Tasmota/tasmota/xdrv_03_energy.ino

1312 lines
52 KiB
C++

/*
xdrv_03_energy.ino - Energy sensor support for Tasmota
Copyright (C) 2021 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ENERGY_SENSOR
/*********************************************************************************************\
* Energy
\*********************************************************************************************/
#define XDRV_03 3
#define XSNS_03 3
//#define USE_ENERGY_MARGIN_DETECTION
// #define USE_ENERGY_POWER_LIMIT
#define ENERGY_NONE 0
#define ENERGY_WATCHDOG 4 // Allow up to 4 seconds before deciding no valid data present
#define ENERGY_MAX_PHASES 3
#include <Ticker.h>
#define D_CMND_POWERCAL "PowerCal"
#define D_CMND_VOLTAGECAL "VoltageCal"
#define D_CMND_CURRENTCAL "CurrentCal"
#define D_CMND_FREQUENCYCAL "FrequencyCal"
#define D_CMND_TARIFF "Tariff"
#define D_CMND_MODULEADDRESS "ModuleAddress"
enum EnergyCommands {
CMND_POWERCAL, CMND_VOLTAGECAL, CMND_CURRENTCAL, CMND_FREQUENCYCAL,
CMND_POWERSET, CMND_VOLTAGESET, CMND_CURRENTSET, CMND_FREQUENCYSET, CMND_MODULEADDRESS, CMND_ENERGYCONFIG };
const char kEnergyCommands[] PROGMEM = "|" // No prefix
D_CMND_POWERCAL "|" D_CMND_VOLTAGECAL "|" D_CMND_CURRENTCAL "|" D_CMND_FREQUENCYCAL "|"
D_CMND_POWERSET "|" D_CMND_VOLTAGESET "|" D_CMND_CURRENTSET "|" D_CMND_FREQUENCYSET "|" D_CMND_MODULEADDRESS "|" D_CMND_ENERGYCONFIG "|"
#ifdef USE_ENERGY_MARGIN_DETECTION
D_CMND_POWERDELTA "|" D_CMND_POWERLOW "|" D_CMND_POWERHIGH "|" D_CMND_VOLTAGELOW "|" D_CMND_VOLTAGEHIGH "|" D_CMND_CURRENTLOW "|" D_CMND_CURRENTHIGH "|"
#ifdef USE_ENERGY_POWER_LIMIT
D_CMND_MAXENERGY "|" D_CMND_MAXENERGYSTART "|"
D_CMND_MAXPOWER "|" D_CMND_MAXPOWERHOLD "|" D_CMND_MAXPOWERWINDOW "|"
D_CMND_SAFEPOWER "|" D_CMND_SAFEPOWERHOLD "|" D_CMND_SAFEPOWERWINDOW "|"
#endif // USE_ENERGY_POWER_LIMIT
#endif // USE_ENERGY_MARGIN_DETECTION
D_CMND_ENERGYTODAY "|" D_CMND_ENERGYYESTERDAY "|" D_CMND_ENERGYTOTAL "|" D_CMND_ENERGYUSAGE "|" D_CMND_ENERGYEXPORT "|" D_CMND_TARIFF;
void (* const EnergyCommand[])(void) PROGMEM = {
&CmndPowerCal, &CmndVoltageCal, &CmndCurrentCal, &CmndFrequencyCal,
&CmndPowerSet, &CmndVoltageSet, &CmndCurrentSet, &CmndFrequencySet, &CmndModuleAddress, &CmndEnergyConfig,
#ifdef USE_ENERGY_MARGIN_DETECTION
&CmndPowerDelta, &CmndPowerLow, &CmndPowerHigh, &CmndVoltageLow, &CmndVoltageHigh, &CmndCurrentLow, &CmndCurrentHigh,
#ifdef USE_ENERGY_POWER_LIMIT
&CmndMaxEnergy, &CmndMaxEnergyStart,
&CmndMaxPower, &CmndMaxPowerHold, &CmndMaxPowerWindow,
&CmndSafePower, &CmndSafePowerHold, &CmndSafePowerWindow,
#endif // USE_ENERGY_POWER_LIMIT
#endif // USE_ENERGY_MARGIN_DETECTION
&CmndEnergyToday, &CmndEnergyYesterday, &CmndEnergyTotal, &CmndEnergyUsage, &CmndEnergyExport, &CmndTariff};
const char kEnergyPhases[] PROGMEM = "|%*_f / %*_f|%*_f / %*_f / %*_f||[%*_f,%*_f]|[%*_f,%*_f,%*_f]";
struct ENERGY {
float voltage[ENERGY_MAX_PHASES]; // 123.1 V
float current[ENERGY_MAX_PHASES]; // 123.123 A
float active_power[ENERGY_MAX_PHASES]; // 123.1 W
float apparent_power[ENERGY_MAX_PHASES]; // 123.1 VA
float reactive_power[ENERGY_MAX_PHASES]; // 123.1 VAr
float power_factor[ENERGY_MAX_PHASES]; // 0.12
float frequency[ENERGY_MAX_PHASES]; // 123.1 Hz
float import_active[ENERGY_MAX_PHASES]; // 123.123 kWh
float export_active[ENERGY_MAX_PHASES]; // 123.123 kWh
float start_energy[ENERGY_MAX_PHASES]; // 12345.12345 kWh total previous
float daily[ENERGY_MAX_PHASES]; // 123.123 kWh
float total[ENERGY_MAX_PHASES]; // 12345.12345 kWh total energy
float daily_sum; // 123.123 kWh
float total_sum; // 12345.12345 kWh total energy
float yesterday_sum; // 123.123 kWh
int32_t kWhtoday_delta[ENERGY_MAX_PHASES]; // 1212312345 Wh 10^-5 (deca micro Watt hours) - Overflows to Energy.kWhtoday (HLW and CSE only)
int32_t kWhtoday_offset[ENERGY_MAX_PHASES]; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily
int32_t kWhtoday[ENERGY_MAX_PHASES]; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily
int32_t period[ENERGY_MAX_PHASES]; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily
uint8_t fifth_second;
uint8_t command_code;
uint8_t data_valid[ENERGY_MAX_PHASES];
uint8_t phase_count; // Number of phases active
bool voltage_common; // Use common voltage
bool frequency_common; // Use common frequency
bool use_overtemp; // Use global temperature as overtemp trigger on internal energy monitor hardware
bool kWhtoday_offset_init;
bool voltage_available; // Enable if voltage is measured
bool current_available; // Enable if current is measured
bool type_dc;
bool power_on;
#ifdef USE_ENERGY_MARGIN_DETECTION
uint16_t power_history[ENERGY_MAX_PHASES][3];
uint8_t power_steady_counter; // Allow for power on stabilization
bool min_power_flag;
bool max_power_flag;
bool min_voltage_flag;
bool max_voltage_flag;
bool min_current_flag;
bool max_current_flag;
#ifdef USE_ENERGY_POWER_LIMIT
uint16_t mplh_counter;
uint16_t mplw_counter;
uint8_t mplr_counter;
uint8_t max_energy_state;
#endif // USE_ENERGY_POWER_LIMIT
#endif // USE_ENERGY_MARGIN_DETECTION
} Energy;
Ticker ticker_energy;
/********************************************************************************************/
char* EnergyFormatIndex(char* result, float* input, uint32_t resolution, bool json, uint32_t index, bool single = false) {
char layout[20];
GetTextIndexed(layout, sizeof(layout), (index -1) + (ENERGY_MAX_PHASES * json), kEnergyPhases);
switch (index) {
case 2:
ext_snprintf_P(result, FLOATSZ * ENERGY_MAX_PHASES, layout, resolution, &input[0], resolution, &input[1]);
break;
case 3:
ext_snprintf_P(result, FLOATSZ * ENERGY_MAX_PHASES, layout, resolution, &input[0], resolution, &input[1], resolution, &input[2]);
break;
default:
ext_snprintf_P(result, FLOATSZ * ENERGY_MAX_PHASES, PSTR("%*_f"), resolution, &input[0]);
}
return result;
}
