGE, WebEnergyFmt(Energy->voltage, Settings->flag2.voltage_resolution, voltage_common));
|
|
}
|
|
if (!isnan(Energy->frequency[0])) {
|
|
WSContentSend_PD(PSTR("{s}" D_FREQUENCY "{m}%s " D_UNIT_HERTZ "{e}"),
|
|
WebEnergyFmt(Energy->frequency, Settings->flag2.frequency_resolution, frequency_common));
|
|
}
|
|
if (Energy->current_available) {
|
|
WSContentSend_PD(HTTP_SNS_CURRENT, WebEnergyFmt(Energy->current, Settings->flag2.current_resolution));
|
|
}
|
|
WSContentSend_PD(HTTP_SNS_POWER, WebEnergyFmt(Energy->active_power, Settings->flag2.wattage_resolution));
|
|
if (!Energy->type_dc) {
|
|
if (Energy->current_available && Energy->voltage_available) {
|
|
WSContentSend_PD(HTTP_SNS_POWERUSAGE_APPARENT, WebEnergyFmt(apparent_power, Settings->flag2.wattage_resolution));
|
|
WSContentSend_PD(HTTP_SNS_POWERUSAGE_REACTIVE, WebEnergyFmt(reactive_power, Settings->flag2.wattage_resolution));
|
|
WSContentSend_PD(HTTP_SNS_POWER_FACTOR, WebEnergyFmt(power_factor, 2));
|
|
}
|
|
}
|
|
if (abs(negative_phases) != Energy->phase_count) { // Provide total power if producing power (PV) and multi phase
|
|
WSContentSend_PD(HTTP_SNS_POWER_TOTAL, WebEnergyFmt(Energy->active_power, Settings->flag2.wattage_resolution, 3));
|
|
}
|
|
WSContentSend_PD(HTTP_SNS_ENERGY_TODAY, WebEnergyFmt(Energy->daily, Settings->flag2.energy_resolution, 2));
|
|
WSContentSend_PD(HTTP_SNS_ENERGY_YESTERDAY, WebEnergyFmt(energy_yesterday_ph, Settings->flag2.energy_resolution, 2));
|
|
WSContentSend_PD(HTTP_SNS_ENERGY_TOTAL, WebEnergyFmt(Energy->total, Settings->flag2.energy_resolution, 2));
|
|
if (!isnan(Energy->export_active[0])) {
|
|
uint32_t single = (!isnan(Energy->export_active[1]) && !isnan(Energy->export_active[2])) ? 2 : 1;
|
|
WSContentSend_PD(HTTP_SNS_EXPORT_ACTIVE, WebEnergyFmt(Energy->export_active, Settings->flag2.energy_resolution, single));
|
|
}
|
|
XnrgCall(FUNC_WEB_COL_SENSOR);
|
|
WSContentSend_P(PSTR("</table>{t}")); // {t} = <table style='width:100%'> - Define for next FUNC_WEB_SENSOR
|
|
XnrgCall(FUNC_WEB_SENSOR);
|
|
#endif // USE_WEBSERVER
|
|
}
|
|
EnergyFmtFree();
|
|
}
|
|
|
|
/*********************************************************************************************\
|
|
* Interface
|
|
\*********************************************************************************************/
|
|
|
|
bool Xdrv03(uint32_t function)
|
|
{
|
|
bool result = false;
|
|
|
|
if (FUNC_PRE_INIT == function) {
|
|
EnergyDrvInit();
|
|
}
|
|
else if (TasmotaGlobal.energy_driver) {
|
|
switch (function) {
|
|
case FUNC_LOOP:
|
|
case FUNC_SLEEP_LOOP:
|
|
XnrgCall(FUNC_LOOP);
|
|
break;
|
|
case FUNC_EVERY_250_MSECOND:
|
|
if (TasmotaGlobal.uptime > 4) {
|
|
XnrgCall(FUNC_EVERY_250_MSECOND);
|
|
}
|
|
break;
|
|
case FUNC_EVERY_SECOND:
|
|
XnrgCall(FUNC_EVERY_SECOND);
|
|
break;
|
|
case FUNC_SERIAL:
|
|
result = XnrgCall(FUNC_SERIAL);
|
|
break;
|
|
#ifdef USE_ENERGY_MARGIN_DETECTION
|
|
case FUNC_SET_POWER:
|
|
Energy->power_steady_counter = 2;
|
|
break;
|
|
#endif // USE_ENERGY_MARGIN_DETECTION
|
|
case FUNC_COMMAND:
|
|
result = DecodeCommand(kEnergyCommands, EnergyCommand);
|
|
break;
|
|
case FUNC_NETWORK_UP:
|
|
XnrgCall(FUNC_NETWORK_UP);
|
|
break;
|
|
case FUNC_NETWORK_DOWN:
|
|
XnrgCall(FUNC_NETWORK_DOWN);
|
|
break;
|
|
case FUNC_ACTIVE:
|
|
result = true;
|
|
break;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool Xsns03(uint32_t function)
|
|
{
|
|
bool result = false;
|
|
|
|
if (TasmotaGlobal.energy_driver) {
|
|
switch (function) {
|
|
case FUNC_EVERY_SECOND:
|
|
EnergyEverySecond();
|
|
break;
|
|
case FUNC_JSON_APPEND:
|
|
EnergyShow(true);
|
|
break;
|
|
#ifdef USE_WEBSERVER
|
|
case FUNC_WEB_SENSOR:
|
|
EnergyShow(false);
|
|
break;
|
|
#endif // USE_WEBSERVER
|
|
case FUNC_SAVE_BEFORE_RESTART:
|
|
EnergySaveState();
|
|
break;
|
|
case FUNC_INIT:
|
|
EnergySnsInit();
|
|
break;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#endif // USE_ENERGY_SENSOR
|
|
#endif // ESP8266
|