Tasmota/tasmota/homekit.c

730 lines
26 KiB
C
Executable File

/*
* ESPRESSIF MIT License
*
* Copyright (c) 2018 <ESPRESSIF SYSTEMS (SHANGHAI) PTE LTD>
*
* Permission is hereby granted for use on ESPRESSIF SYSTEMS products only, in which case,
* it is free of charge, to any person obtaining a copy of this software and associated
* documentation files (the "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the Software is furnished
* to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all copies or
* substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
* FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
* COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
* IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
*/
/* HomeKit Smart Outlet Example
*/
//#define USE_HOMEKIT
#ifdef USE_HOMEKIT
#ifdef ESP32
#include <Arduino.h>
#include <stdio.h>
#include <string.h>
#include <freertos/FreeRTOS.h>
#include <freertos/task.h>
#include <freertos/queue.h>
#include <esp_log.h>
#include <driver/gpio.h>
#include <hap.h>
#include <hap_apple_servs.h>
#include <hap_apple_chars.h>
#include <hap_platform_keystore.h>
//#include <app_wifi.h>
//#include <app_hap_setup_payload.h>
static const char *TAG = "HAP outlet";
char *hk_desc;
char hk_code[12];
uint8_t hk_services;
extern void Ext_Replace_Cmd_Vars(char *srcbuf, uint32_t srcsize, char *dstbuf, uint32_t dstsize);
extern uint32_t Ext_UpdVar(char *vname, float *fvar, uint32_t mode);
#define MAX_HAP_DEFS 16
struct HAP_DESC {
char hap_name[16];
char var_name[16];
char var2_name[16];
char var3_name[16];
char var4_name[16];
uint8_t hap_cid;
uint8_t type;
hap_acc_t *accessory;
hap_serv_t *service;
} hap_devs[MAX_HAP_DEFS];
#define HK_SRCBSIZE 256
#define SMART_OUTLET_TASK_PRIORITY 1
#define SMART_OUTLET_TASK_STACKSIZE 4 * 1024
#define SMART_OUTLET_TASK_NAME "hap_outlet"
//#define OUTLET_IN_USE_GPIO GPIO_NUM_0
#define OUTLET_IN_USE_GPIO -1
#define ESP_INTR_FLAG_DEFAULT 0
static xQueueHandle s_esp_evt_queue = NULL;
/**
* @brief the recover outlet in use gpio interrupt function
*/
static void IRAM_ATTR outlet_in_use_isr(void* arg)
{
uint32_t gpio_num = (uint32_t) arg;
xQueueSendFromISR(s_esp_evt_queue, &gpio_num, NULL);
}
/**
* Enable a GPIO Pin for Outlet in Use Detection
*/
static void outlet_in_use_key_init(uint32_t key_gpio_pin)
{
gpio_config_t io_conf;
/* Interrupt for both the edges */
io_conf.intr_type = GPIO_INTR_ANYEDGE;
/* Bit mask of the pins */
io_conf.pin_bit_mask = 1 << key_gpio_pin;
/* Set as input mode */
io_conf.mode = GPIO_MODE_INPUT;
/* Enable internal pull-up */
io_conf.pull_up_en = 1;
/* Disable internal pull-down */
io_conf.pull_down_en = 0;
/* Set the GPIO configuration */
gpio_config(&io_conf);
/* Install gpio isr service */
gpio_install_isr_service(ESP_INTR_FLAG_DEFAULT);
/* Hook isr handler for specified gpio pin */
gpio_isr_handler_add(key_gpio_pin, outlet_in_use_isr, (void*)key_gpio_pin);
}
/**
* Initialize the Smart Outlet Hardware.Here, we just enebale the Outlet-In-Use detection.
*/
void smart_outlet_hardware_init(int32_t gpio_num) {
s_esp_evt_queue = xQueueCreate(2, sizeof(uint32_t));
if (gpio_num < 0) return;
if (s_esp_evt_queue != NULL) {
outlet_in_use_key_init(gpio_num);
}
}
static int bridge_identify(hap_acc_t *ha)
{
ESP_LOGI(TAG, "Bridge identified");
return HAP_SUCCESS;
}
static int accessory_identify(hap_acc_t *ha)
{
hap_serv_t *hs = hap_acc_get_serv_by_uuid(ha, HAP_SERV_UUID_ACCESSORY_INFORMATION);
hap_char_t *hc = hap_serv_get_char_by_uuid(hs, HAP_CHAR_UUID_NAME);
const hap_val_t *val = hap_char_get_val(hc);
char *name = val->s;
ESP_LOGI(TAG, "Bridged Accessory %s identified", name);
return HAP_SUCCESS;
}
/* A dummy callback for handling a write on the "On" characteristic of Outlet.
