Tasmota/tasmota/tasmota_support/support_switch.ino

453 lines
19 KiB
C++

/*
support_switch.ino - switch support for Tasmota
Copyright (C) 2021 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#define SWITCH_V3
#ifdef SWITCH_V3
/*********************************************************************************************\
* Switch support with input filter
*
* Inspired by (https://github.com/OLIMEX/olimex-iot-firmware-esp8266/blob/master/olimex/user/user_switch2.c)
\*********************************************************************************************/
const uint8_t SWITCH_PROBE_INTERVAL = 10; // Time in milliseconds between switch input probe
const uint8_t SWITCH_FAST_PROBE_INTERVAL = 2; // Time in milliseconds between switch input probe for AC detection
const uint8_t AC_PERIOD = (20 + SWITCH_FAST_PROBE_INTERVAL - 1) / SWITCH_FAST_PROBE_INTERVAL; // Duration of an AC wave in probe intervals
// Switch Mode definietions
#define SM_TIMER_MASK 0x3F
#define SM_NO_TIMER_MASK 0xFF
#define SM_FIRST_PRESS 0x40
#define SM_SECOND_PRESS 0x80
#define POWER_NONE 99
const char kSwitchPressStates[] PROGMEM =
"||||POWER_INCREMENT|POWER_INV|POWER_CLEAR|POWER_RELEASE|POWER_100||POWER_DELAYED";
#include <Ticker.h>
Ticker TickerSwitch;
struct SWITCH {
uint32_t debounce = 0; // Switch debounce timer
uint32_t no_pullup_mask = 0; // Switch pull-up bitmask flags
uint32_t pulldown_mask = 0; // Switch pull-down bitmask flags
uint8_t state[MAX_SWITCHES] = { 0 };
uint8_t last_state[MAX_SWITCHES]; // Last wall switch states
uint8_t hold_timer[MAX_SWITCHES] = { 0 }; // Timer for wallswitch push button hold
uint8_t virtual_state[MAX_SWITCHES]; // Virtual switch states
uint8_t first_change = 0;
uint8_t present = 0;
} Switch;
/********************************************************************************************/
void SwitchPullupFlag(uint32 switch_bit) {
bitSet(Switch.no_pullup_mask, switch_bit);
}
void SwitchPulldownFlag(uint32 switch_bit) {
bitSet(Switch.pulldown_mask, switch_bit);
}
void SwitchSetVirtual(uint32_t index, uint32_t state) {
Switch.virtual_state[index] = state;
}
uint8_t SwitchGetVirtual(uint32_t index) {
return Switch.virtual_state[index];
}
uint8_t SwitchLastState(uint32_t index) {
return Switch.last_state[index];
}
bool SwitchState(uint32_t index) {
uint32_t switchmode = Settings->switchmode[index];
return ((FOLLOW_INV == switchmode) ||
(PUSHBUTTON_INV == switchmode) ||
(PUSHBUTTONHOLD_INV == switchmode) ||
(FOLLOWMULTI_INV == switchmode) ||
(PUSHHOLDMULTI_INV == switchmode) ||
(PUSHON_INV == switchmode)
) ^ Switch.last_state[index];
}
/*********************************************************************************************/
void SwitchProbe(void) {
if (TasmotaGlobal.uptime < 4) { return; } // Block GPIO for 4 seconds after poweron to workaround Wemos D1 / Obi RTS circuit
uint32_t state_filter;
uint32_t first_change = Switch.first_change;
