Tasmota/tasmota/xdrv_39_thermostat.ino

2033 lines
93 KiB
C++

/*
xdrv_39_thermostat.ino - Thermostat controller for Tasmota
Copyright (C) 2020 Javier Arigita
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_THERMOSTAT
#define XDRV_39 39
// Enable/disable debugging
//#define DEBUG_THERMOSTAT
// Enable/disable experimental PI auto-tuning inspired by the Arduino
// Autotune Library by Brett Beauregard
//#define USE_PI_AUTOTUNING // (Ziegler-Nichols closed loop method)
#ifdef DEBUG_THERMOSTAT
#define DOMOTICZ_MAX_IDX 4
#define DOMOTICZ_IDX1 791
#define DOMOTICZ_IDX2 792
#define DOMOTICZ_IDX3 799
#define DOMOTICZ_IDX4 800
#define DOMOTICZ_IDX5 801
#endif // DEBUG_THERMOSTAT
// Commands
#define D_CMND_THERMOSTATMODESET "ThermostatModeSet"
#define D_CMND_CLIMATEMODESET "ClimateModeSet"
#define D_CMND_TEMPFROSTPROTECTSET "TempFrostProtectSet"
#define D_CMND_CONTROLLERMODESET "ControllerModeSet"
#define D_CMND_INPUTSWITCHSET "InputSwitchSet"
#define D_CMND_INPUTSWITCHUSE "InputSwitchUse"
#define D_CMND_OUTPUTRELAYSET "OutputRelaySet"
#define D_CMND_TIMEALLOWRAMPUPSET "TimeAllowRampupSet"
#define D_CMND_TEMPFORMATSET "TempFormatSet"
#define D_CMND_TEMPMEASUREDSET "TempMeasuredSet"
#define D_CMND_TEMPTARGETSET "TempTargetSet"
#define D_CMND_TEMPMEASUREDGRDREAD "TempMeasuredGrdRead"
#define D_CMND_TEMPSENSNUMBERSET "TempSensNumberSet"
#define D_CMND_SENSORINPUTSET "SensorInputSet"
#define D_CMND_STATEEMERGENCYSET "StateEmergencySet"
#define D_CMND_TIMEMANUALTOAUTOSET "TimeManualToAutoSet"
#define D_CMND_TIMEONLIMITSET "TimeOnLimitSet"
#define D_CMND_PROPBANDSET "PropBandSet"
#define D_CMND_TIMERESETSET "TimeResetSet"
#define D_CMND_TIMEPICYCLESET "TimePiCycleSet"
#define D_CMND_TEMPANTIWINDUPRESETSET "TempAntiWindupResetSet"
#define D_CMND_TEMPHYSTSET "TempHystSet"
#ifdef USE_PI_AUTOTUNING
#define D_CMND_PERFLEVELAUTOTUNE "PerfLevelAutotune"
#endif // USE_PI_AUTOTUNING
#define D_CMND_TIMEMAXACTIONSET "TimeMaxActionSet"
#define D_CMND_TIMEMINACTIONSET "TimeMinActionSet"
#define D_CMND_TIMEMINTURNOFFACTIONSET "TimeMinTurnoffActionSet"
#define D_CMND_TEMPRUPDELTINSET "TempRupDeltInSet"
#define D_CMND_TEMPRUPDELTOUTSET "TempRupDeltOutSet"
#define D_CMND_TIMERAMPUPMAXSET "TimeRampupMaxSet"
#define D_CMND_TIMERAMPUPCYCLESET "TimeRampupCycleSet"
#define D_CMND_TEMPRAMPUPPIACCERRSET "TempRampupPiAccErrSet"
#define D_CMND_TIMEPIPROPORTREAD "TimePiProportRead"
#define D_CMND_TIMEPIINTEGRREAD "TimePiIntegrRead"
#define D_CMND_TIMESENSLOSTSET "TimeSensLostSet"
#define D_CMND_DIAGNOSTICMODESET "DiagnosticModeSet"
#define D_CMND_CTRDUTYCYCLEREAD "CtrDutyCycleRead"
#define D_CMND_ENABLEOUTPUTSET "EnableOutputSet"
enum ThermostatModes { THERMOSTAT_OFF, THERMOSTAT_AUTOMATIC_OP, THERMOSTAT_MANUAL_OP, THERMOSTAT_MODES_MAX };
#ifdef USE_PI_AUTOTUNING
enum ControllerModes { CTR_HYBRID, CTR_PI, CTR_RAMP_UP, CTR_PI_AUTOTUNE, CTR_MODES_MAX };
enum ControllerHybridPhases { CTR_HYBRID_RAMP_UP, CTR_HYBRID_PI, CTR_HYBRID_PI_AUTOTUNE };
enum AutotuneStates { AUTOTUNE_OFF, AUTOTUNE_ON, AUTOTUNE_MAX };
enum AutotunePerformanceParam { AUTOTUNE_PERF_FAST, AUTOTUNE_PERF_NORMAL, AUTOTUNE_PERF_SLOW, AUTOTUNE_PERF_MAX };
#else
enum ControllerModes { CTR_HYBRID, CTR_PI, CTR_RAMP_UP, CTR_MODES_MAX };
enum ControllerHybridPhases { CTR_HYBRID_RAMP_UP, CTR_HYBRID_PI };
#endif // USE_PI_AUTOTUNING
enum ClimateModes { CLIMATE_HEATING, CLIMATE_COOLING, CLIMATE_MODES_MAX };
enum InterfaceStates { IFACE_OFF, IFACE_ON };
enum InputUsage { INPUT_NOT_USED, INPUT_USED };
enum CtrCycleStates { CYCLE_OFF, CYCLE_ON };
enum EmergencyStates { EMERGENCY_OFF, EMERGENCY_ON };
enum SensorType { SENSOR_MQTT, SENSOR_LOCAL, SENSOR_MAX };
enum TempFormat { TEMP_CELSIUS, TEMP_FAHRENHEIT };
enum TempConvType { TEMP_CONV_ABSOLUTE, TEMP_CONV_RELATIVE };
enum DiagnosticModes { DIAGNOSTIC_OFF, DIAGNOSTIC_ON };
enum ThermostatSupportedInputSwitches {
THERMOSTAT_INPUT_NONE,
THERMOSTAT_INPUT_SWT1 = 1, // Buttons
THERMOSTAT_INPUT_SWT2,
THERMOSTAT_INPUT_SWT3,
THERMOSTAT_INPUT_SWT4,
THERMOSTAT_INPUT_SWT5,
THERMOSTAT_INPUT_SWT6,
THERMOSTAT_INPUT_SWT7,
THERMOSTAT_INPUT_SWT8
};
enum ThermostatSupportedOutputRelays {
THERMOSTAT_OUTPUT_NONE,
THERMOSTAT_OUTPUT_REL1 = 1, // Relays
THERMOSTAT_OUTPUT_REL2,
THERMOSTAT_OUTPUT_REL3,
THERMOSTAT_OUTPUT_REL4,
THERMOSTAT_OUTPUT_REL5,
THERMOSTAT_OUTPUT_REL6,
THERMOSTAT_OUTPUT_REL7,
THERMOSTAT_OUTPUT_REL8
};
typedef union {
uint32_t data;
struct {
uint32_t thermostat_mode : 2; // Operation mode of the thermostat system