char* EnergyFormat(char* result, float* input, uint32_t resolution, bool json, bool single = false) {
uint8_t index = (single) ? 1 : Energy.phase_count; // 1,2,3
return EnergyFormatIndex(result, input, resolution, json, index, single);
}
char* EnergyFormatSum(char* result, float* input, uint32_t resolution, bool json, bool single = false) {
uint8_t index = (single) ? 1 : Energy.phase_count; // 1,2,3
float input_sum = 0.0;
if (!Settings->flag5.energy_phase) {
for (uint32_t i = 0; i < index; i++) {
input_sum += input[i];
}
input = &input_sum;
index = 1;
}
return EnergyFormatIndex(result, input, resolution, json, index, single);
}
/********************************************************************************************/
bool EnergyTariff1Active() // Off-Peak hours
{
uint8_t dst = 0;
if (IsDst() && (Settings->tariff[0][1] != Settings->tariff[1][1])) {
dst = 1;
}
if (Settings->tariff[0][dst] != Settings->tariff[1][dst]) {
if (Settings->flag3.energy_weekend && ((RtcTime.day_of_week == 1) || // CMND_TARIFF
(RtcTime.day_of_week == 7))) {
return true;
}
uint32_t minutes = MinutesPastMidnight();
if (Settings->tariff[0][dst] > Settings->tariff[1][dst]) {
// {"Tariff":{"Off-Peak":{"STD":"22:00","DST":"23:00"},"Standard":{"STD":"06:00","DST":"07:00"},"Weekend":"OFF"}}
return ((minutes >= Settings->tariff[0][dst]) || (minutes < Settings->tariff[1][dst]));
} else {
// {"Tariff":{"Off-Peak":{"STD":"00:29","DST":"01:29"},"Standard":{"STD":"07:29","DST":"08:29"},"Weekend":"OFF"}}
return ((minutes >= Settings->tariff[0][dst]) && (minutes < Settings->tariff[1][dst]));
}
} else {
return false;
}
}
void EnergyUpdateToday(void) {
Energy.total_sum = 0.0;
Energy.yesterday_sum = 0.0;
Energy.daily_sum = 0.0;
for (uint32_t i = 0; i < Energy.phase_count; i++) {
if (abs(Energy.kWhtoday_delta[i]) > 1000) {
int32_t delta = Energy.kWhtoday_delta[i] / 1000;
Energy.kWhtoday_delta[i] -= (delta * 1000);
Energy.kWhtoday[i] += delta;
}
RtcSettings.energy_kWhtoday_ph[i] = Energy.kWhtoday_offset[i] + Energy.kWhtoday[i];
Energy.daily[i] = (float)(RtcSettings.energy_kWhtoday_ph[i]) / 100000;
Energy.total[i] = (float)(RtcSettings.energy_kWhtotal_ph[i] + RtcSettings.energy_kWhtoday_ph[i]) / 100000;
Energy.total_sum += Energy.total[i];
Energy.yesterday_sum += (float)Settings->energy_kWhyesterday_ph[i] / 100000;
Energy.daily_sum += Energy.daily[i];
}
if (RtcTime.valid){ // We calc the difference only if we have a valid RTC time.
uint32_t energy_diff = (uint32_t)(Energy.total_sum * 100000) - RtcSettings.energy_usage.last_usage_kWhtotal;
RtcSettings.energy_usage.last_usage_kWhtotal = (uint32_t)(Energy.total_sum * 100000);
uint32_t return_diff = 0;
if (!isnan(Energy.export_active[0])) {
// return_diff = (uint32_t)(Energy.export_active * 100000) - RtcSettings.energy_usage.last_return_kWhtotal;
// RtcSettings.energy_usage.last_return_kWhtotal = (uint32_t)(Energy.export_active * 100000);
float export_active = 0.0;
for (uint32_t i = 0; i < Energy.phase_count; i++) {
if (!isnan(Energy.export_active[i])) {
export_active += Energy.export_active[i];
}
}
return_diff = (uint32_t)(export_active * 100000) - RtcSettings.energy_usage.last_return_kWhtotal;
RtcSettings.energy_usage.last_return_kWhtotal = (uint32_t)(export_active * 100000);
}
if (EnergyTariff1Active()) { // Tarrif1 = Off-Peak
RtcSettings.energy_usage.usage1_kWhtotal += energy_diff;
RtcSettings.energy_usage.return1_kWhtotal += return_diff;
} else {
RtcSettings.energy_usage.usage2_kWhtotal += energy_diff;
RtcSettings.energy_usage.return2_kWhtotal += return_diff;
}
}
}
void EnergyUpdateTotal(void) {
// Provide total import active energy as float Energy.import_active[phase] in kWh: 98Wh = 0.098kWh
for (uint32_t i = 0; i < Energy.phase_count; i++) {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NRG: EnergyTotal[%d] %4_f kWh"), i, &Energy.import_active[i]);
if (0 == Energy.start_energy[i] || (Energy.import_active[i] < Energy.start_energy[i])) {
Energy.start_energy[i] = Energy.import_active[i]; // Init after restart and handle roll-over if any
}
else if (Energy.import_active[i] != Energy.start_energy[i]) {
Energy.kWhtoday[i] = (int32_t)((Energy.import_active[i] - Energy.start_energy[i]) * 100000);
}
if ((Energy.total[i] < (Energy.import_active[i] - 0.01)) && // We subtract a little offset to avoid continuous updates
Settings->flag3.hardware_energy_total) { // SetOption72 - Enable hardware energy total counter as reference (#6561)
RtcSettings.energy_kWhtotal_ph[i] = (int32_t)((Energy.import_active[i] * 100000) - Energy.kWhtoday_offset[i] - Energy.kWhtoday[i]);
Settings->energy_kWhtotal_ph[i] = RtcSettings.energy_kWhtotal_ph[i];
Energy.total[i] = (float)(RtcSettings.energy_kWhtotal_ph[i] + Energy.kWhtoday_offset[i] + Energy.kWhtoday[i]) / 100000;
Settings->energy_kWhtotal_time = (!Energy.kWhtoday_offset[i]) ? LocalTime() : Midnight();
// AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Energy Total updated with hardware value"));
}
}
EnergyUpdateToday();
}
/*********************************************************************************************/
void Energy200ms(void)
{
Energy.power_on = (TasmotaGlobal.power != 0) | Settings->flag.no_power_on_check; // SetOption21 - Show voltage even if powered off
Energy.fifth_second++;
if (5 == Energy.fifth_second) {
Energy.fifth_second = 0;
XnrgCall(FUNC_ENERGY_EVERY_SECOND);
if (RtcTime.valid) {
if (!Energy.kWhtoday_offset_init && (RtcTime.day_of_year == Settings->energy_kWhdoy)) {
for (uint32_t i = 0; i < 3; i++) {
Energy.kWhtoday_offset[i] = Settings->energy_kWhtoday_ph[i];
}
Energy.kWhtoday_offset_init = true;
}
if (LocalTime() == Midnight()) {
for (uint32_t i = 0; i < 3; i++) {
Settings->energy_kWhyesterday_ph[i] = RtcSettings.energy_kWhtoday_ph[i];
RtcSettings.energy_kWhtotal_ph[i] += RtcSettings.energy_kWhtoday_ph[i];
Settings->energy_kWhtotal_ph[i] = RtcSettings.energy_kWhtotal_ph[i];