* In an actual accessory, this should control the hardware
*/
static int sensor_write(hap_write_data_t write_data[], int count, void *serv_priv, void *write_priv, uint32_t index) {
int i, ret = HAP_SUCCESS;
hap_write_data_t *write;
for (i = 0; i < count; i++) {
write = &write_data[i];
const char *hcp = hap_char_get_type_uuid(write->hc);
if (!strcmp(hcp, HAP_CHAR_UUID_ON)) {
//ESP_LOGI(TAG, "Received Write. Outlet %s", write->val.b ? "On" : "Off");
ESP_LOG_LEVEL(ESP_LOG_INFO, TAG, "Received Write. Outlet %s", write->val.b ? "On" : "Off");
hap_char_update_val(write->hc, &(write->val));
float fvar = write->val.b;
Ext_UpdVar(hap_devs[index].var_name, &fvar, 1);
*(write->status) = HAP_STATUS_SUCCESS;
} else if (!strcmp(hcp, HAP_CHAR_UUID_HUE)) {
hap_char_update_val(write->hc, &(write->val));
float fvar = write->val.f;
Ext_UpdVar(hap_devs[index].var2_name, &fvar, 1);
*(write->status) = HAP_STATUS_SUCCESS;
} else if (!strcmp(hcp, HAP_CHAR_UUID_SATURATION)) {
hap_char_update_val(write->hc, &(write->val));
float fvar = write->val.f;
Ext_UpdVar(hap_devs[index].var3_name, &fvar, 1);
*(write->status) = HAP_STATUS_SUCCESS;
} else if (!strcmp(hcp, HAP_CHAR_UUID_BRIGHTNESS)) {
hap_char_update_val(write->hc, &(write->val));
float fvar = write->val.u;
Ext_UpdVar(hap_devs[index].var4_name, &fvar, 1);
*(write->status) = HAP_STATUS_SUCCESS;
} else {
*(write->status) = HAP_STATUS_RES_ABSENT;
}
}
return ret;
}
// common read routine
static int sensor_read(hap_char_t *hc, hap_status_t *status_code, void *serv_priv, void *read_priv, uint32_t index) {
hap_val_t new_val;
float fvar = 0;
if (hap_req_get_ctrl_id(read_priv)) {
ESP_LOGI(TAG, "Received read from %s", hap_req_get_ctrl_id(read_priv));
}
const char *hcp = hap_char_get_type_uuid(hc);
printf("read values %s\n", hcp );
if (!strcmp(hcp, HAP_CHAR_UUID_CURRENT_TEMPERATURE)
|| !strcmp(hcp, HAP_CHAR_UUID_CURRENT_RELATIVE_HUMIDITY)
|| !strcmp(hcp, HAP_CHAR_UUID_CURRENT_AMBIENT_LIGHT_LEVEL)
) {
Ext_UpdVar(hap_devs[index].var_name, &fvar, 0);
new_val.f = fvar;
hap_char_update_val(hc, &new_val);
*status_code = HAP_STATUS_SUCCESS;
}
if (!strcmp(hcp, HAP_CHAR_UUID_ON)) {
Ext_UpdVar(hap_devs[index].var_name, &fvar, 0);
new_val.b = fvar;
hap_char_update_val(hc, &new_val);
*status_code = HAP_STATUS_SUCCESS;
}
if (!strcmp(hcp, HAP_CHAR_UUID_HUE)) {
Ext_UpdVar(hap_devs[index].var2_name, &fvar, 0);
new_val.f = fvar;
hap_char_update_val(hc, &new_val);
*status_code = HAP_STATUS_SUCCESS;
}
if (!strcmp(hcp, HAP_CHAR_UUID_SATURATION)) {
Ext_UpdVar(hap_devs[index].var3_name, &fvar, 0);
new_val.f = fvar;
hap_char_update_val(hc, &new_val);
*status_code = HAP_STATUS_SUCCESS;
}
if (!strcmp(hcp, HAP_CHAR_UUID_BRIGHTNESS)) {
Ext_UpdVar(hap_devs[index].var4_name, &fvar, 0);
new_val.u = fvar;
hap_char_update_val(hc, &new_val);
*status_code = HAP_STATUS_SUCCESS;
}
if (!strcmp(hcp, HAP_CHAR_UUID_BATTERY_LEVEL)) {
Ext_UpdVar(hap_devs[index].var_name, &fvar, 0);
new_val.u = fvar;
hap_char_update_val(hc, &new_val);
*status_code = HAP_STATUS_SUCCESS;
}
if (!strcmp(hcp, HAP_CHAR_UUID_STATUS_LOW_BATTERY)) {
Ext_UpdVar(hap_devs[index].var2_name, &fvar, 0);
new_val.u = fvar;
hap_char_update_val(hc, &new_val);