uint32_t controller_mode : 2; // Operation mode of the thermostat controller
uint32_t climate_mode : 1; // Climate mode of the thermostat (0 = heating / 1 = cooling)
uint32_t sensor_alive : 1; // Flag stating if temperature sensor is alive (0 = inactive, 1 = active)
uint32_t sensor_type : 1; // Sensor type: MQTT/local
uint32_t temp_format : 1; // Temperature format (0 = Celsius, 1 = Fahrenheit)
uint32_t command_output : 1; // Flag stating the desired command to the output (0 = inactive, 1 = active)
uint32_t status_output : 1; // Flag stating state of the output (0 = inactive, 1 = active)
uint32_t status_input : 1; // Flag stating state of the input (0 = inactive, 1 = active)
uint32_t use_input : 1; // Flag stating if the input switch shall be used to switch to manual mode
uint32_t phase_hybrid_ctr : 2; // Phase of the hybrid controller (Ramp-up, PI or Autotune)
uint32_t status_cycle_active : 1; // Status showing if cycle is active (Output ON) or not (Output OFF)
uint32_t counter_seconds : 6; // Second counter used to track minutes
uint32_t output_relay_number : 4; // Output relay number
uint32_t input_switch_number : 3; // Input switch number
uint32_t enable_output : 1; // Enables / disables the physical output
#ifdef USE_PI_AUTOTUNING
uint32_t autotune_flag : 1; // Enable/disable autotune
uint32_t autotune_perf_mode : 2; // Autotune performance mode
#else
uint32_t free : 3; // Free bits
#endif // USE_PI_AUTOTUNING
};
} ThermostatStateBitfield;
typedef union {
uint8_t data;
struct {
uint8_t state_emergency : 1; // State for thermostat emergency
uint8_t diagnostic_mode : 1; // Diagnostic mode selected
uint8_t output_inconsist_ctr : 2; // Counter of the minutes where the output state is inconsistent with the command
};
} ThermostatDiagBitfield;
#ifdef DEBUG_THERMOSTAT
const char DOMOTICZ_MES[] PROGMEM = "{\"idx\":%d,\"nvalue\":%d,\"svalue\":\"%s\"}";
uint16_t Domoticz_Virtual_Switches[DOMOTICZ_MAX_IDX] = { DOMOTICZ_IDX1, DOMOTICZ_IDX3, DOMOTICZ_IDX4, DOMOTICZ_IDX5 };
#endif // DEBUG_THERMOSTAT
const char kThermostatCommands[] PROGMEM = "|" D_CMND_THERMOSTATMODESET "|" D_CMND_CLIMATEMODESET "|"
D_CMND_TEMPFROSTPROTECTSET "|" D_CMND_CONTROLLERMODESET "|" D_CMND_INPUTSWITCHSET "|" D_CMND_INPUTSWITCHUSE "|"
D_CMND_OUTPUTRELAYSET "|" D_CMND_TIMEALLOWRAMPUPSET "|" D_CMND_TEMPFORMATSET "|" D_CMND_TEMPMEASUREDSET "|"
D_CMND_TEMPTARGETSET "|" D_CMND_TEMPMEASUREDGRDREAD "|" D_CMND_SENSORINPUTSET "|" D_CMND_STATEEMERGENCYSET "|"
D_CMND_TIMEMANUALTOAUTOSET "|" D_CMND_PROPBANDSET "|" D_CMND_TIMERESETSET "|" D_CMND_TIMEPICYCLESET "|"
#ifdef USE_PI_AUTOTUNING
D_CMND_TEMPANTIWINDUPRESETSET "|" D_CMND_TEMPHYSTSET "|" D_CMND_PERFLEVELAUTOTUNE "|" D_CMND_TIMEMAXACTIONSET "|"
#else
D_CMND_TEMPANTIWINDUPRESETSET "|" D_CMND_TEMPHYSTSET "|" D_CMND_TIMEMAXACTIONSET "|"
#endif // USE_PI_AUTOTUNING
D_CMND_TIMEMINACTIONSET "|" D_CMND_TIMEMINTURNOFFACTIONSET "|" D_CMND_TEMPRUPDELTINSET "|" D_CMND_TEMPRUPDELTOUTSET "|"
D_CMND_TIMERAMPUPMAXSET "|" D_CMND_TIMERAMPUPCYCLESET "|" D_CMND_TEMPRAMPUPPIACCERRSET "|" D_CMND_TIMEPIPROPORTREAD "|"
D_CMND_TIMEPIINTEGRREAD "|" D_CMND_TIMESENSLOSTSET "|" D_CMND_DIAGNOSTICMODESET "|" D_CMND_CTRDUTYCYCLEREAD "|"
D_CMND_ENABLEOUTPUTSET;
void (* const ThermostatCommand[])(void) PROGMEM = {
&CmndThermostatModeSet, &CmndClimateModeSet, &CmndTempFrostProtectSet, &CmndControllerModeSet, &CmndInputSwitchSet,
&CmndInputSwitchUse, &CmndOutputRelaySet, &CmndTimeAllowRampupSet, &CmndTempFormatSet, &CmndTempMeasuredSet,
&CmndTempTargetSet, &CmndTempMeasuredGrdRead, &CmndSensorInputSet, &CmndStateEmergencySet, &CmndTimeManualToAutoSet,
&CmndPropBandSet, &CmndTimeResetSet, &CmndTimePiCycleSet, &CmndTempAntiWindupResetSet, &CmndTempHystSet,
#ifdef USE_PI_AUTOTUNING
&CmndPerfLevelAutotune, &CmndTimeMaxActionSet, &CmndTimeMinActionSet, &CmndTimeMinTurnoffActionSet, &CmndTempRupDeltInSet,
#else
&CmndTimeMaxActionSet, &CmndTimeMinActionSet, &CmndTimeMinTurnoffActionSet, &CmndTempRupDeltInSet,
#endif // USE_PI_AUTOTUNING
&CmndTempRupDeltOutSet, &CmndTimeRampupMaxSet, &CmndTimeRampupCycleSet, &CmndTempRampupPiAccErrSet,
&CmndTimePiProportRead, &CmndTimePiIntegrRead, &CmndTimeSensLostSet, &CmndDiagnosticModeSet, &CmndCtrDutyCycleRead,
&CmndEnableOutputSet };
struct THERMOSTAT {
ThermostatStateBitfield status; // Bittfield including states as well as several flags
uint32_t timestamp_temp_measured_update = 0; // Timestamp of latest measurement update