Energy.period[i] -= RtcSettings.energy_kWhtoday_ph[i]; // this becomes a large unsigned, effectively a negative for EnergyShow calculation
Energy.kWhtoday[i] = 0;
Energy.kWhtoday_offset[i] = 0;
RtcSettings.energy_kWhtoday_ph[i] = 0;
Energy.start_energy[i] = 0;
// Energy.kWhtoday_delta = 0; // dont zero this, we need to carry the remainder over to tomorrow
}
EnergyUpdateToday();
#if defined(USE_ENERGY_MARGIN_DETECTION) && defined(USE_ENERGY_POWER_LIMIT)
Energy.max_energy_state = 3;
#endif // USE_ENERGY_POWER_LIMIT
}
#if defined(USE_ENERGY_MARGIN_DETECTION) && defined(USE_ENERGY_POWER_LIMIT)
if ((RtcTime.hour == Settings->energy_max_energy_start) && (3 == Energy.max_energy_state )) {
Energy.max_energy_state = 0;
}
#endif // USE_ENERGY_POWER_LIMIT
}
}
XnrgCall(FUNC_EVERY_200_MSECOND);
}
void EnergySaveState(void)
{
Settings->energy_kWhdoy = (RtcTime.valid) ? RtcTime.day_of_year : 0;
for (uint32_t i = 0; i < 3; i++) {
Settings->energy_kWhtoday_ph[i] = RtcSettings.energy_kWhtoday_ph[i];
Settings->energy_kWhtotal_ph[i] = RtcSettings.energy_kWhtotal_ph[i];
}
Settings->energy_usage = RtcSettings.energy_usage;
}
#ifdef USE_ENERGY_MARGIN_DETECTION
bool EnergyMargin(bool type, uint16_t margin, uint16_t value, bool &flag, bool &save_flag)
{
bool change;
if (!margin) return false;
change = save_flag;
if (type) {
flag = (value > margin);
} else {
flag = (value < margin);
}
save_flag = flag;
return (change != save_flag);
}
void EnergyMarginCheck(void)
{
if (Energy.power_steady_counter) {
Energy.power_steady_counter--;
return;
}
bool jsonflg = false;
Response_P(PSTR("{\"" D_RSLT_MARGINS "\":{"));
int16_t power_diff[ENERGY_MAX_PHASES] = { 0 };
for (uint32_t phase = 0; phase < Energy.phase_count; phase++) {
uint16_t active_power = (uint16_t)(Energy.active_power[phase]);
// AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: APower %d, HPower0 %d, HPower1 %d, HPower2 %d"), active_power, Energy.power_history[phase][0], Energy.power_history[phase][1], Energy.power_history[phase][2]);
if (Settings->energy_power_delta[phase]) {
power_diff[phase] = active_power - Energy.power_history[phase][0];
uint16_t delta = abs(power_diff[phase]);
bool threshold_met = false;
if (delta > 0) {
if (Settings->energy_power_delta[phase] < 101) { // 1..100 = Percentage
uint16_t min_power = (Energy.power_history[phase][0] > active_power) ? active_power : Energy.power_history[phase][0];
if (0 == min_power) { min_power++; } // Fix divide by 0 exception (#6741)
delta = (delta * 100) / min_power;
if (delta >= Settings->energy_power_delta[phase]) {
threshold_met = true;
}
} else { // 101..32000 = Absolute
if (delta >= (Settings->energy_power_delta[phase] -100)) {
threshold_met = true;
}
}
}
if (threshold_met) {
Energy.power_history[phase][1] = active_power; // We only want one report so reset history
Energy.power_history[phase][2] = active_power;
jsonflg = true;
} else {
power_diff[phase] = 0;
}
}
Energy.power_history[phase][0] = Energy.power_history[phase][1]; // Shift in history every second allowing power changes to settle for up to three seconds
Energy.power_history[phase][1] = Energy.power_history[phase][2];
Energy.power_history[phase][2] = active_power;
}
if (jsonflg) {
/*
char power_diff_chr[Energy.phase_count][FLOATSZ];
for (uint32_t phase = 0; phase < Energy.phase_count; phase++) {
dtostrfd(power_diff[phase], 0, power_diff_chr[phase]);
}
char value_chr[FLOATSZ * ENERGY_MAX_PHASES];
ResponseAppend_P(PSTR("\"" D_CMND_POWERDELTA "\":%s"), EnergyFormat(value_chr, power_diff_chr[0], 1));
*/
float power_diff_f[Energy.phase_count];
for (uint32_t phase = 0; phase < Energy.phase_count; phase++) {
power_diff_f[phase] = power_diff[phase];
}
char value_chr[FLOATSZ * ENERGY_MAX_PHASES];
ResponseAppend_P(PSTR("\"" D_CMND_POWERDELTA "\":%s"), EnergyFormat(value_chr, power_diff_f, 0, 1));
}
uint16_t energy_power_u = (uint16_t)(Energy.active_power[0]);
if (Energy.power_on && (Settings->energy_min_power || Settings->energy_max_power || Settings->energy_min_voltage || Settings->energy_max_voltage || Settings->energy_min_current || Settings->energy_max_current)) {
uint16_t energy_voltage_u = (uint16_t)(Energy.voltage[0]);
uint16_t energy_current_u = (uint16_t)(Energy.current[0] * 1000);
DEBUG_DRIVER_LOG(PSTR("NRG: W %d, U %d, I %d"), energy_power_u, energy_voltage_u, energy_current_u);
bool flag;
if (EnergyMargin(false, Settings->energy_min_power, energy_power_u, flag, Energy.min_power_flag)) {
ResponseAppend_P(PSTR("%s\"" D_CMND_POWERLOW "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
jsonflg = true;
}
if (EnergyMargin(true, Settings->energy_max_power, energy_power_u, flag, Energy.max_power_flag)) {
ResponseAppend_P(PSTR("%s\"" D_CMND_POWERHIGH "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
jsonflg = true;
}
if (EnergyMargin(false, Settings->energy_min_voltage, energy_voltage_u, flag, Energy.min_voltage_flag)) {
ResponseAppend_P(PSTR("%s\"" D_CMND_VOLTAGELOW "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
jsonflg = true;
}
if (EnergyMargin(true, Settings->energy_max_voltage, energy_voltage_u, flag, Energy.max_voltage_flag)) {
ResponseAppend_P(PSTR("%s\"" D_CMND_VOLTAGEHIGH "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
jsonflg = true;
}
if (EnergyMargin(false, Settings->energy_min_current, energy_current_u, flag, Energy.min_current_flag)) {
ResponseAppend_P(PSTR("%s\"" D_CMND_CURRENTLOW "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
jsonflg = true;
}
if (EnergyMargin(true, Settings->energy_max_current, energy_current_u, flag, Energy.max_current_flag)) {
ResponseAppend_P(PSTR("%s\"" D_CMND_CURRENTHIGH "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
jsonflg = true;
}
}
if (jsonflg) {
ResponseJsonEndEnd();
MqttPublishPrefixTopicRulesProcess_P(TELE, PSTR(D_RSLT_MARGINS), MQTT_TELE_RETAIN);
