Tasmota/tasmota/xdrv_46_ccloader.ino

689 lines
23 KiB
C++

/*
xdrv_46_ccloader.ino - CCLoader for Tasmota
Copyright (C) 2021 Christian Baars and Theo Arends
based on CCLoader - Copyright (c) 2012-2014 RedBearLab
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
--------------------------------------------------------------------------------------------
Version yyyymmdd Action Description
--------------------------------------------------------------------------------------------
0.9.0.0 20191124 started - further development by Christian Baars
forked - CCLoader - Copyright (c) 2012-2014 RedBearLab
*/
#ifdef USE_CCLOADER
/*********************************************************************************************\
* CCLOader
*
* Usage:
\*********************************************************************************************/
#define XDRV_46 46
// Start addresses on DUP (Increased buffer size improves performance)
#define CCL_ADDR_BUF0 0x0000 // Buffer (512 bytes)
#define CCL_ADDR_DMA_DESC_0 0x0200 // DMA descriptors (8 bytes)
#define CCL_ADDR_DMA_DESC_1 (CCL_ADDR_DMA_DESC_0 + 8)
// DMA channels used on DUP
#define CCL_CH_DBG_TO_BUF0 0x01 // Channel 0
#define CCL_CH_BUF0_TO_FLASH 0x02 // Channel 1
// Debug commands
#define CCL_CMD_CHIP_ERASE 0x10
#define CCL_CMD_WR_CONFIG 0x19
#define CCL_CMD_RD_CONFIG 0x24
#define CCL_CMD_READ_STATUS 0x30
#define CCL_CMD_RESUME 0x4C
#define CCL_CMD_DEBUG_INSTR_1B (0x54|1)
#define CCL_CMD_DEBUG_INSTR_2B (0x54|2)
#define CCL_CMD_DEBUG_INSTR_3B (0x54|3)
#define CCL_CMD_BURST_WRITE 0x80
#define CCL_CMD_GET_CHIP_ID 0x68
// Debug status bitmasks
#define CCL_STATUS_CHIP_ERASE_BUSY_BM 0x80 // New debug interface
#define CCL_STATUS_PCON_IDLE_BM 0x40
#define CCL_STATUS_CPU_HALTED_BM 0x20
#define CCL_STATUS_PM_ACTIVE_BM 0x10
#define CCL_STATUS_HALT_STATUS_BM 0x08
#define CCL_STATUS_DEBUG_LOCKED_BM 0x04
#define CCL_STATUS_OSC_STABLE_BM 0x02
#define CCL_STATUS_STACK_OVERFLOW_BM 0x01
// DUP registers (XDATA space address)
#define CCL_DUP_DBGDATA 0x6260 // Debug interface data buffer
#define CCL_DUP_FCTL 0x6270 // Flash controller
#define CCL_DUP_FADDRL 0x6271 // Flash controller addr
#define CCL_DUP_FADDRH 0x6272 // Flash controller addr
#define CCL_DUP_FWDATA 0x6273 // Clash controller data buffer
#define CCL_DUP_CLKCONSTA 0x709E // Sys clock status
#define CCL_DUP_CLKCONCMD 0x70C6 // Sys clock configuration
#define CCL_DUP_MEMCTR 0x70C7 // Flash bank xdata mapping
#define CCL_DUP_DMA1CFGL 0x70D2 // Low byte, DMA config ch. 1
#define CCL_DUP_DMA1CFGH 0x70D3 // Hi byte , DMA config ch. 1
#define CCL_DUP_DMA0CFGL 0x70D4 // Low byte, DMA config ch. 0
#define CCL_DUP_DMA0CFGH 0x70D5 // Low byte, DMA config ch. 0
#define CCL_DUP_DMAARM 0x70D6 // DMA arming register
// Utility macros
//! Low nibble of 16bit variable
#define LOBYTE(w) ((unsigned char)(w))
//! High nibble of 16bit variable
#define HIBYTE(w) ((unsigned char)(((unsigned short)(w) >> 8) & 0xFF))
const unsigned char ccl_dma_desc_0[8] =
{
// Debug Interface -> Buffer
HIBYTE(CCL_DUP_DBGDATA), // src[15:8]
LOBYTE(CCL_DUP_DBGDATA), // src[7:0]