uint32_t debounce_flags = Settings->switch_debounce % 10;
bool force_high = (debounce_flags &1); // 51, 101, 151 etc
bool force_low = (debounce_flags &2); // 52, 102, 152 etc
bool ac_detect = (debounce_flags == 9);
if (ac_detect) {
if (Settings->switch_debounce < 2 * AC_PERIOD * SWITCH_FAST_PROBE_INTERVAL + 9) {
state_filter = 2 * AC_PERIOD;
} else if (Settings->switch_debounce > (0x7f - 2 * AC_PERIOD) * SWITCH_FAST_PROBE_INTERVAL) {
state_filter = 0x7f;
} else {
state_filter = (Settings->switch_debounce - 9) / SWITCH_FAST_PROBE_INTERVAL;
}
} else {
state_filter = Settings->switch_debounce / SWITCH_PROBE_INTERVAL; // 5, 10, 15
}
for (uint32_t i = 0; i < MAX_SWITCHES; i++) {
if (!PinUsed(GPIO_SWT1, i)) { continue; }
// Olimex user_switch2.c code to fix 50Hz induced pulses
if (1 == digitalRead(Pin(GPIO_SWT1, i))) {
if (ac_detect) { // Enabled with SwitchDebounce x9
Switch.state[i] |= 0x80;
if (Switch.state[i] > 0x80) {
Switch.state[i]--;
if (0x80 == Switch.state[i]) {
Switch.virtual_state[i] = 0;
Switch.first_change = false;
}
}
} else {
if (force_high) { // Enabled with SwitchDebounce x1
if (1 == Switch.virtual_state[i]) {
Switch.state[i] = state_filter; // With noisy input keep current state 1 unless constant 0
}
}
if (Switch.state[i] < state_filter) {
Switch.state[i]++;
if (state_filter == Switch.state[i]) {
Switch.virtual_state[i] = 1;
}
}
}
} else {
if (ac_detect) { // Enabled with SwitchDebounce x9
/*
* Moes MS-104B and similar devices using an AC detection circuitry
* on their switch inputs generating an ~4 ms long low pulse every
* AC wave. We start the time measurement on the falling edge.
*
* state: bit7: previous state, bit6..0: counter
*/
if (Switch.state[i] & 0x80) {
Switch.state[i] &= 0x7f;
if (Switch.state[i] < state_filter - 2 * AC_PERIOD) {
Switch.state[i] += 2 * AC_PERIOD;
} else {
Switch.state[i] = state_filter;
Switch.virtual_state[i] = 1;
if (first_change) {
Switch.last_state[i] = 1;
Switch.first_change = false;
}
}
} else {
if (Switch.state[i] > 0x00) {
Switch.state[i]--;
if (0x00 == Switch.state[i]) {
Switch.virtual_state[i] = 0;
Switch.first_change = false;
}
}
}
} else {
if (force_low) { // Enabled with SwitchDebounce x2
if (0 == Switch.virtual_state[i]) {
Switch.state[i] = 0; // With noisy input keep current state 0 unless constant 1
}
}
if (Switch.state[i] > 0) {
Switch.state[i]--;
if (0 == Switch.state[i]) {
Switch.virtual_state[i] = 0;
}
}
}
}
}
}
void SwitchInit(void) {
bool ac_detect = (Settings->switch_debounce % 10 == 9);
Switch.present = 0;
for (uint32_t i = 0; i < MAX_SWITCHES; i++) {
Switch.last_state[i] = 1; // Init global to virtual switch state;
if (PinUsed(GPIO_SWT1, i)) {
Switch.present++;
#ifdef ESP8266
pinMode(Pin(GPIO_SWT1, i), bitRead(Switch.no_pullup_mask, i) ? INPUT : ((16 == Pin(GPIO_SWT1, i)) ? INPUT_PULLDOWN_16 : INPUT_PULLUP));
#endif // ESP8266
#ifdef ESP32