EnergyMqttShow();
}
#ifdef USE_ENERGY_POWER_LIMIT
// Max Power
if (Settings->energy_max_power_limit) {
if (Energy.active_power[0] > Settings->energy_max_power_limit) {
if (!Energy.mplh_counter) {
Energy.mplh_counter = Settings->energy_max_power_limit_hold;
} else {
Energy.mplh_counter--;
if (!Energy.mplh_counter) {
ResponseTime_P(PSTR(",\"" D_JSON_MAXPOWERREACHED "\":%d}"), energy_power_u);
MqttPublishPrefixTopicRulesProcess_P(STAT, S_RSLT_WARNING);
EnergyMqttShow();
SetAllPower(POWER_ALL_OFF, SRC_MAXPOWER);
if (!Energy.mplr_counter) {
Energy.mplr_counter = Settings->param[P_MAX_POWER_RETRY] +1; // SetOption33 - Max Power Retry count
}
Energy.mplw_counter = Settings->energy_max_power_limit_window;
}
}
}
else if (TasmotaGlobal.power && (energy_power_u <= Settings->energy_max_power_limit)) {
Energy.mplh_counter = 0;
Energy.mplr_counter = 0;
Energy.mplw_counter = 0;
}
if (!TasmotaGlobal.power) {
if (Energy.mplw_counter) {
Energy.mplw_counter--;
} else {
if (Energy.mplr_counter) {
Energy.mplr_counter--;
if (Energy.mplr_counter) {
ResponseTime_P(PSTR(",\"" D_JSON_POWERMONITOR "\":\"%s\"}"), GetStateText(1));
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_JSON_POWERMONITOR));
RestorePower(true, SRC_MAXPOWER);
} else {
ResponseTime_P(PSTR(",\"" D_JSON_MAXPOWERREACHEDRETRY "\":\"%s\"}"), GetStateText(0));
MqttPublishPrefixTopicRulesProcess_P(STAT, S_RSLT_WARNING);
EnergyMqttShow();
SetAllPower(POWER_ALL_OFF, SRC_MAXPOWER);
}
}
}
}
}
// Max Energy
if (Settings->energy_max_energy) {
uint16_t energy_daily_u = (uint16_t)(Energy.daily_sum * 1000);
if (!Energy.max_energy_state && (RtcTime.hour == Settings->energy_max_energy_start)) {
Energy.max_energy_state = 1;
ResponseTime_P(PSTR(",\"" D_JSON_ENERGYMONITOR "\":\"%s\"}"), GetStateText(1));
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_JSON_ENERGYMONITOR));
RestorePower(true, SRC_MAXENERGY);
}
else if ((1 == Energy.max_energy_state ) && (energy_daily_u >= Settings->energy_max_energy)) {
Energy.max_energy_state = 2;
ResponseTime_P(PSTR(",\"" D_JSON_MAXENERGYREACHED "\":%3_f}"), &Energy.daily_sum);
MqttPublishPrefixTopicRulesProcess_P(STAT, S_RSLT_WARNING);
EnergyMqttShow();
SetAllPower(POWER_ALL_OFF, SRC_MAXENERGY);
}
}
#endif // USE_ENERGY_POWER_LIMIT
}
void EnergyMqttShow(void)
{
// {"Time":"2017-12-16T11:48:55","ENERGY":{"Total":0.212,"Yesterday":0.000,"Today":0.014,"Period":2.0,"Power":22.0,"Factor":1.00,"Voltage":213.6,"Current":0.100}}
int tele_period_save = TasmotaGlobal.tele_period;
TasmotaGlobal.tele_period = 2;
ResponseClear();
ResponseAppendTime();
EnergyShow(true);
TasmotaGlobal.tele_period = tele_period_save;
ResponseJsonEnd();
MqttPublishTeleSensor();
}
#endif // USE_ENERGY_MARGIN_DETECTION
void EnergyEverySecond(void)
{
// Overtemp check
if (Energy.use_overtemp && TasmotaGlobal.global_update) {
if (TasmotaGlobal.power && !isnan(TasmotaGlobal.temperature_celsius) && (TasmotaGlobal.temperature_celsius > (float)Settings->param[P_OVER_TEMP])) { // SetOption42 Device overtemp, turn off relays
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Temperature %1_f"), &TasmotaGlobal.temperature_celsius);
SetAllPower(POWER_ALL_OFF, SRC_OVERTEMP);
}
}
// Invalid data reset
if (TasmotaGlobal.uptime > ENERGY_WATCHDOG) {
uint32_t data_valid = Energy.phase_count;
for (uint32_t i = 0; i < Energy.phase_count; i++) {
if (Energy.data_valid[i] <= ENERGY_WATCHDOG) {
Energy.data_valid[i]++;
if (Energy.data_valid[i] > ENERGY_WATCHDOG) {
// Reset energy registers
Energy.voltage[i] = 0;
Energy.current[i] = 0;
Energy.active_power[i] = 0;
if (!isnan(Energy.apparent_power[i])) { Energy.apparent_power[i] = 0; }
if (!isnan(Energy.reactive_power[i])) { Energy.reactive_power[i] = 0; }
if (!isnan(Energy.frequency[i])) { Energy.frequency[i] = 0; }
if (!isnan(Energy.power_factor[i])) { Energy.power_factor[i] = 0; }
if (!isnan(Energy.export_active[i])) { Energy.export_active[i] = 0; }
data_valid--;
}
}
}
if (!data_valid) {
//Energy.start_energy = 0;
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Energy reset by invalid data"));
XnrgCall(FUNC_ENERGY_RESET);
}
}
#ifdef USE_ENERGY_MARGIN_DETECTION
EnergyMarginCheck();
#endif // USE_ENERGY_MARGIN_DETECTION
}
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
void EnergyCommandCalResponse(uint32_t nvalue) {
snprintf_P(XdrvMailbox.command, CMDSZ, PSTR("%sCal"), XdrvMailbox.command);
ResponseCmndNumber(nvalue);
}
void ResponseCmndEnergyTotalYesterdayToday(void) {
char value_chr[FLOATSZ * ENERGY_MAX_PHASES]; // Used by EnergyFormatIndex
char value2_chr[FLOATSZ * ENERGY_MAX_PHASES];
char value3_chr[FLOATSZ * ENERGY_MAX_PHASES];
float energy_yesterday_ph[3];
for (uint32_t i = 0; i < Energy.phase_count; i++) {
energy_yesterday_ph[i] = (float)Settings->energy_kWhyesterday_ph[i] / 100000;
Energy.total[i] = (float)(RtcSettings.energy_kWhtotal_ph[i] + Energy.kWhtoday_offset[i] + Energy.kWhtoday[i]) / 100000;
}
Response_P(PSTR("{\"%s\":{\"" D_JSON_TOTAL "\":%s,\"" D_JSON_YESTERDAY "\":%s,\"" D_JSON_TODAY "\":%s}}"),
XdrvMailbox.command,
EnergyFormat(value_chr, Energy.total, Settings->flag2.energy_resolution, true),
EnergyFormat(value2_chr, energy_yesterday_ph, Settings->flag2.energy_resolution, true),
EnergyFormat(value3_chr, Energy.daily, Settings->flag2.energy_resolution, true));
}
void CmndEnergyTotal(void) {
uint32_t values[2] = { 0 };
uint32_t params = ParseParameters(2, values);
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy.phase_count) && (params > 0)) {
uint32_t phase = XdrvMailbox.index -1;
// Reset Energy Total
RtcSettings.energy_kWhtotal_ph[phase] = values[0] * 100;
Settings->energy_kWhtotal_ph[phase] = RtcSettings.energy_kWhtotal_ph[phase];
if (params > 1) {
Settings->energy_kWhtotal_time = values[1];
} else {
Settings->energy_kWhtotal_time = (!Energy.kWhtoday_offset[phase]) ? LocalTime() : Midnight();