*status_code = HAP_STATUS_SUCCESS;
}
if (!strcmp(hcp, HAP_CHAR_UUID_CHARGING_STATE)) {
Ext_UpdVar(hap_devs[index].var3_name, &fvar, 0);
new_val.u = fvar;
hap_char_update_val(hc, &new_val);
*status_code = HAP_STATUS_SUCCESS;
}
return HAP_SUCCESS;
}
#define HAP_READ hap_char_t *hc, hap_status_t *status_code, void *serv_priv, void *read_priv) { return sensor_read(hc, status_code, serv_priv, read_priv
static int sensor_read1(HAP_READ, 0);}
static int sensor_read2(HAP_READ, 1);}
static int sensor_read3(HAP_READ, 2);}
static int sensor_read4(HAP_READ, 3);}
static int sensor_read5(HAP_READ, 4);}
static int sensor_read6(HAP_READ, 5);}
static int sensor_read7(HAP_READ, 6);}
static int sensor_read8(HAP_READ, 7);}
static int sensor_read9(HAP_READ, 8);}
static int sensor_read10(HAP_READ, 9);}
static int sensor_read11(HAP_READ, 10);}
static int sensor_read12(HAP_READ, 11);}
static int sensor_read13(HAP_READ, 12);}
static int sensor_read14(HAP_READ, 13);}
static int sensor_read15(HAP_READ, 14);}
static int sensor_read16(HAP_READ, 15);}
void hap_set_read(hap_serv_t *service, uint32_t index) {
switch (index) {
case 0: hap_serv_set_read_cb(service, sensor_read1);break;
case 1: hap_serv_set_read_cb(service, sensor_read2);break;
case 2: hap_serv_set_read_cb(service, sensor_read3);break;
case 3: hap_serv_set_read_cb(service, sensor_read4);break;
case 4: hap_serv_set_read_cb(service, sensor_read5);break;
case 5: hap_serv_set_read_cb(service, sensor_read6);break;
case 6: hap_serv_set_read_cb(service, sensor_read7);break;
case 7: hap_serv_set_read_cb(service, sensor_read8);break;
case 8: hap_serv_set_read_cb(service, sensor_read9);break;
case 9: hap_serv_set_read_cb(service, sensor_read10);break;
case 10: hap_serv_set_read_cb(service, sensor_read11);break;
case 11: hap_serv_set_read_cb(service, sensor_read12);break;
case 12: hap_serv_set_read_cb(service, sensor_read13);break;
case 13: hap_serv_set_read_cb(service, sensor_read14);break;
case 14: hap_serv_set_read_cb(service, sensor_read15);break;
case 15: hap_serv_set_read_cb(service, sensor_read16);break;
}
}
#define HAP_WRITE hap_write_data_t write_data[], int count, void *serv_priv, void *write_priv) { return sensor_write(write_data, count, serv_priv, write_priv
static int sensor_write1(HAP_WRITE, 0);}
static int sensor_write2(HAP_WRITE, 1);}
static int sensor_write3(HAP_WRITE, 2);}
static int sensor_write4(HAP_WRITE, 3);}
static int sensor_write5(HAP_WRITE, 4);}
static int sensor_write6(HAP_WRITE, 5);}
static int sensor_write7(HAP_WRITE, 6);}
static int sensor_write8(HAP_WRITE, 7);}
static int sensor_write9(HAP_WRITE, 8);}
static int sensor_write10(HAP_WRITE, 9);}
static int sensor_write11(HAP_WRITE, 10);}
static int sensor_write12(HAP_WRITE, 11);}
static int sensor_write13(HAP_WRITE, 12);}
static int sensor_write14(HAP_WRITE, 13);}
static int sensor_write15(HAP_WRITE, 14);}
static int sensor_write16(HAP_WRITE, 15);}
void hap_set_write(hap_serv_t *service, uint32_t index) {
switch (index) {
case 0: hap_serv_set_write_cb(service, sensor_write1);break;
case 1: hap_serv_set_write_cb(service, sensor_write2);break;
case 2: hap_serv_set_write_cb(service, sensor_write3);break;
