Tasmota/lib/esp-knx-ip-0.5.0/examples/static-config/static-config.ino

143 lines
3.2 KiB
C++

/*
* This is an example showing a simple environment sensor based on a BME280 attached via I2C.
* It shows, how the library can used to statically configure a device without a webserver for config.
* This sketch was tested on a WeMos D1 mini
*/
#include <Adafruit_BME280.h>
#include <esp-knx-ip.h>
// WiFi config here
const char* ssid = "myssid";
const char* pass = "mypassword";
#define LED_PIN D4
#define UPDATE_INTERVAL 10000
unsigned long next_change = 0;
float last_temp = 0.0;
float last_hum = 0.0;
float last_pres = 0.0;
Adafruit_BME280 bme;
// Group addresses to send to (1/1/1, 1/1/2 and 1/1/3)
address_t temp_ga = knx.GA_to_address(1, 1, 1);
address_t hum_ga = knx.GA_to_address(1, 1, 2);
address_t pres_ga = knx.GA_to_address(1, 1, 3);
void setup() {
pinMode(LED_PIN, OUTPUT);
Serial.begin(115200);
callback_id_t temp_cb = knx.callback_register("Read Temperature", temp_cb);
callback_id_t hum_cb =knx.callback_register("Read Humidity", hum_cb);
callback_id_t pres_cb =knx.callback_register("Read Pressure", pres_cb);
// Assign callbacks to group addresses (2/1/1, 2/1/2, 2/1/3)
knx.callback_assign(temp_cb, knx.GA_to_address(2, 1, 1));
knx.callback_assign(hum_cb, knx.GA_to_address(2, 1, 2));
knx.callback_assign(pres_cb, knx.GA_to_address(2, 1, 3));
// Set physical address (1.1.1)
knx.physical_address_set(knx.PA_to_address(1, 1, 1));
// Do not call knx.load() for static config, it will try to load config from EEPROM which we don't have here
// Init sensor
if (!bme.begin(0x76)) {
Serial.println("Could not find a valid BME280 sensor, check wiring!");
}
// Init WiFi
WiFi.hostname("env");
WiFi.begin(ssid, pass);
Serial.println("");
Serial.print("[Connecting]");
Serial.print(ssid);
digitalWrite(LED_PIN, LOW);
while (WiFi.status() != WL_CONNECTED) {
digitalWrite(LED_PIN, HIGH);
delay(250);
Serial.print(".");
digitalWrite(LED_PIN, LOW);
delay(250);
}
digitalWrite(LED_PIN, HIGH);
// Start knx, disable webserver by passing nullptr
knx.start(nullptr);
Serial.println();
Serial.println("Connected to wifi");
Serial.println(WiFi.localIP());
}
void loop() {
knx.loop();
unsigned long now = millis();
if (next_change < now)
{
next_change = now + UPDATE_INTERVAL;
last_temp = bme.readTemperature();
last_hum = bme.readHumidity();
last_pres = bme.readPressure()/100.0f;
Serial.print("T: ");
Serial.print(last_temp);
Serial.print("°C H: ");
Serial.print(last_hum);
Serial.print("% P: ");
Serial.print(last_pres);
Serial.println("hPa");
knx.write_2byte_float(temp_ga, last_temp);
knx.write_2byte_float(hum_ga, last_hum);
knx.write_2byte_float(pres_ga, last_pres);
}
delay(50);
}
void temp_cb(message_t const &msg, void *arg)
{
switch (msg.ct)
{
case KNX_CT_READ:
{
knx.answer_2byte_float(msg.received_on, last_temp);
break;
}
}
}
void hum_cb(message_t const &msg, void *arg)
{
switch (msg.ct)
{
case KNX_CT_READ:
{
knx.answer_2byte_float(msg.received_on, last_hum);
break;
}
}
}
void pres_cb(message_t const &msg, void *arg)
{
switch (msg.ct)
{
case KNX_CT_READ:
{
knx.answer_2byte_float(msg.received_on, last_pres);
break;
}
}
}