}
RtcSettings.energy_usage.last_usage_kWhtotal = (uint32_t)(Energy.total[phase] * 1000);
}
ResponseCmndEnergyTotalYesterdayToday();
}
void CmndEnergyYesterday(void) {
uint32_t values[2] = { 0 };
uint32_t params = ParseParameters(2, values);
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy.phase_count) && (params > 0)) {
uint32_t phase = XdrvMailbox.index -1;
// Reset Energy Yesterday
Settings->energy_kWhyesterday_ph[phase] = values[0] * 100;
if (params > 1) {
Settings->energy_kWhtotal_time = values[1];
}
}
ResponseCmndEnergyTotalYesterdayToday();
}
void CmndEnergyToday(void) {
uint32_t values[2] = { 0 };
uint32_t params = ParseParameters(2, values);
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= Energy.phase_count) && (params > 0)) {
uint32_t phase = XdrvMailbox.index -1;
// Reset Energy Today
Energy.kWhtoday_offset[phase] = values[0] * 100;
Energy.kWhtoday[phase] = 0;
Energy.kWhtoday_delta[phase] = 0;
Energy.start_energy[phase] = 0;
Energy.period[phase] = Energy.kWhtoday_offset[phase];
Settings->energy_kWhtoday_ph[phase] = Energy.kWhtoday_offset[phase];
RtcSettings.energy_kWhtoday_ph[phase] = Energy.kWhtoday_offset[phase];
Energy.daily[phase] = (float)Energy.kWhtoday_offset[phase] / 100000;
if (params > 1) {
Settings->energy_kWhtotal_time = values[1];
}
else if (!RtcSettings.energy_kWhtotal_ph[phase] && !Energy.kWhtoday_offset[phase]) {
Settings->energy_kWhtotal_time = LocalTime();
}
}
ResponseCmndEnergyTotalYesterdayToday();
}
void ResponseCmndEnergyUsageExport(void) {
float usage1_kWhtotal = (float)Settings->energy_usage.usage1_kWhtotal / 100000;
float usage2_kWhtotal = (float)Settings->energy_usage.usage2_kWhtotal / 100000;
float return1_kWhtotal = (float)Settings->energy_usage.return1_kWhtotal / 100000;
float return2_kWhtotal = (float)Settings->energy_usage.return2_kWhtotal / 100000;
Response_P(PSTR("{\"%s\":{\"" D_JSON_USAGE "\":[%*_f,%*_f],\"" D_JSON_EXPORT "\":[%*_f,%*_f]}}"),
XdrvMailbox.command,
Settings->flag2.energy_resolution, &usage1_kWhtotal,
Settings->flag2.energy_resolution, &usage2_kWhtotal,
Settings->flag2.energy_resolution, &return1_kWhtotal,
Settings->flag2.energy_resolution, &return2_kWhtotal);
}
void CmndEnergyUsage(void) {
uint32_t values[2] = { 0 };
uint32_t params = ParseParameters(2, values);
if (params > 0) {
// Reset energy_usage.usage totals
RtcSettings.energy_usage.usage1_kWhtotal = values[0] * 100;
if (params > 1) {
RtcSettings.energy_usage.usage2_kWhtotal = values[1] * 100;
}
Settings->energy_usage.usage1_kWhtotal = RtcSettings.energy_usage.usage1_kWhtotal;
Settings->energy_usage.usage2_kWhtotal = RtcSettings.energy_usage.usage2_kWhtotal;
}
ResponseCmndEnergyUsageExport();
}
void CmndEnergyExport(void) {
uint32_t values[2] = { 0 };
uint32_t params = ParseParameters(2, values);
if (params > 0) {
// Reset energy_usage.return totals
RtcSettings.energy_usage.return1_kWhtotal = values[0] * 100;
if (params > 1) {
RtcSettings.energy_usage.return2_kWhtotal = values[1] * 100;
}
Settings->energy_usage.return1_kWhtotal = RtcSettings.energy_usage.return1_kWhtotal;
Settings->energy_usage.return2_kWhtotal = RtcSettings.energy_usage.return2_kWhtotal;
}
ResponseCmndEnergyUsageExport();
}
void CmndTariff(void) {
// Tariff1 22:00,23:00 - Tariff1 start hour for Standard Time and Daylight Savings Time
// Tariff2 6:00,7:00 - Tariff2 start hour for Standard Time and Daylight Savings Time
// Tariffx 1320, 1380 = minutes and also 22:00, 23:00
// Tariffx 22, 23 = hours and also 22:00, 23:00
// Tariff9 0/1
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= 2)) {
uint32_t tariff = XdrvMailbox.index -1;
uint32_t time_type = 0;
char *p;
char *str = strtok_r(XdrvMailbox.data, ", ", &p); // 23:15, 22:30
while ((str != nullptr) && (time_type < 2)) {
char *q;
uint32_t value = strtol(str, &q, 10); // 23 or 22
Settings->tariff[tariff][time_type] = value;
if (value < 24) { // Below 24 is hours
Settings->tariff[tariff][time_type] *= 60; // Multiply hours by 60 minutes
char *minute = strtok_r(nullptr, ":", &q);
if (minute) {
value = strtol(minute, nullptr, 10); // 15 or 30
if (value > 59) {
value = 59;
}
Settings->tariff[tariff][time_type] += value;
}
}
if (Settings->tariff[tariff][time_type] > 1439) {
Settings->tariff[tariff][time_type] = 1439; // Max is 23:59
}
str = strtok_r(nullptr, ", ", &p);
time_type++;
}
}
else if (XdrvMailbox.index == 9) {
Settings->flag3.energy_weekend = XdrvMailbox.payload & 1; // CMND_TARIFF
}
Response_P(PSTR("{\"%s\":{\"Off-Peak\":{\"STD\":\"%s\",\"DST\":\"%s\"},\"Standard\":{\"STD\":\"%s\",\"DST\":\"%s\"},\"Weekend\":\"%s\"}}"),
XdrvMailbox.command,
GetMinuteTime(Settings->tariff[0][0]).c_str(),GetMinuteTime(Settings->tariff[0][1]).c_str(),
GetMinuteTime(Settings->tariff[1][0]).c_str(),GetMinuteTime(Settings->tariff[1][1]).c_str(),
GetStateText(Settings->flag3.energy_weekend)); // CMND_TARIFF
}
void CmndPowerCal(void) {
Energy.command_code = CMND_POWERCAL;
if (XnrgCall(FUNC_COMMAND)) { // microseconds
if (XdrvMailbox.payload > 999) {
Settings->energy_power_calibration = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_power_calibration);
}
}
void CmndVoltageCal(void) {
Energy.command_code = CMND_VOLTAGECAL;
if (XnrgCall(FUNC_COMMAND)) { // microseconds
if (XdrvMailbox.payload > 999) {
Settings->energy_voltage_calibration = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_voltage_calibration);
}
}
void CmndCurrentCal(void) {
Energy.command_code = CMND_CURRENTCAL;
if (XnrgCall(FUNC_COMMAND)) { // microseconds
if (XdrvMailbox.payload > 999) {
Settings->energy_current_calibration = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_current_calibration);
}
}
void CmndFrequencyCal(void) {
Energy.command_code = CMND_FREQUENCYCAL;
if (XnrgCall(FUNC_COMMAND)) { // microseconds
if (XdrvMailbox.payload > 999) {