case 3: hap_serv_set_write_cb(service, sensor_write4);break;
case 4: hap_serv_set_write_cb(service, sensor_write5);break;
case 5: hap_serv_set_write_cb(service, sensor_write6);break;
case 6: hap_serv_set_write_cb(service, sensor_write7);break;
case 7: hap_serv_set_write_cb(service, sensor_write8);break;
case 8: hap_serv_set_write_cb(service, sensor_write9);break;
case 9: hap_serv_set_write_cb(service, sensor_write10);break;
case 10: hap_serv_set_write_cb(service, sensor_write11);break;
case 11: hap_serv_set_write_cb(service, sensor_write12);break;
case 12: hap_serv_set_write_cb(service, sensor_write13);break;
case 13: hap_serv_set_write_cb(service, sensor_write14);break;
case 14: hap_serv_set_write_cb(service, sensor_write15);break;
case 15: hap_serv_set_write_cb(service, sensor_write16);break;
}
}
uint32_t HK_getlinelen(char *lp) {
uint32_t cnt;
for (cnt=0; cnt<HK_SRCBSIZE-1; cnt++) {
if (lp[cnt]=='\n') {
break;
}
}
return cnt;
}
float tsim = 20;
uint32_t str2c(char **sp, char *vp, uint32_t len) {
char *lp = *sp;
if (len) len--;
char *cp = strchr(lp, ',');
if (cp) {
while (1) {
if (*lp == ',') {
*vp = 0;
*sp = lp + 1;
return 0;
}
if (len) {
*vp++ = *lp++;
len--;
} else {
lp++;
}
}
} else {
if (strlen(*sp)) {
strlcpy(vp, *sp, len);
return 0;
}
}
return 1;
}
/*The main thread for handling the Smart Outlet Accessory */
static void smart_outlet_thread_entry(void *p) {
/* Initialize the HAP core */
hap_init(HAP_TRANSPORT_WIFI);
hap_acc_t *accessory;
hap_acc_cfg_t cfg = {
.name = "Tasmota-Bridge",
.manufacturer = "Tasmota",
.model = "Bridge",
.serial_num = "001122334455",
.fw_rev = "0.9.0",
.hw_rev = NULL,
.pv = "1.1.0",
.identify_routine = bridge_identify,
.cid = HAP_CID_BRIDGE,
};
/* Create accessory object */
accessory = hap_acc_create(&cfg);
/* Add a dummy Product Data */
uint8_t product_data[] = {'E','S','P','3','2','H','A','P'};
hap_acc_add_product_data(accessory, product_data, sizeof(product_data));
/* Add the Accessory to the HomeKit Database */
hap_add_accessory(accessory);
/* Initialise the mandatory parameters for Accessory which will be added as
* the mandatory services internally
*/
hap_char_t *outlet_in_use;
// get values from descriptor, line per line
// name, cid, var
char *lp = hk_desc;
uint8_t index = 0;
while (*lp) {
if (*lp == '#') break;
if (*lp == '\n') lp++;
if (*lp == ' ') lp++;
if (*lp == ';') goto nextline;
char dstbuf[HK_SRCBSIZE*2];
Ext_Replace_Cmd_Vars(lp, 1, dstbuf, sizeof(dstbuf));
lp += HK_getlinelen(lp);
char *lp1 = dstbuf;
if (str2c(&lp1, hap_devs[index].hap_name, sizeof(hap_devs[index].hap_name))) {
goto nextline;
}
hap_devs[index].hap_cid = strtol(lp1, &lp1, 10);
lp1++;
hap_devs[index].type = strtol(lp1, &lp1, 10);
lp1++;
if (str2c(&lp1, hap_devs[index].var_name, sizeof(hap_devs[index].var_name))) {
goto nextline;
}
if (hap_devs[index].hap_cid == HAP_CID_LIGHTING) {
// get 3 add vars
if (str2c(&lp1, hap_devs[index].var2_name, sizeof(hap_devs[index].var2_name))) {
goto nextline;
}
if (str2c(&lp1, hap_devs[index].var3_name, sizeof(hap_devs[index].var3_name))) {
goto nextline;
}
if (str2c(&lp1, hap_devs[index].var4_name, sizeof(hap_devs[index].var4_name))) {
goto nextline;
}
}
hap_acc_cfg_t hap_cfg;