pinMode(Pin(GPIO_SWT1, i), bitRead(Switch.pulldown_mask, i) ? INPUT_PULLDOWN : bitRead(Switch.no_pullup_mask, i) ? INPUT : INPUT_PULLUP);
#endif // ESP32
if (ac_detect) {
Switch.state[i] = 0x80 + 2 * AC_PERIOD;
Switch.last_state[i] = 0; // Will set later in the debouncing code
} else {
Switch.last_state[i] = digitalRead(Pin(GPIO_SWT1, i)); // Set global now so doesn't change the saved power state on first switch check
}
}
Switch.virtual_state[i] = Switch.last_state[i];
}
if (Switch.present) {
Switch.first_change = true;
TickerSwitch.attach_ms((ac_detect) ? SWITCH_FAST_PROBE_INTERVAL : SWITCH_PROBE_INTERVAL, SwitchProbe);
}
}
/*********************************************************************************************\
* Switch handler
\*********************************************************************************************/
void SwitchHandler(uint32_t mode) {
if (TasmotaGlobal.uptime < 4) { return; } // Block GPIO for 4 seconds after poweron to workaround Wemos D1 / Obi RTS circuit
uint32_t loops_per_second = 1000 / Settings->switch_debounce;
for (uint32_t i = 0; i < MAX_SWITCHES; i++) {
if (PinUsed(GPIO_SWT1, i) || (mode)) {
uint32_t button = Switch.virtual_state[i];
uint32_t switchflag = POWER_TOGGLE +1;
uint32_t mqtt_action = POWER_NONE;
uint32_t switchmode = Settings->switchmode[i];
if (Switch.hold_timer[i] & (((switchmode == PUSHHOLDMULTI) | (switchmode == PUSHHOLDMULTI_INV)) ? SM_TIMER_MASK: SM_NO_TIMER_MASK)) {
Switch.hold_timer[i]--;
if ((Switch.hold_timer[i] & SM_TIMER_MASK) == loops_per_second * Settings->param[P_HOLD_TIME] / 25) {
if ((switchmode == PUSHHOLDMULTI) | (switchmode == PUSHHOLDMULTI_INV)){
if (((switchmode == PUSHHOLDMULTI) & (NOT_PRESSED == Switch.last_state[i])) | ((switchmode == PUSHHOLDMULTI_INV) & (PRESSED == Switch.last_state[i]))) {
SendKey(KEY_SWITCH, i +1, POWER_INCREMENT); // Execute command via MQTT
}
else if ((Switch.hold_timer[i] & ~SM_TIMER_MASK) == SM_FIRST_PRESS) {
SendKey(KEY_SWITCH, i +1, POWER_DELAYED); // Execute command via MQTT
mqtt_action = POWER_DELAYED;
Switch.hold_timer[i] = 0;
}
}
}
if (0 == (Switch.hold_timer[i] & (((switchmode == PUSHHOLDMULTI) | (switchmode == PUSHHOLDMULTI_INV)) ? SM_TIMER_MASK: SM_NO_TIMER_MASK))) {
switch (switchmode) {
case TOGGLEMULTI:
switchflag = POWER_TOGGLE; // Toggle after hold
break;
case FOLLOWMULTI:
switchflag = button &1; // Follow wall switch state after hold
break;
case FOLLOWMULTI_INV:
switchflag = ~button &1; // Follow inverted wall switch state after hold
break;
case PUSHHOLDMULTI:
if (NOT_PRESSED == button) {
Switch.hold_timer[i] = loops_per_second * Settings->param[P_HOLD_TIME] / 25;
SendKey(KEY_SWITCH, i +1, POWER_INCREMENT); // Execute command via MQTT
mqtt_action = POWER_INCREMENT;
} else {
Switch.hold_timer[i]= 0;
SendKey(KEY_SWITCH, i +1, POWER_CLEAR); // Execute command via MQTT
mqtt_action = POWER_CLEAR;
}
break;
case PUSHHOLDMULTI_INV:
if (PRESSED == button) {