HIBYTE(CCL_ADDR_BUF0), // dest[15:8]
LOBYTE(CCL_ADDR_BUF0), // dest[7:0]
0, // len[12:8] - filled in later
0, // len[7:0]
31, // trigger: DBG_BW
0x11 // increment destination
};
//! DUP DMA descriptor
const unsigned char ccl_dma_desc_1[8] =
{
// Buffer -> Flash controller
HIBYTE(CCL_ADDR_BUF0), // src[15:8]
LOBYTE(CCL_ADDR_BUF0), // src[7:0]
HIBYTE(CCL_DUP_FWDATA), // dest[15:8]
LOBYTE(CCL_DUP_FWDATA), // dest[7:0]
0, // len[12:8] - filled in later
0, // len[7:0]
18, // trigger: FLASH
0x42, // increment source
};
struct {
struct {
uint8_t rev;
uint8_t ID;
} chip;
bool init = false;
} CCL;
const char CCLtype[] PROGMEM = "CCL";
// Debug control pins & the indicate LED
int CCL_RESET = 14; //GPIO14=D5 on NodeMCU/WeMos D1 Mini
int CCL_DD = 4; //GPIO4=D2 on NodeMCU/WeMos D1 Mini
int CCL_DC = 5; //GPIO5=D1 on NodeMCU/WeMos D1 Mini
/********************************************************************************************/
/**************************************************************************//**
* @brief Writes a byte on the debug interface. Requires DD to be
* output when function is called.
* @param data Byte to write
* @return None.
******************************************************************************/
#pragma inline
void CCLwrite_debug_byte(unsigned char data)
{
unsigned char i;
for (i = 0; i < 8; i++)
{
// Set clock high and put data on DD line
digitalWrite(CCL_DC, HIGH);
if(data & 0x80)
{
digitalWrite(CCL_DD, HIGH);
}
else
{
digitalWrite(CCL_DD, LOW);
}
data <<= 1;
digitalWrite(CCL_DC, LOW); // set clock low (DUP capture flank)
}
}
/**************************************************************************//**
* @brief Reads a byte from the debug interface. Requires DD to be
* input when function is called.
* @return Returns the byte read.
******************************************************************************/
#pragma inline
unsigned char CCLread_debug_byte(void)
{
unsigned char i;
unsigned char data = 0x00;
for (i = 0; i < 8; i++)
{
digitalWrite(CCL_DC, HIGH); // DC high
data <<= 1;
if(HIGH == digitalRead(CCL_DD))
{
data |= 0x01;
}
digitalWrite(CCL_DC, LOW); // DC low
}
return data;
}
/**************************************************************************//**
* @brief Function waits for DUP to indicate that it is ready. The DUP will
* pulls DD line low when it is ready. Requires DD to be input when
* function is called.
* @return Returns 0 if function timed out waiting for DD line to go low
* @return Returns 1 when DUP has indicated it is ready.
******************************************************************************/
#pragma inline
unsigned char CCLwait_dup_ready(void)
{
// DUP pulls DD low when ready
unsigned int count = 0;
while ((HIGH == digitalRead(CCL_DD)) && count < 16)
{
// Clock out 8 bits before checking if DD is low again
CCLread_debug_byte();
count++;
}
return (count == 16) ? 0 : 1;
}
/**************************************************************************//**
* @brief Issues a command on the debug interface. Only commands that return
* one output byte are supported.