hap_cfg.name = hap_devs[index].hap_name;
hap_cfg.manufacturer = "Tasmota";
hap_cfg.model = "Tasmota Device";
hap_cfg.serial_num = "001122334455";
hap_cfg.fw_rev = "0.9.0";
hap_cfg.hw_rev = NULL;
hap_cfg.pv = "1.1.0";
hap_cfg.identify_routine = accessory_identify;
hap_cfg.cid = hap_devs[index].hap_cid;
/* Create accessory object */
hap_devs[index].accessory = hap_acc_create(&hap_cfg);
/* Add a dummy Product Data */
uint8_t product_data[] = {'E','S','P','3','2','H','A','P'};
hap_acc_add_product_data(hap_devs[index].accessory, product_data, sizeof(product_data));
int ret;
switch (hap_cfg.cid) {
case HAP_CID_LIGHTING:
{ float fvar = 0;
Ext_UpdVar(hap_devs[index].var_name, &fvar, 0);
hap_devs[index].service = hap_serv_lightbulb_create(fvar);
Ext_UpdVar(hap_devs[index].var2_name, &fvar, 0);
ret |= hap_serv_add_char(hap_devs[index].service, hap_char_hue_create(fvar));
Ext_UpdVar(hap_devs[index].var3_name, &fvar, 0);
ret |= hap_serv_add_char(hap_devs[index].service, hap_char_saturation_create(fvar));
Ext_UpdVar(hap_devs[index].var4_name, &fvar, 0);
ret |= hap_serv_add_char(hap_devs[index].service, hap_char_brightness_create(fvar));
}
break;
case HAP_CID_OUTLET:
{ float fvar = 0;
Ext_UpdVar(hap_devs[index].var_name, &fvar, 0);
hap_devs[index].service = hap_serv_outlet_create(fvar, true);
}
break;
case HAP_CID_SENSOR:
{ float fvar = 22;
Ext_UpdVar(hap_devs[index].var_name, &fvar, 0);
switch (hap_devs[index].type) {
case 0: hap_devs[index].service = hap_serv_temperature_sensor_create(fvar); break;
case 1: hap_devs[index].service = hap_serv_humidity_sensor_create(fvar); break;
case 2: hap_devs[index].service = hap_serv_light_sensor_create(fvar); break;
case 3:
{ float fvar1 = 0, fvar2 = 0;
Ext_UpdVar(hap_devs[index].var2_name, &fvar1, 0);
Ext_UpdVar(hap_devs[index].var3_name, &fvar2, 0);
hap_devs[index].service = hap_serv_battery_service_create(fvar, fvar1, fvar2);
}
break;
}
}
break;
default:
hap_devs[index].service = hap_serv_outlet_create(true, true);
}
hap_serv_add_char(hap_devs[index].service, hap_char_name_create(hap_devs[index].hap_name));
hap_set_read(hap_devs[index].service, index);
hap_set_write(hap_devs[index].service, index);
/* Get pointer to the outlet in use characteristic which we need to monitor for state changes */
hap_char_t *outlet_in_use = hap_serv_get_char_by_uuid(hap_devs[index].service, HAP_CHAR_UUID_OUTLET_IN_USE);
/* Add the Outlet Service to the Accessory Object */
hap_acc_add_serv(hap_devs[index].accessory, hap_devs[index].service);
/* Add the Accessory to the HomeKit Database */
hap_add_bridged_accessory(hap_devs[index].accessory, hap_get_unique_aid(hap_devs[index].hap_name));
index++;
nextline:
if (*lp=='\n') {
lp++;
} else {
lp = strchr(lp, '\n');
if (!lp) break;
lp++;
}
}
hk_services = index;
/* Initialize the appliance specific hardware. This enables out-in-use detection */
smart_outlet_hardware_init(OUTLET_IN_USE_GPIO);
/* For production accessories, the setup code shouldn't be programmed on to
* the device. Instead, the setup info, derived from the setup code must
* be used. Use the factory_nvs_gen utility to generate this data and then
* flash it into the factory NVS partition.