Settings->energy_frequency_calibration = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_frequency_calibration);
}
}
void CmndPowerSet(void) {
Energy.command_code = CMND_POWERSET;
if (XnrgCall(FUNC_COMMAND)) { // Watt
EnergyCommandCalResponse(Settings->energy_power_calibration);
}
}
void CmndVoltageSet(void) {
Energy.command_code = CMND_VOLTAGESET;
if (XnrgCall(FUNC_COMMAND)) { // Volt
EnergyCommandCalResponse(Settings->energy_voltage_calibration);
}
}
void CmndCurrentSet(void) {
Energy.command_code = CMND_CURRENTSET;
if (XnrgCall(FUNC_COMMAND)) { // milliAmpere
EnergyCommandCalResponse(Settings->energy_current_calibration);
}
}
void CmndFrequencySet(void) {
Energy.command_code = CMND_FREQUENCYSET;
if (XnrgCall(FUNC_COMMAND)) { // Hz
EnergyCommandCalResponse(Settings->energy_frequency_calibration);
}
}
void CmndModuleAddress(void) {
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload < 4) && (1 == Energy.phase_count)) {
Energy.command_code = CMND_MODULEADDRESS;
if (XnrgCall(FUNC_COMMAND)) { // Module address
ResponseCmndDone();
}
}
}
void CmndEnergyConfig(void) {
Energy.command_code = CMND_ENERGYCONFIG;
if (XnrgCall(FUNC_COMMAND)) {
if (!ResponseLength()) {
ResponseCmndDone();
}
}
}
#ifdef USE_ENERGY_MARGIN_DETECTION
void CmndPowerDelta(void) {
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= ENERGY_MAX_PHASES)) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 32000)) {
Settings->energy_power_delta[XdrvMailbox.index -1] = XdrvMailbox.payload;
}
ResponseCmndIdxNumber(Settings->energy_power_delta[XdrvMailbox.index -1]);
}
}
void CmndPowerLow(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
Settings->energy_min_power = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_min_power);
}
void CmndPowerHigh(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
Settings->energy_max_power = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_max_power);
}
void CmndVoltageLow(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 501)) {
Settings->energy_min_voltage = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_min_voltage);
}
void CmndVoltageHigh(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 501)) {
Settings->energy_max_voltage = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_max_voltage);
}
void CmndCurrentLow(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 16001)) {
Settings->energy_min_current = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_min_current);
}
void CmndCurrentHigh(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 16001)) {
Settings->energy_max_current = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_max_current);
}
#ifdef USE_ENERGY_POWER_LIMIT
void CmndMaxPower(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
Settings->energy_max_power_limit = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_max_power_limit);
}
void CmndMaxPowerHold(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
Settings->energy_max_power_limit_hold = (1 == XdrvMailbox.payload) ? MAX_POWER_HOLD : XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_max_power_limit_hold);
}
void CmndMaxPowerWindow(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
Settings->energy_max_power_limit_window = (1 == XdrvMailbox.payload) ? MAX_POWER_WINDOW : XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_max_power_limit_window);
}
void CmndSafePower(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
Settings->energy_max_power_safe_limit = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_max_power_safe_limit);
}
void CmndSafePowerHold(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
Settings->energy_max_power_safe_limit_hold = (1 == XdrvMailbox.payload) ? SAFE_POWER_HOLD : XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_max_power_safe_limit_hold);
}
void CmndSafePowerWindow(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 1440)) {
Settings->energy_max_power_safe_limit_window = (1 == XdrvMailbox.payload) ? SAFE_POWER_WINDOW : XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_max_power_safe_limit_window);
}
void CmndMaxEnergy(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
Settings->energy_max_energy = XdrvMailbox.payload;
Energy.max_energy_state = 3;
}
ResponseCmndNumber(Settings->energy_max_energy);
}
void CmndMaxEnergyStart(void) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 24)) {
Settings->energy_max_energy_start = XdrvMailbox.payload;
}
ResponseCmndNumber(Settings->energy_max_energy_start);
}
#endif // USE_ENERGY_POWER_LIMIT
#endif // USE_ENERGY_MARGIN_DETECTION
void EnergyDrvInit(void) {
memset(&Energy, 0, sizeof(Energy)); // Reset all to 0 and false;
for (uint32_t phase = 0; phase < ENERGY_MAX_PHASES; phase++) {
Energy.apparent_power[phase] = NAN;
Energy.reactive_power[phase] = NAN;
Energy.power_factor[phase] = NAN;
Energy.frequency[phase] = NAN;
Energy.export_active[phase] = NAN;
}
Energy.phase_count = 1; // Number of phases active
Energy.voltage_available = true; // Enable if voltage is measured
Energy.current_available = true; // Enable if current is measured
Energy.power_on = true;
#ifdef USE_ENERGY_MARGIN_DETECTION
Energy.power_steady_counter = 8; // Allow for power on stabilization
#endif // USE_ENERGY_MARGIN_DETECTION
TasmotaGlobal.energy_driver = ENERGY_NONE;
XnrgCall(FUNC_PRE_INIT); // Find first energy driver
}
void EnergySnsInit(void)
{
XnrgCall(FUNC_INIT);
if (TasmotaGlobal.energy_driver) {
// Update for split phase totals (v9.5.0.9)
if ((Settings->energy_kWhtotal > 0) && (0 == Settings->energy_kWhtotal_ph[0])) {
Settings->energy_kWhtotal_ph[0] = Settings->energy_kWhtotal;
Settings->energy_kWhtoday_ph[0] = Settings->energy_kWhtoday;
Settings->energy_kWhyesterday_ph[0] = Settings->energy_kWhyesterday;
RtcSettings.energy_kWhtoday_ph[0] = RtcSettings.energy_kWhtoday;
RtcSettings.energy_kWhtotal_ph[0] = RtcSettings.energy_kWhtotal;