uint32_t timestamp_temp_meas_change_update = 0; // Timestamp of latest measurement value change (> or < to previous)
uint32_t timestamp_output_off = 0; // Timestamp of latest thermostat output Off state
uint32_t timestamp_input_on = 0; // Timestamp of latest input On state
uint32_t time_thermostat_total = 0; // Time thermostat on within a specific timeframe
uint32_t time_ctr_checkpoint = 0; // Time to finalize the control cycle within the PI strategy or to switch to PI from Rampup in seconds
uint32_t time_ctr_changepoint = 0; // Time until switching off output within the controller in seconds
int32_t temp_measured_gradient = 0; // Temperature measured gradient from sensor in thousandths of degrees per hour
int16_t temp_target_level = THERMOSTAT_TEMP_INIT; // Target level of the thermostat in tenths of degrees
int16_t temp_target_level_ctr = THERMOSTAT_TEMP_INIT; // Target level set for the controller
int16_t temp_pi_accum_error = 0; // Temperature accumulated error for the PI controller in hundredths of degrees
int16_t temp_pi_error = 0; // Temperature error for the PI controller in hundredths of degrees
int32_t time_proportional_pi; // Time proportional part of the PI controller
int32_t time_integral_pi; // Time integral part of the PI controller
int32_t time_total_pi; // Time total (proportional + integral) of the PI controller
uint16_t kP_pi = 0; // kP value for the PI controller multiplied by 100 (to avoid floating point operations)
uint16_t kI_pi = 0; // kI value for the PI controller multiplied by 100 (to avoid floating point operations)
int32_t temp_rampup_meas_gradient = 0; // Temperature measured gradient from sensor in thousandths of degrees celsius per hour calculated during ramp-up
uint32_t timestamp_rampup_start = 0; // Timestamp where the ramp-up controller mode has been started
uint32_t time_rampup_deadtime = 0; // Time constant of the thermostat system (step response time)
uint32_t time_rampup_nextcycle = 0; // Time where the ramp-up controller shall start the next cycle
int16_t temp_measured = 0; // Temperature measurement received from sensor in tenths of degrees celsius
int16_t temp_rampup_output_off = 0; // Temperature to swith off relay output within the ramp-up controller in tenths of degrees celsius
uint8_t time_output_delay = THERMOSTAT_TIME_OUTPUT_DELAY; // Output delay between state change and real actuation event (f.i. valve open/closed)
uint8_t counter_rampup_cycles = 0; // Counter of ramp-up cycles
uint8_t temp_rampup_pi_acc_error = THERMOSTAT_TEMP_PI_RAMPUP_ACC_E; // Accumulated error when switching from ramp-up controller to PI in hundreths of degrees celsius
uint8_t temp_rampup_delta_out = THERMOSTAT_TEMP_RAMPUP_DELTA_OUT; // Minimum delta temperature to target to get out of the rampup mode, in tenths of degrees celsius
uint8_t temp_rampup_delta_in = THERMOSTAT_TEMP_RAMPUP_DELTA_IN; // Minimum delta temperature to target to get into rampup mode, in tenths of degrees celsius
uint8_t val_prop_band = THERMOSTAT_PROP_BAND; // Proportional band of the PI controller in degrees celsius
int16_t temp_rampup_start = 0; // Temperature at start of ramp-up controller in tenths of degrees celsius
int16_t temp_rampup_cycle = 0; // Temperature set at the beginning of each ramp-up cycle in tenths of degrees
uint16_t time_rampup_max = THERMOSTAT_TIME_RAMPUP_MAX; // Time maximum ramp-up controller duration in minutes
uint16_t time_rampup_cycle = THERMOSTAT_TIME_RAMPUP_CYCLE; // Time ramp-up cycle in minutes
uint16_t time_allow_rampup = THERMOSTAT_TIME_ALLOW_RAMPUP; // Time in minutes after last target update to allow ramp-up controller phase
uint16_t time_sens_lost = THERMOSTAT_TIME_SENS_LOST; // Maximum time w/o sensor update to set it as lost in minutes
uint16_t time_manual_to_auto = THERMOSTAT_TIME_MANUAL_TO_AUTO; // Time without input switch active to change from manual to automatic in minutes
uint32_t time_reset = THERMOSTAT_TIME_RESET; // Reset time of the PI controller in seconds
uint16_t time_pi_cycle = THERMOSTAT_TIME_PI_CYCLE; // Cycle time for the thermostat controller in minutes
uint16_t time_max_action = THERMOSTAT_TIME_MAX_ACTION; // Maximum thermostat time per cycle in minutes
uint16_t time_min_action = THERMOSTAT_TIME_MIN_ACTION; // Minimum thermostat time per cycle in minutes
uint16_t time_min_turnoff_action = THERMOSTAT_TIME_MIN_TURNOFF_ACTION; // Minimum turnoff time in minutes, below it the thermostat will stay on