*
* By default, the setup ID and setup info will be read from the factory_nvs
* Flash partition and so, is not required to set here explicitly.
*
* However, for testing purpose, this can be overridden by using hap_set_setup_code()
* and hap_set_setup_id() APIs, as has been done here.
*/
hap_set_setup_code(hk_code);
hap_set_setup_id("ES32");
#ifdef CONFIG_EXAMPLE_USE_HARDCODED_SETUP_CODE
/* Unique Setup code of the format xxx-xx-xxx. Default: 111-22-333 */
hap_set_setup_code(CONFIG_EXAMPLE_SETUP_CODE);
/* Unique four character Setup Id. Default: ES32 */
hap_set_setup_id(CONFIG_EXAMPLE_SETUP_ID);
#ifdef CONFIG_APP_WIFI_USE_WAC_PROVISIONING
app_hap_setup_payload(CONFIG_EXAMPLE_SETUP_CODE, CONFIG_EXAMPLE_SETUP_ID, true, hap_devs[0].hap_cid);
#else
app_hap_setup_payload(CONFIG_EXAMPLE_SETUP_CODE, CONFIG_EXAMPLE_SETUP_ID, false, hap_devs[0].hap_cid);
#endif
#endif // CONFIG_EXAMPLE_USE_HARDCODED_SETUP_CODE
/* Enable Hardware MFi authentication (applicable only for MFi variant of SDK) */
hap_enable_mfi_auth(HAP_MFI_AUTH_HW);
/* Initialize Wi-Fi */
//app_wifi_init();
/* After all the initializations are done, start the HAP core */
hap_start();
/* Start Wi-Fi */
//app_wifi_start(portMAX_DELAY);
int32_t io_num = OUTLET_IN_USE_GPIO;
if (io_num >= 0) {
hap_val_t appliance_value = {
.b = true,
};
/* Listen for Outlet-In-Use state change events. Other read/write functionality will be handled
* by the HAP Core.
* When the Outlet in Use GPIO goes low, it means Outlet is not in use.
* When the Outlet in Use GPIO goes high, it means Outlet is in use.
* Applications can define own logic as per their hardware.
*/
while (1) {
if (xQueueReceive(s_esp_evt_queue, &io_num, portMAX_DELAY) == pdFALSE) {
ESP_LOGI(TAG, "Outlet-In-Use trigger FAIL");
} else {
appliance_value.b = gpio_get_level(io_num);
/* If any state change is detected, update the Outlet In Use characteristic value */
hap_char_update_val(outlet_in_use, &appliance_value);
ESP_LOGI(TAG, "Outlet-In-Use triggered [%d]", appliance_value.b);
}
}
} else {
// vTaskDelete(NULL);
// update values every 100 ms
while (1) {
delay(100);
float fvar;
hap_char_t *hc;
hap_val_t new_val;
for (uint32_t cnt = 0; cnt < hk_services; cnt++) {
switch (hap_devs[cnt].hap_cid) {
case HAP_CID_SENSOR:
switch (hap_devs[cnt].type) {
case 0:
hc = hap_serv_get_char_by_uuid(hap_devs[cnt].service, HAP_CHAR_UUID_CURRENT_TEMPERATURE);
if (Ext_UpdVar(hap_devs[cnt].var_name, &fvar, 0)) {
new_val.f = fvar;
hap_char_update_val(hc, &new_val);
}
break;
case 1:
hc = hap_serv_get_char_by_uuid(hap_devs[cnt].service, HAP_CHAR_UUID_CURRENT_RELATIVE_HUMIDITY);
if (Ext_UpdVar(hap_devs[cnt].var_name, &fvar, 0)) {