Settings->energy_kWhtotal = 0;
}
// Energy.kWhtoday_offset = 0;
// Do not use at Power On as Rtc was invalid (but has been restored from Settings already)
if ((ResetReason() != REASON_DEFAULT_RST) && RtcSettingsValid()) {
for (uint32_t i = 0; i < 3; i++) {
Energy.kWhtoday_offset[i] = RtcSettings.energy_kWhtoday_ph[i];
}
Energy.kWhtoday_offset_init = true;
}
for (uint32_t i = 0; i < 3; i++) {
// Energy.kWhtoday_ph[i] = 0;
// Energy.kWhtoday_delta[i] = 0;
Energy.period[i] = Energy.kWhtoday_offset[i];
}
EnergyUpdateToday();
ticker_energy.attach_ms(200, Energy200ms);
}
}
#ifdef USE_WEBSERVER
const char HTTP_ENERGY_SNS1[] PROGMEM =
"{s}" D_POWERUSAGE_APPARENT "{m}%s " D_UNIT_VA "{e}"
"{s}" D_POWERUSAGE_REACTIVE "{m}%s " D_UNIT_VAR "{e}"
"{s}" D_POWER_FACTOR "{m}%s{e}";
const char HTTP_ENERGY_SNS2[] PROGMEM =
"{s}" D_ENERGY_TODAY "{m}%s " D_UNIT_KILOWATTHOUR "{e}"
"{s}" D_ENERGY_YESTERDAY "{m}%s " D_UNIT_KILOWATTHOUR "{e}"
"{s}" D_ENERGY_TOTAL "{m}%s " D_UNIT_KILOWATTHOUR "{e}"; // {s} = <tr><th>, {m} = </th><td>, {e} = </td></tr>
const char HTTP_ENERGY_SNS3[] PROGMEM =
"{s}" D_EXPORT_ACTIVE "{m}%s " D_UNIT_KILOWATTHOUR "{e}";
#endif // USE_WEBSERVER
void EnergyShow(bool json) {
if (Energy.voltage_common) {
for (uint32_t i = 0; i < Energy.phase_count; i++) {
Energy.voltage[i] = Energy.voltage[0];
}
}
float apparent_power[Energy.phase_count];
float reactive_power[Energy.phase_count];
float power_factor[Energy.phase_count];
if (!Energy.type_dc) {
if (Energy.current_available && Energy.voltage_available) {
for (uint32_t i = 0; i < Energy.phase_count; i++) {
apparent_power[i] = Energy.apparent_power[i];
if (isnan(apparent_power[i])) {
apparent_power[i] = Energy.voltage[i] * Energy.current[i];
}
if (apparent_power[i] < Energy.active_power[i]) { // Should be impossible
Energy.active_power[i] = apparent_power[i];
}
power_factor[i] = Energy.power_factor[i];
if (isnan(power_factor[i])) {
power_factor[i] = (Energy.active_power[i] && apparent_power[i]) ? Energy.active_power[i] / apparent_power[i] : 0;
if (power_factor[i] > 1) {
power_factor[i] = 1;
}
}
reactive_power[i] = Energy.reactive_power[i];
if (isnan(reactive_power[i])) {
reactive_power[i] = 0;
uint32_t difference = ((uint32_t)(apparent_power[i] * 100) - (uint32_t)(Energy.active_power[i] * 100)) / 10;
if ((Energy.current[i] > 0.005) && ((difference > 15) || (difference > (uint32_t)(apparent_power[i] * 100 / 1000)))) {
// calculating reactive power only if current is greater than 0.005A and
// difference between active and apparent power is greater than 1.5W or 1%
//reactive_power[i] = (float)(RoundSqrtInt((uint64_t)(apparent_power[i] * apparent_power[i] * 100) - (uint64_t)(Energy.active_power[i] * Energy.active_power[i] * 100))) / 10;
float power_diff = apparent_power[i] * apparent_power[i] - Energy.active_power[i] * Energy.active_power[i];
if (power_diff < 10737418) // 2^30 / 100 (RoundSqrtInt is limited to 2^30-1)
reactive_power[i] = (float)(RoundSqrtInt((uint32_t)(power_diff * 100.0))) / 10.0;
else
reactive_power[i] = (float)(SqrtInt((uint32_t)(power_diff)));
}
}
}
}
}
float active_power_sum = 0.0;
float energy_yesterday_ph[Energy.phase_count];
for (uint32_t i = 0; i < Energy.phase_count; i++) {
energy_yesterday_ph[i] = (float)Settings->energy_kWhyesterday_ph[i] / 100000;
active_power_sum += Energy.active_power[i];
}
bool energy_tariff = false;
float energy_usage[2];
float energy_return[2];
if (Settings->tariff[0][0] != Settings->tariff[1][0]) {
energy_usage[0] = (float)RtcSettings.energy_usage.usage1_kWhtotal / 100000; // Tariff1
energy_usage[1] = (float)RtcSettings.energy_usage.usage2_kWhtotal / 100000; // Tariff2
energy_return[0] = (float)RtcSettings.energy_usage.return1_kWhtotal / 100000; // Tariff1
energy_return[1] = (float)RtcSettings.energy_usage.return2_kWhtotal / 100000; // Tariff2
energy_tariff = true;
}
char value_chr[FLOATSZ * ENERGY_MAX_PHASES]; // Used by EnergyFormatIndex
char value2_chr[FLOATSZ * ENERGY_MAX_PHASES];
char value3_chr[FLOATSZ * ENERGY_MAX_PHASES];
if (json) {
bool show_energy_period = (0 == TasmotaGlobal.tele_period);
ResponseAppend_P(PSTR(",\"" D_RSLT_ENERGY "\":{\"" D_JSON_TOTAL_START_TIME "\":\"%s\",\"" D_JSON_TOTAL "\":%s"),
GetDateAndTime(DT_ENERGY).c_str(),
EnergyFormatSum(value_chr, Energy.total, Settings->flag2.energy_resolution, json));
if (energy_tariff) {
ResponseAppend_P(PSTR(",\"" D_JSON_TOTAL D_CMND_TARIFF "\":%s"),
EnergyFormatIndex(value_chr, energy_usage, Settings->flag2.energy_resolution, json, 2));
}
ResponseAppend_P(PSTR(",\"" D_JSON_YESTERDAY "\":%s,\"" D_JSON_TODAY "\":%s"),
EnergyFormatSum(value_chr, energy_yesterday_ph, Settings->flag2.energy_resolution, json),
EnergyFormatSum(value2_chr, Energy.daily, Settings->flag2.energy_resolution, json));
/*
#if defined(SDM630_IMPORT) || defined(SDM72_IMPEXP)
if (!isnan(Energy.import_active[0])) {
ResponseAppend_P(PSTR(",\"" D_JSON_IMPORT_ACTIVE "\":%s"),
EnergyFormat(value_chr, Energy.import_active, Settings->flag2.energy_resolution, json));
if (energy_tariff) {
ResponseAppend_P(PSTR(",\"" D_JSON_IMPORT D_CMND_TARIFF "\":%s"),
EnergyFormatIndex(value_chr, energy_return, Settings->flag2.energy_resolution, json, 2));
}
}
#endif // SDM630_IMPORT || SDM72_IMPEXP
*/
if (!isnan(Energy.export_active[0])) {
ResponseAppend_P(PSTR(",\"" D_JSON_EXPORT_ACTIVE "\":%s"),
EnergyFormat(value_chr, Energy.export_active, Settings->flag2.energy_resolution, json));
if (energy_tariff) {
ResponseAppend_P(PSTR(",\"" D_JSON_EXPORT D_CMND_TARIFF "\":%s"),
EnergyFormatIndex(value_chr, energy_return, Settings->flag2.energy_resolution, json, 2));
}
}
if (show_energy_period) {
float energy_period[Energy.phase_count];
for (uint32_t i = 0; i < Energy.phase_count; i++) {
energy_period[i] = (float)(RtcSettings.energy_kWhtoday_ph[i] - Energy.period[i]) / 100;