uint8_t temp_reset_anti_windup = THERMOSTAT_TEMP_RESET_ANTI_WINDUP; // Range where reset antiwindup is disabled, in tenths of degrees celsius
int8_t temp_hysteresis = THERMOSTAT_TEMP_HYSTERESIS; // Range hysteresis for temperature PI controller, in tenths of degrees celsius
uint8_t temp_frost_protect = THERMOSTAT_TEMP_FROST_PROTECT; // Minimum temperature for frost protection, in tenths of degrees celsius
ThermostatDiagBitfield diag; // Bittfield including diagnostic flags
#ifdef USE_PI_AUTOTUNING
uint8_t dutycycle_step_autotune = THERMOSTAT_DUTYCYCLE_AUTOTUNE; // Duty cycle for the step response of the autotune PI function in %
uint8_t peak_ctr = 0; // Peak counter for the autotuning function
uint8_t temp_band_no_peak_det = THERMOSTAT_TEMP_BAND_NO_PEAK_DET; // Temperature band in thenths of degrees celsius within no peak will be detected
uint8_t val_prop_band_atune = 0; // Proportional band calculated from the the PI autotune function in degrees celsius
uint32_t time_reset_atune = 0; // Reset time calculated from the PI autotune function in seconds
uint16_t pU_pi_atune = 0; // pU value ("Ultimate" period) period of self-sustaining oscillations determined when the controller gain was set to Ku in minutes (for PI autotune)
uint16_t kU_pi_atune = 0; // kU value ("Ultimate" gain) determined by increasing controller gain until self-sustaining oscillations are achieved (for PI autotune)
uint16_t kP_pi_atune = 0; // kP value calculated by the autotune PI function multiplied by 100 (to avoid floating point operations)
uint16_t kI_pi_atune = 0; // kI value calulated by the autotune PI function multiplied by 100 (to avoid floating point operations)
int16_t temp_peaks_atune[THERMOSTAT_PEAKNUMBER_AUTOTUNE]; // Array to store temperature peaks to be used by the autotune PI function
int16_t temp_abs_max_atune; // Max temperature reached within autotune
int16_t temp_abs_min_atune; // Min temperature reached within autotune
uint16_t time_peak_timestamps_atune[THERMOSTAT_PEAKNUMBER_AUTOTUNE]; // Array to store timestamps in minutes of the temperature peaks to be used by the autotune PI function
uint16_t time_std_dev_peak_det_ok = THERMOSTAT_TIME_STD_DEV_PEAK_DET_OK; // Standard deviation in minutes of the oscillation periods within the peak detection is successful
#endif // USE_PI_AUTOTUNING
} Thermostat[THERMOSTAT_CONTROLLER_OUTPUTS];
/*********************************************************************************************/
void ThermostatInit(uint8_t ctr_output)
{
// Init Thermostat[ctr_output].status bitfield:
Thermostat[ctr_output].status.thermostat_mode = THERMOSTAT_OFF;
Thermostat[ctr_output].status.controller_mode = CTR_HYBRID;
Thermostat[ctr_output].status.climate_mode = CLIMATE_HEATING;
Thermostat[ctr_output].status.sensor_alive = IFACE_OFF;
Thermostat[ctr_output].status.sensor_type = SENSOR_MQTT;
Thermostat[ctr_output].status.temp_format = TEMP_CELSIUS;
Thermostat[ctr_output].status.command_output = IFACE_OFF;
Thermostat[ctr_output].status.status_output = IFACE_OFF;
Thermostat[ctr_output].status.phase_hybrid_ctr = CTR_HYBRID_PI;
Thermostat[ctr_output].status.status_cycle_active = CYCLE_OFF;
Thermostat[ctr_output].diag.state_emergency = EMERGENCY_OFF;
Thermostat[ctr_output].status.counter_seconds = 0;
Thermostat[ctr_output].status.output_relay_number = (THERMOSTAT_RELAY_NUMBER + ctr_output);
Thermostat[ctr_output].status.input_switch_number = (THERMOSTAT_SWITCH_NUMBER + ctr_output);
Thermostat[ctr_output].status.use_input = INPUT_NOT_USED;
Thermostat[ctr_output].status.enable_output = IFACE_ON;
Thermostat[ctr_output].diag.output_inconsist_ctr = 0;
Thermostat[ctr_output].diag.diagnostic_mode = DIAGNOSTIC_ON;
#ifdef USE_PI_AUTOTUNING
Thermostat[ctr_output].status.autotune_flag = AUTOTUNE_OFF;
Thermostat[ctr_output].status.autotune_perf_mode = AUTOTUNE_PERF_FAST;
#endif // USE_PI_AUTOTUNING
// Make sure the Output is OFF
if (Thermostat[ctr_output].status.enable_output == IFACE_ON) {
ExecuteCommandPower(Thermostat[ctr_output].status.output_relay_number, POWER_OFF, SRC_THERMOSTAT);
}
}
bool ThermostatMinuteCounter(uint8_t ctr_output)
{
bool result = false;
Thermostat[ctr_output].status.counter_seconds++; // increment time
if ((Thermostat[ctr_output].status.counter_seconds % 60) == 0) {
result = true;
Thermostat[ctr_output].status.counter_seconds = 0;
}
return result;
}
inline bool ThermostatSwitchIdValid(uint8_t switchId)
{