* @param cmd Command byte
* @param cmd_bytes Pointer to the array of data bytes following the
* command byte [0-3]
* @param num_cmd_bytes The number of data bytes (input to DUP) [0-3]
* @return Data returned by command
******************************************************************************/
unsigned char CCLdebug_command(unsigned char cmd, unsigned char *cmd_bytes,
unsigned short num_cmd_bytes)
{
unsigned short i;
unsigned char output = 0;
// Make sure DD is output
pinMode(CCL_DD, OUTPUT);
// Send command
CCLwrite_debug_byte(cmd);
// Send bytes
for (i = 0; i < num_cmd_bytes; i++)
{
CCLwrite_debug_byte(cmd_bytes[i]);
}
// Set DD as input
pinMode(CCL_DD, INPUT);
digitalWrite(CCL_DD, HIGH);
// Wait for data to be ready
CCLwait_dup_ready();
// Read returned byte
output = CCLread_debug_byte();
// Set DD as output
pinMode(CCL_DD, OUTPUT);
return output;
}
/**************************************************************************//**
* @brief Resets the DUP into debug mode. Function assumes that
* the programmer I/O has already been configured using e.g.
* ProgrammerInit().
* @return None.
******************************************************************************/
void CCLdebug_init(void)
{
volatile unsigned char i;
// Send two flanks on DC while keeping RESET_N low
// All low (incl. RESET_N)
digitalWrite(CCL_DD, LOW);
digitalWrite(CCL_DC, LOW);
digitalWrite(CCL_RESET, LOW);
delay(10); // Wait
digitalWrite(CCL_DC, HIGH); // DC high
delay(10); // Wait
digitalWrite(CCL_DC, LOW); // DC low
delay(10); // Wait
digitalWrite(CCL_DC, HIGH); // DC high
delay(10); // Wait
digitalWrite(CCL_DC, LOW); // DC low
delay(10); // Wait
digitalWrite(CCL_RESET, HIGH); // Release RESET_N
delay(10); // Wait
}
/**************************************************************************//**
* @brief Reads the chip ID over the debug interface using the
* GET_CHIP_ID command.
* @return Returns the chip id returned by the DUP
******************************************************************************/
void CCLread_chip_id(void)
{
// Make sure DD is output
pinMode(CCL_DD, OUTPUT);
delay(1);
// Send command
CCLwrite_debug_byte(CCL_CMD_GET_CHIP_ID);
// Set DD as input
pinMode(CCL_DD, INPUT);
digitalWrite(CCL_DD, HIGH);
delay(1);
// Wait for data to be ready
if(CCLwait_dup_ready() == 1)
{
// Read ID and revision
CCL.chip.ID = CCLread_debug_byte();
CCL.chip.rev = CCLread_debug_byte();
}
// Set DD as output
pinMode(CCL_DD, OUTPUT);
return;
}
/**************************************************************************//**
* @brief Sends a block of data over the debug interface using the
* BURST_WRITE command.
* @param src Pointer to the array of input bytes
* @param num_bytes The number of input bytes
* @return None.
******************************************************************************/
void CCLburst_write_block(unsigned char *src, unsigned short num_bytes)
{
unsigned short i;
// Make sure DD is output
pinMode(CCL_DD, OUTPUT);
CCLwrite_debug_byte(CCL_CMD_BURST_WRITE | HIBYTE(num_bytes));
CCLwrite_debug_byte(LOBYTE(num_bytes));
for (i = 0; i < num_bytes; i++)
{
CCLwrite_debug_byte(src[i]);
}
// Set DD as input
pinMode(CCL_DD, INPUT);
digitalWrite(CCL_DD, HIGH);
// Wait for DUP to be ready
CCLwait_dup_ready();
CCLread_debug_byte(); // ignore output
// Set DD as output
pinMode(CCL_DD, OUTPUT);
}
/**************************************************************************//**
* @brief Issues a CHIP_ERASE command on the debug interface and waits for it
* to complete.
* @return None.
******************************************************************************/
void CCLchip_erase(void)
{
volatile unsigned char status;
// Send command
CCLdebug_command(CCL_CMD_CHIP_ERASE, 0, 0);
// Wait for status bit 7 to go low
do {
status = CCLdebug_command(CCL_CMD_READ_STATUS, 0, 0);
} while((status & CCL_STATUS_CHIP_ERASE_BUSY_BM));
}
/**************************************************************************//**
* @brief Writes a block of data to the DUP's XDATA space.
* @param address XDATA start address
* @param values Pointer to the array of bytes to write
* @param num_bytes Number of bytes to write
* @return None.