Energy.period[i] = RtcSettings.energy_kWhtoday_ph[i];
}
ResponseAppend_P(PSTR(",\"" D_JSON_PERIOD "\":%s"),
EnergyFormat(value_chr, energy_period, Settings->flag2.wattage_resolution, json));
}
ResponseAppend_P(PSTR(",\"" D_JSON_POWERUSAGE "\":%s"),
EnergyFormat(value_chr, Energy.active_power, Settings->flag2.wattage_resolution, json));
if (!Energy.type_dc) {
if (Energy.current_available && Energy.voltage_available) {
ResponseAppend_P(PSTR(",\"" D_JSON_APPARENT_POWERUSAGE "\":%s,\"" D_JSON_REACTIVE_POWERUSAGE "\":%s,\"" D_JSON_POWERFACTOR "\":%s"),
EnergyFormat(value_chr, apparent_power, Settings->flag2.wattage_resolution, json),
EnergyFormat(value2_chr, reactive_power, Settings->flag2.wattage_resolution, json),
EnergyFormat(value3_chr, power_factor, 2, json));
}
if (!isnan(Energy.frequency[0])) {
ResponseAppend_P(PSTR(",\"" D_JSON_FREQUENCY "\":%s"),
EnergyFormat(value_chr, Energy.frequency, Settings->flag2.frequency_resolution, json, Energy.frequency_common));
}
}
if (Energy.voltage_available) {
ResponseAppend_P(PSTR(",\"" D_JSON_VOLTAGE "\":%s"),
EnergyFormat(value_chr, Energy.voltage, Settings->flag2.voltage_resolution, json, Energy.voltage_common));
}
if (Energy.current_available) {
ResponseAppend_P(PSTR(",\"" D_JSON_CURRENT "\":%s"),
EnergyFormat(value_chr, Energy.current, Settings->flag2.current_resolution, json));
}
XnrgCall(FUNC_JSON_APPEND);
ResponseJsonEnd();
#ifdef USE_DOMOTICZ
if (show_energy_period) { // Only send if telemetry
char temp_chr[FLOATSZ];
if (Energy.voltage_available) {
dtostrfd(Energy.voltage[0], Settings->flag2.voltage_resolution, temp_chr);
DomoticzSensor(DZ_VOLTAGE, temp_chr); // Voltage
}
if (Energy.current_available) {
dtostrfd(Energy.current[0], Settings->flag2.current_resolution, temp_chr);
DomoticzSensor(DZ_CURRENT, temp_chr); // Current
}
dtostrfd(Energy.total_sum * 1000, 1, temp_chr);
DomoticzSensorPowerEnergy((int)active_power_sum, temp_chr); // PowerUsage, EnergyToday
char energy_usage_chr[2][FLOATSZ];
char energy_return_chr[2][FLOATSZ];
dtostrfd((float)RtcSettings.energy_usage.usage1_kWhtotal / 100, 1, energy_usage_chr[0]); // Tariff1
dtostrfd((float)RtcSettings.energy_usage.usage2_kWhtotal / 100, 1, energy_usage_chr[1]); // Tariff2
dtostrfd((float)RtcSettings.energy_usage.return1_kWhtotal / 100, 1, energy_return_chr[0]);
dtostrfd((float)RtcSettings.energy_usage.return2_kWhtotal / 100, 1, energy_return_chr[1]);
DomoticzSensorP1SmartMeter(energy_usage_chr[0], energy_usage_chr[1], energy_return_chr[0], energy_return_chr[1], (int)active_power_sum);
}
#endif // USE_DOMOTICZ
#ifdef USE_KNX
if (show_energy_period) {
if (Energy.voltage_available) {
KnxSensor(KNX_ENERGY_VOLTAGE, Energy.voltage[0]);
}
if (Energy.current_available) {
KnxSensor(KNX_ENERGY_CURRENT, Energy.current[0]);
}
KnxSensor(KNX_ENERGY_POWER, active_power_sum);
if (!Energy.type_dc) {
KnxSensor(KNX_ENERGY_POWERFACTOR, power_factor[0]);
}
KnxSensor(KNX_ENERGY_DAILY, Energy.daily_sum);
KnxSensor(KNX_ENERGY_TOTAL, Energy.total_sum);
KnxSensor(KNX_ENERGY_YESTERDAY, Energy.yesterday_sum);
}
#endif // USE_KNX
#ifdef USE_WEBSERVER
} else {
if (Energy.voltage_available) {
WSContentSend_PD(HTTP_SNS_VOLTAGE, EnergyFormat(value_chr, Energy.voltage, Settings->flag2.voltage_resolution, json, Energy.voltage_common));
}
if (!Energy.type_dc) {
if (!isnan(Energy.frequency[0])) {
WSContentSend_PD(PSTR("{s}" D_FREQUENCY "{m}%s " D_UNIT_HERTZ "{e}"),
EnergyFormat(value_chr, Energy.frequency, Settings->flag2.frequency_resolution, json, Energy.frequency_common));
}
}
if (Energy.current_available) {
WSContentSend_PD(HTTP_SNS_CURRENT, EnergyFormat(value_chr, Energy.current, Settings->flag2.current_resolution, json));
}
WSContentSend_PD(HTTP_SNS_POWER, EnergyFormat(value_chr, Energy.active_power, Settings->flag2.wattage_resolution, json));
if (!Energy.type_dc) {
if (Energy.current_available && Energy.voltage_available) {
WSContentSend_PD(HTTP_ENERGY_SNS1, EnergyFormat(value_chr, apparent_power, Settings->flag2.wattage_resolution, json),
EnergyFormat(value2_chr, reactive_power, Settings->flag2.wattage_resolution, json),
EnergyFormat(value3_chr, power_factor, 2, json));
}
}
WSContentSend_PD(HTTP_ENERGY_SNS2, EnergyFormatSum(value_chr, Energy.daily, Settings->flag2.energy_resolution, json),
EnergyFormatSum(value2_chr, energy_yesterday_ph, Settings->flag2.energy_resolution, json),
EnergyFormatSum(value3_chr, Energy.total, Settings->flag2.energy_resolution, json));
if (!isnan(Energy.export_active[0])) {
WSContentSend_PD(HTTP_ENERGY_SNS3, EnergyFormat(value_chr, Energy.export_active, Settings->flag2.energy_resolution, json));
}
XnrgCall(FUNC_WEB_SENSOR);
#endif // USE_WEBSERVER
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv03(uint8_t function)
{
bool result = false;
if (FUNC_PRE_INIT == function) {
EnergyDrvInit();
}
else if (TasmotaGlobal.energy_driver) {
switch (function) {
case FUNC_LOOP:
XnrgCall(FUNC_LOOP);
break;
case FUNC_EVERY_250_MSECOND:
if (TasmotaGlobal.uptime > 4) {
XnrgCall(FUNC_EVERY_250_MSECOND);
}
break;
case FUNC_EVERY_SECOND:
XnrgCall(FUNC_EVERY_SECOND);
break;
case FUNC_SERIAL:
result = XnrgCall(FUNC_SERIAL);
break;
#ifdef USE_ENERGY_MARGIN_DETECTION
case FUNC_SET_POWER:
Energy.power_steady_counter = 2;
break;
#endif // USE_ENERGY_MARGIN_DETECTION
case FUNC_COMMAND:
result = DecodeCommand(kEnergyCommands, EnergyCommand);
break;
}
}
return result;
}
bool Xsns03(uint8_t function)
{
bool result = false;
if (TasmotaGlobal.energy_driver) {
switch (function) {
case FUNC_EVERY_SECOND:
EnergyEverySecond();
break;
case FUNC_JSON_APPEND:
EnergyShow(true);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
EnergyShow(false);
break;
#endif // USE_WEBSERVER
case FUNC_SAVE_BEFORE_RESTART:
EnergySaveState();
break;
case FUNC_INIT:
EnergySnsInit();
break;
}
}
return result;
}
#endif // USE_ENERGY_SENSOR