return (switchId >= THERMOSTAT_INPUT_SWT1 && switchId <= THERMOSTAT_INPUT_SWT8);
}
inline bool ThermostatRelayIdValid(uint8_t relayId)
{
return (relayId >= THERMOSTAT_OUTPUT_REL1 && relayId <= THERMOSTAT_OUTPUT_REL8);
}
uint8_t ThermostatInputStatus(uint8_t input_switch)
{
bool ifId = ThermostatSwitchIdValid(input_switch);
uint8_t value = 0;
if(ifId) {
value = SwitchGetVirtual(ifId - THERMOSTAT_INPUT_SWT1);
}
return value;
}
uint8_t ThermostatOutputStatus(uint8_t output_switch)
{
return (uint8_t)bitRead(TasmotaGlobal.power, (output_switch - 1));
}
int16_t ThermostatCelsiusToFahrenheit(const int32_t deg, uint8_t conv_type) {
int32_t value;
value = (int32_t)(((int32_t)deg * (int32_t)90) / (int32_t)50);
if (conv_type == TEMP_CONV_ABSOLUTE) {
value += (int32_t)320;
}
// Protect overflow
if (value <= (int32_t)(INT16_MIN)) {
value = (int32_t)(INT16_MIN);
}
else if (value >= (int32_t)INT16_MAX) {
value = (int32_t)INT16_MAX;
}
return (int16_t)value;
}
int16_t ThermostatFahrenheitToCelsius(const int32_t deg, uint8_t conv_type) {
int16_t offset = 0;
int32_t value;
if (conv_type == TEMP_CONV_ABSOLUTE) {
offset = 320;
}
value = (int32_t)(((deg - (int32_t)offset) * (int32_t)50) / (int32_t)90);
// Protect overflow
if (value <= (int32_t)(INT16_MIN)) {
value = (int32_t)(INT16_MIN);
}
else if (value >= (int32_t)INT16_MAX) {
value = (int32_t)INT16_MAX;
}
return (int16_t)value;
}
void ThermostatSignalPreProcessingSlow(uint8_t ctr_output)
{
// Update input sensor status
if ((TasmotaGlobal.uptime - Thermostat[ctr_output].timestamp_temp_measured_update) > ((uint32_t)Thermostat[ctr_output].time_sens_lost * 60)) {
Thermostat[ctr_output].status.sensor_alive = IFACE_OFF;
Thermostat[ctr_output].temp_measured_gradient = 0;
Thermostat[ctr_output].temp_measured = 0;
}
}
void ThermostatSignalPostProcessingSlow(uint8_t ctr_output)
{
// Increate counter when inconsistent output state exists
if ((Thermostat[ctr_output].status.status_output != Thermostat[ctr_output].status.command_output)
&&(Thermostat[ctr_output].status.enable_output == IFACE_ON)) {
Thermostat[ctr_output].diag.output_inconsist_ctr++;
}
else {
Thermostat[ctr_output].diag.output_inconsist_ctr = 0;
}
}
void ThermostatSignalProcessingFast(uint8_t ctr_output)
{
// Update real status of the input
Thermostat[ctr_output].status.status_input = (uint32_t)ThermostatInputStatus(Thermostat[ctr_output].status.input_switch_number);
// Update timestamp of last input
if (Thermostat[ctr_output].status.status_input == IFACE_ON) {
Thermostat[ctr_output].timestamp_input_on = TasmotaGlobal.uptime;
}
// Update real status of the output
Thermostat[ctr_output].status.status_output = (uint32_t)ThermostatOutputStatus(Thermostat[ctr_output].status.output_relay_number);
}
void ThermostatCtrState(uint8_t ctr_output)
{
#ifdef USE_PI_AUTOTUNING
bool flag_heating = (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING);
#endif //USE_PI_AUTOTUNING
switch (Thermostat[ctr_output].status.controller_mode) {
// Hybrid controller (Ramp-up + PI)
case CTR_HYBRID:
ThermostatHybridCtrPhase(ctr_output);
break;
// PI controller
case CTR_PI:
#ifdef USE_PI_AUTOTUNING
// If Autotune has been enabled (via flag)
// AND we have just reached the setpoint temperature
// AND the temperature gradient is negative for heating and positive for cooling
// then switch state to PI autotuning
if ((Thermostat[ctr_output].status.autotune_flag == AUTOTUNE_ON)
&&(Thermostat[ctr_output].temp_measured == Thermostat[ctr_output].temp_target_level)
&& ((flag_heating && (Thermostat[ctr_output].temp_measured_gradient < 0))
||(!flag_heating && (Thermostat[ctr_output].temp_measured_gradient > 0))))
{
Thermostat[ctr_output].status.controller_mode = CTR_PI_AUTOTUNE;
ThermostatPeakDetectorInit(ctr_output);
}
#endif // USE_PI_AUTOTUNING
break;
// Ramp-up controller (predictive)
case CTR_RAMP_UP:
break;
#ifdef USE_PI_AUTOTUNING
// PI autotune
case CTR_PI_AUTOTUNE:
// If autotune finalized (flag Off)
// then go back to the PI controller
if (Thermostat[ctr_output].status.autotune_flag == AUTOTUNE_OFF)
{
Thermostat[ctr_output].status.controller_mode = CTR_PI;
}
break;
#endif //USE_PI_AUTOTUNING
}
}
void ThermostatHybridCtrPhase(uint8_t ctr_output)
{
bool flag_heating = (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING);
if (Thermostat[ctr_output].status.controller_mode == CTR_HYBRID) {
switch (Thermostat[ctr_output].status.phase_hybrid_ctr) {
// Ramp-up phase with gradient control
case CTR_HYBRID_RAMP_UP:
// If ramp-up offtime counter has been initalized
// AND ramp-up offtime counter value reached
if((Thermostat[ctr_output].time_ctr_checkpoint != 0)
&& (TasmotaGlobal.uptime >= Thermostat[ctr_output].time_ctr_checkpoint)) {
// Reset pause period
Thermostat[ctr_output].time_ctr_checkpoint = 0;
// Reset timers
Thermostat[ctr_output].time_ctr_changepoint = 0;
// Set PI controller
Thermostat[ctr_output].status.phase_hybrid_ctr = CTR_HYBRID_PI;
}
break;
// PI controller phase
case CTR_HYBRID_PI:
// If no output action for a pre-defined time
// AND temp target has changed
// AND value of temp target - actual temperature bigger than threshold for heating and lower for cooling
// then go to ramp-up
if (((TasmotaGlobal.uptime - Thermostat[ctr_output].timestamp_output_off) > (60 * (uint32_t)Thermostat[ctr_output].time_allow_rampup))
&& (Thermostat[ctr_output].temp_target_level != Thermostat[ctr_output].temp_target_level_ctr)
&& ( ( (Thermostat[ctr_output].temp_target_level - Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_rampup_delta_in)
&& (flag_heating))
|| ( (Thermostat[ctr_output].temp_measured - Thermostat[ctr_output].temp_target_level > Thermostat[ctr_output].temp_rampup_delta_in)
&& (!flag_heating)))) {
Thermostat[ctr_output].timestamp_rampup_start = TasmotaGlobal.uptime;
Thermostat[ctr_output].temp_rampup_start = Thermostat[ctr_output].temp_measured;
Thermostat[ctr_output].temp_rampup_meas_gradient = 0;
Thermostat[ctr_output].time_rampup_deadtime = 0;
Thermostat[ctr_output].counter_rampup_cycles = 1;
Thermostat[ctr_output].time_ctr_changepoint = 0;
Thermostat[ctr_output].time_ctr_checkpoint = 0;
Thermostat[ctr_output].status.phase_hybrid_ctr = CTR_HYBRID_RAMP_UP;
}
#ifdef USE_PI_AUTOTUNING
// If Autotune has been enabled (via flag)
// AND we have just reached the setpoint temperature
// AND the temperature gradient is negative for heating and positive for cooling
// then switch state to PI autotuning
if ((Thermostat[ctr_output].status.autotune_flag == AUTOTUNE_ON)
&&(Thermostat[ctr_output].temp_measured == Thermostat[ctr_output].temp_target_level)
&& ((flag_heating && (Thermostat[ctr_output].temp_measured_gradient < 0))
||(!flag_heating && (Thermostat[ctr_output].temp_measured_gradient > 0))))
{
Thermostat[ctr_output].status.phase_hybrid_ctr = CTR_HYBRID_PI_AUTOTUNE;
ThermostatPeakDetectorInit(ctr_output);
}
#endif // USE_PI_AUTOTUNING
break;
#ifdef USE_PI_AUTOTUNING
// PI autotune controller phase
case CTR_HYBRID_PI_AUTOTUNE:
// If autotune finalized (flag Off)
// then go back to the PI controller
if (Thermostat[ctr_output].status.autotune_flag == AUTOTUNE_OFF)
{
Thermostat[ctr_output].status.phase_hybrid_ctr = CTR_HYBRID_PI;
}
break;
#endif // USE_PI_AUTOTUNING
}
}
#ifdef DEBUG_THERMOSTAT
ThermostatVirtualSwitchCtrState(ctr_output);
#endif // DEBUG_THERMOSTAT
}
bool ThermostatStateAutoToManual(uint8_t ctr_output)
{
bool change_state = false;
// If input is used
// AND switch input is active
// OR temperature sensor is not alive
// then go to manual
if ((Thermostat[ctr_output].status.use_input == INPUT_USED)
&&((Thermostat[ctr_output].status.status_input == IFACE_ON)
|| (Thermostat[ctr_output].status.sensor_alive == IFACE_OFF))) {
change_state = true;
}
return change_state;
}
bool ThermostatStateManualToAuto(uint8_t ctr_output)
{
bool change_state = false;
// If switch input inactive
// AND sensor alive
// AND no switch input action (time in current state) bigger than a pre-defined time
// then go to automatic
if ((Thermostat[ctr_output].status.status_input == IFACE_OFF)
&&(Thermostat[ctr_output].status.sensor_alive == IFACE_ON)
&& ((TasmotaGlobal.uptime - Thermostat[ctr_output].timestamp_input_on) > ((uint32_t)Thermostat[ctr_output].time_manual_to_auto * 60))) {
change_state = true;
}
return change_state;
}
void ThermostatEmergencyShutdown(uint8_t ctr_output)
{
// Emergency switch to THERMOSTAT_OFF
Thermostat[ctr_output].status.thermostat_mode = THERMOSTAT_OFF;
Thermostat[ctr_output].status.command_output = IFACE_OFF;
if (Thermostat[ctr_output].status.enable_output == IFACE_ON) {
ThermostatOutputRelay(ctr_output, Thermostat[ctr_output].status.command_output);
}
}
void ThermostatState(uint8_t ctr_output)
{
switch (Thermostat[ctr_output].status.thermostat_mode) {
// State if Off or Emergency
case THERMOSTAT_OFF:
// No change of state possible without external command
break;
// State automatic, thermostat active following the command target temp.