******************************************************************************/
void CCLwrite_xdata_memory_block(unsigned short address,
const unsigned char *values,
unsigned short num_bytes)
{
unsigned char instr[3];
unsigned short i;
// MOV DPTR, address
instr[0] = 0x90;
instr[1] = HIBYTE(address);
instr[2] = LOBYTE(address);
CCLdebug_command(CCL_CMD_DEBUG_INSTR_3B, instr, 3);
for (i = 0; i < num_bytes; i++)
{
// MOV A, values[i]
instr[0] = 0x74;
instr[1] = values[i];
CCLdebug_command(CCL_CMD_DEBUG_INSTR_2B, instr, 2);
// MOV @DPTR, A
instr[0] = 0xF0;
CCLdebug_command(CCL_CMD_DEBUG_INSTR_1B, instr, 1);
// INC DPTR
instr[0] = 0xA3;
CCLdebug_command(CCL_CMD_DEBUG_INSTR_1B, instr, 1);
}
}
/**************************************************************************//**
* @brief Writes a byte to a specific address in the DUP's XDATA space.
* @param address XDATA address
* @param value Value to write
* @return None.
******************************************************************************/
void CCLwrite_xdata_memory(unsigned short address, unsigned char value)
{
unsigned char instr[3];
// MOV DPTR, address
instr[0] = 0x90;
instr[1] = HIBYTE(address);
instr[2] = LOBYTE(address);
CCLdebug_command(CCL_CMD_DEBUG_INSTR_3B, instr, 3);
// MOV A, values[i]
instr[0] = 0x74;
instr[1] = value;
CCLdebug_command(CCL_CMD_DEBUG_INSTR_2B, instr, 2);
// MOV @DPTR, A
instr[0] = 0xF0;
CCLdebug_command(CCL_CMD_DEBUG_INSTR_1B, instr, 1);
}
/**************************************************************************//**
* @brief Read a byte from a specific address in the DUP's XDATA space.
* @param address XDATA address
* @return Value read from XDATA
******************************************************************************/
unsigned char CCLread_xdata_memory(unsigned short address)
{
unsigned char instr[3];
// MOV DPTR, address
instr[0] = 0x90;
instr[1] = HIBYTE(address);
instr[2] = LOBYTE(address);
CCLdebug_command(CCL_CMD_DEBUG_INSTR_3B, instr, 3);
// MOVX A, @DPTR
instr[0] = 0xE0;
return CCLdebug_command(CCL_CMD_DEBUG_INSTR_1B, instr, 1);
}
/**************************************************************************//**
* @brief Reads 1-32767 bytes from DUP's flash to a given buffer on the
* programmer.
* @param bank Flash bank to read from [0-7]
* @param address Flash memory start address [0x0000 - 0x7FFF]
* @param values Pointer to destination buffer.
* @return None.
******************************************************************************/
void CCLread_flash_memory_block(unsigned char bank,unsigned short flash_addr,
unsigned short num_bytes, unsigned char *values)
{
unsigned char instr[3];
unsigned short i;
unsigned short xdata_addr = (0x8000 + flash_addr);
// 1. Map flash memory bank to XDATA address 0x8000-0xFFFF
CCLwrite_xdata_memory(CCL_DUP_MEMCTR, bank);
// 2. Move data pointer to XDATA address (MOV DPTR, xdata_addr)
instr[0] = 0x90;
instr[1] = HIBYTE(xdata_addr);
instr[2] = LOBYTE(xdata_addr);
CCLdebug_command(CCL_CMD_DEBUG_INSTR_3B, instr, 3);
for (i = 0; i < num_bytes; i++)
{
// 3. Move value pointed to by DPTR to accumulator (MOVX A, @DPTR)
instr[0] = 0xE0;
values[i] = CCLdebug_command(CCL_CMD_DEBUG_INSTR_1B, instr, 1);
// 4. Increment data pointer (INC DPTR)
instr[0] = 0xA3;
CCLdebug_command(CCL_CMD_DEBUG_INSTR_1B, instr, 1);
}
}
/**************************************************************************//**
* @brief Writes 4-2048 bytes to DUP's flash memory. Parameter \c num_bytes
* must be a multiple of 4.