Switch.hold_timer[i] = loops_per_second * Settings->param[P_HOLD_TIME] / 25;
SendKey(KEY_SWITCH, i +1, POWER_INCREMENT); // Execute command via MQTT
mqtt_action = POWER_INCREMENT;
} else {
Switch.hold_timer[i]= 0;
SendKey(KEY_SWITCH, i +1, POWER_CLEAR); // Execute command via MQTT
mqtt_action = POWER_CLEAR;
}
break;
default:
SendKey(KEY_SWITCH, i +1, POWER_HOLD); // Execute command via MQTT
mqtt_action = POWER_HOLD;
break;
}
}
}
if (button != Switch.last_state[i]) { // This implies if ((PRESSED == button) then (NOT_PRESSED == Switch.last_state[i]))
switch (switchmode) {
case TOGGLE:
case PUSHBUTTON_TOGGLE:
switchflag = POWER_TOGGLE; // Toggle
break;
case FOLLOW:
switchflag = button &1; // Follow wall switch state
break;
case FOLLOW_INV:
switchflag = ~button &1; // Follow inverted wall switch state
break;
case PUSHBUTTON:
if (PRESSED == button) {
switchflag = POWER_TOGGLE; // Toggle with pushbutton to Gnd
}
break;
case PUSHBUTTON_INV:
if (NOT_PRESSED == button) {
switchflag = POWER_TOGGLE; // Toggle with releasing pushbutton from Gnd
}
break;
case PUSHBUTTONHOLD:
if (PRESSED == button) {
Switch.hold_timer[i] = loops_per_second * Settings->param[P_HOLD_TIME] / 10; // Start timer on button press
}
if ((NOT_PRESSED == button) && (Switch.hold_timer[i])) {
Switch.hold_timer[i] = 0; // Button released and hold timer not expired : stop timer...
switchflag = POWER_TOGGLE; // ...and Toggle
}
break;
case PUSHBUTTONHOLD_INV:
if (NOT_PRESSED == button) {
Switch.hold_timer[i] = loops_per_second * Settings->param[P_HOLD_TIME] / 10; // Start timer on button press...
}
if ((PRESSED == button) && (Switch.hold_timer[i])) {
Switch.hold_timer[i] = 0; // Button released and hold timer not expired : stop timer.
switchflag = POWER_TOGGLE; // ...and Toggle
}
break;
case TOGGLEMULTI:
case FOLLOWMULTI:
case FOLLOWMULTI_INV:
if (Switch.hold_timer[i]) {
Switch.hold_timer[i] = 0;
SendKey(KEY_SWITCH, i +1, POWER_HOLD); // Execute command via MQTT
mqtt_action = POWER_HOLD;
} else {
Switch.hold_timer[i] = loops_per_second / 2; // 0.5 second multi press window
}
break;
case PUSHHOLDMULTI:
if (NOT_PRESSED == button) {
if ((Switch.hold_timer[i] & SM_TIMER_MASK) != 0) {
Switch.hold_timer[i] = ((Switch.hold_timer[i] & ~SM_TIMER_MASK) == SM_FIRST_PRESS) ? SM_SECOND_PRESS : 0;
SendKey(KEY_SWITCH, i +1, POWER_INV); // Execute command via MQTT
mqtt_action = POWER_INV;
}
} else {
if ((Switch.hold_timer[i] & SM_TIMER_MASK) > loops_per_second * Settings->param[P_HOLD_TIME] / 25) {
if ((Switch.hold_timer[i] & ~SM_TIMER_MASK) != SM_SECOND_PRESS) {
Switch.hold_timer[i]= SM_FIRST_PRESS;
switchflag = POWER_TOGGLE; // Toggle with pushbutton
}
else{
SendKey(KEY_SWITCH, i +1, POWER_100); // Execute command via MQTT
mqtt_action = POWER_100;
Switch.hold_timer[i]= 0;
}
} else {
Switch.hold_timer[i]= 0;
SendKey(KEY_SWITCH, i +1, POWER_RELEASE); // Execute command via MQTT
mqtt_action = POWER_RELEASE;
}
}