case THERMOSTAT_AUTOMATIC_OP:
if (ThermostatStateAutoToManual(ctr_output)) {
// If sensor not alive change to THERMOSTAT_MANUAL_OP
Thermostat[ctr_output].status.thermostat_mode = THERMOSTAT_MANUAL_OP;
}
ThermostatCtrState(ctr_output);
break;
// State manual operation following input switch
case THERMOSTAT_MANUAL_OP:
if (ThermostatStateManualToAuto(ctr_output)) {
// Input switch inactive and timeout reached change to THERMOSTAT_AUTOMATIC_OP
Thermostat[ctr_output].status.thermostat_mode = THERMOSTAT_AUTOMATIC_OP;
}
break;
}
}
void ThermostatOutputRelay(uint8_t ctr_output, uint32_t command)
{
// If command received to enable output
// AND current output status is OFF
// then switch output to ON
if ((command == IFACE_ON)
&& (Thermostat[ctr_output].status.status_output == IFACE_OFF)) {
//#ifndef DEBUG_THERMOSTAT
if (Thermostat[ctr_output].status.enable_output == IFACE_ON) {
ExecuteCommandPower(Thermostat[ctr_output].status.output_relay_number, POWER_ON, SRC_THERMOSTAT);
}
//#endif // DEBUG_THERMOSTAT
Thermostat[ctr_output].status.status_output = IFACE_ON;
#ifdef DEBUG_THERMOSTAT
ThermostatVirtualSwitch(ctr_output);
#endif // DEBUG_THERMOSTAT
}
// If command received to disable output
// AND current output status is ON
// then switch output to OFF
else if ((command == IFACE_OFF) && (Thermostat[ctr_output].status.status_output == IFACE_ON)) {
//#ifndef DEBUG_THERMOSTAT
if (Thermostat[ctr_output].status.enable_output == IFACE_ON) {
ExecuteCommandPower(Thermostat[ctr_output].status.output_relay_number, POWER_OFF, SRC_THERMOSTAT);
}
//#endif // DEBUG_THERMOSTAT
Thermostat[ctr_output].timestamp_output_off = TasmotaGlobal.uptime;
Thermostat[ctr_output].status.status_output = IFACE_OFF;
#ifdef DEBUG_THERMOSTAT
ThermostatVirtualSwitch(ctr_output);
#endif // DEBUG_THERMOSTAT
}
}
void ThermostatCalculatePI(uint8_t ctr_output)
{
// General comment: Some variables have been increased in resolution to avoid loosing accuracy in division operations
bool flag_heating = (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING);
int32_t aux_temp_error;
// Calculate error
aux_temp_error = (int32_t)(Thermostat[ctr_output].temp_target_level_ctr - Thermostat[ctr_output].temp_measured) * 10;
// Invert error for cooling
if (Thermostat[ctr_output].status.climate_mode == CLIMATE_COOLING) {
aux_temp_error *= -1;
}
// Protect overflow
if (aux_temp_error <= (int32_t)(INT16_MIN)) {
Thermostat[ctr_output].temp_pi_error = (int16_t)(INT16_MIN);
}
else if (aux_temp_error >= (int32_t)INT16_MAX) {
Thermostat[ctr_output].temp_pi_error = (int16_t)INT16_MAX;
}
else {
Thermostat[ctr_output].temp_pi_error = (int16_t)aux_temp_error;
}
// Kp = 100/PI.propBand. PI.propBand(Xp) = Proportional range (4K in 4K/200 controller)
Thermostat[ctr_output].kP_pi = 100 / (uint16_t)(Thermostat[ctr_output].val_prop_band);
// Calculate proportional
Thermostat[ctr_output].time_proportional_pi = ((int32_t)(Thermostat[ctr_output].temp_pi_error * (int16_t)Thermostat[ctr_output].kP_pi) * ((int32_t)Thermostat[ctr_output].time_pi_cycle * 60)) / 10000;
// Minimum proportional action limiter
// If proportional action is less than the minimum action time
// AND proportional > 0
// then adjust to minimum value
if ((Thermostat[ctr_output].time_proportional_pi < abs(((int32_t)Thermostat[ctr_output].time_min_action * 60)))
&& (Thermostat[ctr_output].time_proportional_pi > 0)) {
Thermostat[ctr_output].time_proportional_pi = ((int32_t)Thermostat[ctr_output].time_min_action * 60);
}
if (Thermostat[ctr_output].time_proportional_pi < 0) {
Thermostat[ctr_output].time_proportional_pi = 0;
}
else if (Thermostat[ctr_output].time_proportional_pi > ((int32_t)Thermostat[ctr_output].time_pi_cycle * 60)) {
Thermostat[ctr_output].time_proportional_pi = ((int32_t)Thermostat[ctr_output].time_pi_cycle * 60);
}
// Calculate integral (resolution increased to avoid use of floats in consequent operations)
Thermostat[ctr_output].kI_pi = (uint16_t)((((uint32_t)Thermostat[ctr_output].kP_pi * (uint32_t)Thermostat[ctr_output].time_pi_cycle * 6000)) / (uint32_t)Thermostat[ctr_output].time_reset);