new_val.f = fvar;
hap_char_update_val(hc, &new_val);
}
break;
case 2:
hc = hap_serv_get_char_by_uuid(hap_devs[cnt].service, HAP_CHAR_UUID_CURRENT_AMBIENT_LIGHT_LEVEL);
if (Ext_UpdVar(hap_devs[cnt].var_name, &fvar, 0)) {
new_val.f = fvar;
hap_char_update_val(hc, &new_val);
}
break;
case 3:
hc = hap_serv_get_char_by_uuid(hap_devs[cnt].service, HAP_CHAR_UUID_BATTERY_LEVEL);
if (Ext_UpdVar(hap_devs[cnt].var_name, &fvar, 0)) {
new_val.u = fvar;
hap_char_update_val(hc, &new_val);
}
hc = hap_serv_get_char_by_uuid(hap_devs[cnt].service, HAP_CHAR_UUID_STATUS_LOW_BATTERY);
if (Ext_UpdVar(hap_devs[cnt].var2_name, &fvar, 0)) {
new_val.u = fvar;
hap_char_update_val(hc, &new_val);
}
hc = hap_serv_get_char_by_uuid(hap_devs[cnt].service, HAP_CHAR_UUID_STATUS_LOW_BATTERY);
if (Ext_UpdVar(hap_devs[cnt].var3_name, &fvar, 0)) {
new_val.u = fvar;
hap_char_update_val(hc, &new_val);
}
break;
}
break;
case HAP_CID_OUTLET:
hc = hap_serv_get_char_by_uuid(hap_devs[cnt].service, HAP_CHAR_UUID_ON);
if (Ext_UpdVar(hap_devs[cnt].var_name, &fvar, 0)) {
new_val.b = fvar;
hap_char_update_val(hc, &new_val);
}
break;
case HAP_CID_LIGHTING:
hc = hap_serv_get_char_by_uuid(hap_devs[cnt].service, HAP_CHAR_UUID_ON);
if (Ext_UpdVar(hap_devs[cnt].var_name, &fvar, 0)) {
new_val.b = fvar;
hap_char_update_val(hc, &new_val);
}
hc = hap_serv_get_char_by_uuid(hap_devs[cnt].service, HAP_CHAR_UUID_HUE);
if (Ext_UpdVar(hap_devs[cnt].var2_name, &fvar, 0)) {
new_val.f = fvar;
hap_char_update_val(hc, &new_val);
}
hc = hap_serv_get_char_by_uuid(hap_devs[cnt].service, HAP_CHAR_UUID_SATURATION);
if (Ext_UpdVar(hap_devs[cnt].var3_name, &fvar, 0)) {
new_val.f = fvar;
hap_char_update_val(hc, &new_val);
}
hc = hap_serv_get_char_by_uuid(hap_devs[cnt].service, HAP_CHAR_UUID_BRIGHTNESS);
if (Ext_UpdVar(hap_devs[cnt].var4_name, &fvar, 0)) {
new_val.u = fvar;
hap_char_update_val(hc, &new_val);
}
break;
}
}
}
}
}
#define HK_PASSCODE "111-11-111"
void homekit_main(char *desc, uint32_t flag ) {
if (desc) {
char *cp = desc;
cp += 2;
while (*cp == ' ') cp++;
// "111-11-111"
if (*cp == '*') {
strlcpy(hk_code, HK_PASSCODE, 10);
cp++;
} else {
uint32_t cnt;
for (cnt = 0; cnt < 10; cnt++) {
hk_code[cnt] = *cp++;
}
hk_code[cnt] = 0;
}
if (*cp != '\n') {
printf("init error\n");
return;
}
cp++;
hk_desc = cp;
} else {
if (flag == 99) {
hap_reset_to_factory();
} else {
// not yet implemented
hap_stop();
}
return;
}
if (!hk_desc) return;
/* Create the application thread */
xTaskCreate(smart_outlet_thread_entry, SMART_OUTLET_TASK_NAME, SMART_OUTLET_TASK_STACKSIZE, NULL, SMART_OUTLET_TASK_PRIORITY, NULL);
}
#endif // ESP32
#endif // USE_HOMEKIT