Switch.hold_timer[i] = (Switch.hold_timer[i] & ~SM_TIMER_MASK) | loops_per_second * Settings->param[P_HOLD_TIME] / 10;
break;
case PUSHHOLDMULTI_INV:
if (PRESSED == button) {
if ((Switch.hold_timer[i] & SM_TIMER_MASK) != 0) {
Switch.hold_timer[i] = ((Switch.hold_timer[i] & ~SM_TIMER_MASK) == SM_FIRST_PRESS) ? SM_SECOND_PRESS : 0;
SendKey(KEY_SWITCH, i +1, POWER_INV); // Execute command via MQTT
mqtt_action = POWER_INV;
}
} else {
if ((Switch.hold_timer[i] & SM_TIMER_MASK)> loops_per_second * Settings->param[P_HOLD_TIME] / 25) {
if ((Switch.hold_timer[i] & ~SM_TIMER_MASK) != SM_SECOND_PRESS) {
Switch.hold_timer[i]= SM_FIRST_PRESS;
switchflag = POWER_TOGGLE; // Toggle with pushbutton
}
else{
SendKey(KEY_SWITCH, i +1, POWER_100); // Execute command via MQTT
mqtt_action = POWER_100;
Switch.hold_timer[i]= 0;
}
} else {
Switch.hold_timer[i]= 0;
SendKey(KEY_SWITCH, i +1, POWER_RELEASE); // Execute command via MQTT
mqtt_action = POWER_RELEASE;
}
}
Switch.hold_timer[i] = (Switch.hold_timer[i] & ~SM_TIMER_MASK) | loops_per_second * Settings->param[P_HOLD_TIME] / 10;
break;
case PUSHON:
if (PRESSED == button) {
switchflag = POWER_ON; // Power ON with pushbutton to Gnd
}
break;
case PUSHON_INV:
if (NOT_PRESSED == button) {
switchflag = POWER_ON; // Power ON with releasing pushbutton from Gnd
}
break;
case PUSH_IGNORE:
Switch.last_state[i] = button; // Update switch state before publishing
MqttPublishSensor();
break;
}
Switch.last_state[i] = button;
}
if (switchflag <= POWER_TOGGLE) {
if (!Settings->flag5.mqtt_switches) { // SetOption114 (0) - Detach Switches from relays and enable MQTT action state for all the SwitchModes
if (!SendKey(KEY_SWITCH, i +1, switchflag)) { // Execute command via MQTT
ExecuteCommandPower(i +1, switchflag, SRC_SWITCH); // Execute command internally (if i < TasmotaGlobal.devices_present)
}
} else { mqtt_action = switchflag; }
}
if ((mqtt_action != POWER_NONE) && Settings->flag5.mqtt_switches) { // SetOption114 (0) - Detach Switches from relays and enable MQTT action state for all the SwitchModes
if (!Settings->flag.hass_discovery) { // SetOption19 - Control Home Assistant automatic discovery (See SetOption59)
char mqtt_state_str[16];
char *mqtt_state = mqtt_state_str;
if (mqtt_action <= 3) {
if (mqtt_action != 3) { SendKey(KEY_SWITCH, i +1, mqtt_action); }
mqtt_state = SettingsText(SET_STATE_TXT1 + mqtt_action);
} else {
GetTextIndexed(mqtt_state_str, sizeof(mqtt_state_str), mqtt_action, kSwitchPressStates);
}
Response_P(S_JSON_SVALUE_ACTION_SVALUE, GetSwitchText(i).c_str(), mqtt_state);
char scommand[10];
snprintf_P(scommand, sizeof(scommand), PSTR(D_JSON_SWITCH "%d"), i +1);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, scommand);
}
mqtt_action = POWER_NONE;
}
}
}
}
void SwitchLoop(void) {
if (Switch.present) {
if (TimeReached(Switch.debounce)) {
SetNextTimeInterval(Switch.debounce, Settings->switch_debounce);
SwitchHandler(0);
}
}
}
#endif // SWITCH_V3