* @param src Pointer to programmer's source buffer (in XDATA space)
* @param start_addr FLASH memory start address [0x0000 - 0x7FFF]
* @param num_bytes Number of bytes to transfer [4-1024]
* @return None.
******************************************************************************/
void CCLwrite_flash_memory_block(unsigned char *src, unsigned long start_addr,
unsigned short num_bytes)
{
// 1. Write the 2 DMA descriptors to RAM
CCLwrite_xdata_memory_block(CCL_ADDR_DMA_DESC_0, ccl_dma_desc_0, 8);
CCLwrite_xdata_memory_block(CCL_ADDR_DMA_DESC_1, ccl_dma_desc_1, 8);
// 2. Update LEN value in DUP's DMA descriptors
unsigned char len[2] = {HIBYTE(num_bytes), LOBYTE(num_bytes)};
CCLwrite_xdata_memory_block((CCL_ADDR_DMA_DESC_0+4), len, 2); // LEN, DBG => ram
CCLwrite_xdata_memory_block((CCL_ADDR_DMA_DESC_1+4), len, 2); // LEN, ram => flash
// 3. Set DMA controller pointer to the DMA descriptors
CCLwrite_xdata_memory(CCL_DUP_DMA0CFGH, HIBYTE(CCL_ADDR_DMA_DESC_0));
CCLwrite_xdata_memory(CCL_DUP_DMA0CFGL, LOBYTE(CCL_ADDR_DMA_DESC_0));
CCLwrite_xdata_memory(CCL_DUP_DMA1CFGH, HIBYTE(CCL_ADDR_DMA_DESC_1));
CCLwrite_xdata_memory(CCL_DUP_DMA1CFGL, LOBYTE(CCL_ADDR_DMA_DESC_1));
// 4. Set Flash controller start address (wants 16MSb of 18 bit address)
CCLwrite_xdata_memory(CCL_DUP_FADDRH, HIBYTE( (start_addr)));//>>2) ));
CCLwrite_xdata_memory(CCL_DUP_FADDRL, LOBYTE( (start_addr)));//>>2) ));
// 5. Arm DBG=>buffer DMA channel and start burst write
CCLwrite_xdata_memory(CCL_DUP_DMAARM, CCL_CH_DBG_TO_BUF0);
CCLburst_write_block(src, num_bytes);
// 6. Start programming: buffer to flash
CCLwrite_xdata_memory(CCL_DUP_DMAARM, CCL_CH_BUF0_TO_FLASH);
CCLwrite_xdata_memory(CCL_DUP_FCTL, 0x0A);//0x06
// 7. Wait until flash controller is done
while (CCLread_xdata_memory(CCL_DUP_FCTL) & 0x80);
}
void CCLRunDUP(void)
{
volatile unsigned char i;
// Send two flanks on DC while keeping RESET_N low
// All low (incl. RESET_N)
digitalWrite(CCL_DD, LOW);
digitalWrite(CCL_DC, LOW);
digitalWrite(CCL_RESET, LOW);
delay(10); // Wait
digitalWrite(CCL_RESET, HIGH);
delay(10); // Wait
}
void CCLProgrammerInit(void)
{
pinMode(CCL_DD, OUTPUT);
pinMode(CCL_DC, OUTPUT);
pinMode(CCL_RESET, OUTPUT);
digitalWrite(CCL_DD, LOW);
digitalWrite(CCL_DC, LOW);
digitalWrite(CCL_RESET, HIGH);
}
bool CCLoaderinit()
{
CCLProgrammerInit();
AddLog_P(LOG_LEVEL_INFO,PSTR("CCL: programmer init"));
CCL.init = true;
return true;
}
String CCLChipName(uint8_t chipID) {
switch(chipID){
case 0xa5:
return F("CC2530");
break;
case 0xb5:
return F("CC2531");
break;
case 0x95:
return F("CC2533");
break;
case 0x8d:
return F("CC2540");
break;
case 0x41:
return F("CC2541");
break;
}
return F("CCL: unknown");
}
void CCLoaderLoop() {
static uint32_t step = 0;
switch(step) {
case 0:
CCLdebug_init();
AddLog_P(LOG_LEVEL_INFO,PSTR("CCL: debug init"));
step++;
break;
case 1:
CCLread_chip_id();
if((CCL.chip.ID!=0)) {
AddLog_P(LOG_LEVEL_INFO,PSTR("CCL: found chip with ID: %x, Rev: %x -> %s"), CCL.chip.ID, CCL.chip.rev, CCLChipName(CCL.chip.ID).c_str());
step++;
}
else {
AddLog_P(LOG_LEVEL_INFO,PSTR("CCL: no chip found"));
return;
}
break;
}
}
bool CLLFlashFirmware(uint8_t* data, uint32_t size)
{
bool ret = true;
unsigned char debug_config = 0;
unsigned char Verify = 0;
AddLog_P(LOG_LEVEL_INFO,PSTR("CCL: .bin file downloaded with size: %u blocks"), size/512);
if (CCL.chip.ID!=0)
{
CCLRunDUP();
CCLdebug_init();
CCLchip_erase();
CCLRunDUP();
CCLdebug_init();
// Switch DUP to external crystal osc. (XOSC) and wait for it to be stable.
// This is recommended if XOSC is available during programming. If
// XOSC is not available, comment out these two lines.
CCLwrite_xdata_memory(CCL_DUP_CLKCONCMD, 0x80);
while (CCLread_xdata_memory(CCL_DUP_CLKCONSTA) != 0x80) {};//0x80)
// Enable DMA (Disable DMA_PAUSE bit in debug configuration)
debug_config = 0x22;
CCLdebug_command(CCL_CMD_WR_CONFIG, &debug_config, 1);
unsigned char rxBuf[512];
uint32_t block = 0;
unsigned int addr = 0x0000;
AddLog_P(LOG_LEVEL_INFO,PSTR("CCL: will flash ...."));
AddLogBuffer(LOG_LEVEL_DEBUG,data,16); // quick check to compare with a hex editor
while((block*512)<size)
{
memcpy_P(rxBuf,data+(block*512),512);
CCLwrite_flash_memory_block(rxBuf, addr, 512); // src, address, count
unsigned char bank = addr / (512 * 16);
unsigned int offset = (addr % (512 * 16)) * 4;
unsigned char read_data[512];
CCLread_flash_memory_block(bank, offset, 512, read_data); // Bank, address, count, dest.
for(unsigned int i = 0; i < 512; i++)
{
if(read_data[i] !=rxBuf[i])
{
AddLog_P(LOG_LEVEL_INFO,PSTR("CCL: flashing error, erasing flash!!"));
CCLchip_erase();
return true;
}
}
addr += (unsigned int)128;
block++;
delay(10); // feed the dog
AddLog_P(LOG_LEVEL_INFO,PSTR("CCL: written block %u of %u"), block, size/512);
}
CCLRunDUP();
}
return false;
}
bool CCLChipFound() {
return CCL.chip.ID!=0;
}
/*********************************************************************************************\
* oresentation
\*********************************************************************************************/
void CCLoadershow(bool json) {
if (json) {
// unused
} else {
WSContentSend_PD(PSTR("<h3>CCLoader</h3>"));
if (CCL.chip.ID!=0){
WSContentSend_PD(PSTR("Chip ID: %x<br>"),CCL.chip.ID);
WSContentSend_PD(PSTR("Chip Revision: %x<br>"),CCL.chip.rev);
WSContentSend_PD(PSTR("Chip Name: %s<br>"),CCLChipName(CCL.chip.ID).c_str());
}
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv46(uint8_t function)
{
bool result = false;
if (FUNC_INIT == function) {
result = CCLoaderinit();
}
if(CCL.init){
switch(function){
case FUNC_EVERY_100_MSECOND:
CCLoaderLoop();
break;
case FUNC_WEB_SENSOR:
CCLoadershow(0);
break;
}
}
return result;
}
#endif // USE_CCLOADER