// Reset of antiwindup
// If error does not lay within the integrator scope range, do not use the integral
// and accumulate error = 0
if (abs((Thermostat[ctr_output].temp_pi_error) / 10) > Thermostat[ctr_output].temp_reset_anti_windup) {
Thermostat[ctr_output].time_integral_pi = 0;
Thermostat[ctr_output].temp_pi_accum_error = 0;
}
// Normal use of integrator
// result will be calculated with the cummulated previous error anterior
// and current error will be cummulated to the previous one
else {
// Hysteresis limiter
// If error is less than or equal than hysteresis, limit output to 0, when temperature
// is rising, never when falling. Limit cummulated error. If this is not done,
// there will be very strong control actions from the integral part due to a
// very high cummulated error when beingin hysteresis. This triggers high
// integral actions
// Update accumulated error
aux_temp_error = (int32_t)Thermostat[ctr_output].temp_pi_accum_error + (int32_t)Thermostat[ctr_output].temp_pi_error;
// Protect overflow
if (aux_temp_error <= (int32_t)INT16_MIN) {
Thermostat[ctr_output].temp_pi_accum_error = INT16_MIN;
}
else if (aux_temp_error >= (int32_t)INT16_MAX) {
Thermostat[ctr_output].temp_pi_accum_error = INT16_MAX;
}
else {
Thermostat[ctr_output].temp_pi_accum_error = (int16_t)aux_temp_error;
}
// If we are under setpoint
// AND we are within the hysteresis
// AND the temperature is rising for heating or sinking for cooling
if ( (Thermostat[ctr_output].temp_pi_error >= 0)
&& (abs((Thermostat[ctr_output].temp_pi_error) / 10) <= (int16_t)Thermostat[ctr_output].temp_hysteresis)
&& ( ((Thermostat[ctr_output].temp_measured_gradient > 0)
&& (flag_heating))
|| ( (Thermostat[ctr_output].temp_measured_gradient < 0)
&& (!flag_heating)))) {
// Reduce accumulator error 20% in each cycle
Thermostat[ctr_output].temp_pi_accum_error *= 0.8;
}
// If we are over setpoint
// AND temperature is rising for heating or sinking for cooling
else if ((Thermostat[ctr_output].temp_pi_error < 0)
&& ( ((Thermostat[ctr_output].temp_measured_gradient > 0)
&& (flag_heating))
|| ( (Thermostat[ctr_output].temp_measured_gradient < 0)
&& (!flag_heating)))) {
// Reduce accumulator error 20% in each cycle
Thermostat[ctr_output].temp_pi_accum_error *= 0.8;
}
// Limit lower limit of acumErr to 0
if (Thermostat[ctr_output].temp_pi_accum_error < 0) {
Thermostat[ctr_output].temp_pi_accum_error = 0;
}
// Integral calculation
Thermostat[ctr_output].time_integral_pi = (((int32_t)Thermostat[ctr_output].temp_pi_accum_error * (int32_t)Thermostat[ctr_output].kI_pi) * (int32_t)((uint32_t)Thermostat[ctr_output].time_pi_cycle * 60)) / 1000000;
// Antiwindup of the integrator
// If integral calculation is bigger than cycle time, adjust result
// to the cycle time and error will not be cummulated
if (Thermostat[ctr_output].time_integral_pi > ((uint32_t)Thermostat[ctr_output].time_pi_cycle * 60)) {
Thermostat[ctr_output].time_integral_pi = ((uint32_t)Thermostat[ctr_output].time_pi_cycle * 60);
}
}
// Calculate output
Thermostat[ctr_output].time_total_pi = Thermostat[ctr_output].time_proportional_pi + Thermostat[ctr_output].time_integral_pi;
// Antiwindup of the output
// If result is bigger than cycle time, the result will be adjusted
// to the cylce time minus safety time and error will not be cummulated
if (Thermostat[ctr_output].time_total_pi >= ((int32_t)Thermostat[ctr_output].time_pi_cycle * 60)) {
// Limit to cycle time //at least switch down a minimum time
Thermostat[ctr_output].time_total_pi = ((int32_t)Thermostat[ctr_output].time_pi_cycle * 60);
}
else if (Thermostat[ctr_output].time_total_pi < 0) {
Thermostat[ctr_output].time_total_pi = 0;
}
// Target value limiter
// If target value has been reached or we are over it for heating or under it for cooling
if (Thermostat[ctr_output].temp_pi_error <= 0) {
// If we are over the hysteresis or the gradient is positive for heating or negative for cooling
if ((abs((Thermostat[ctr_output].temp_pi_error) / 10) > Thermostat[ctr_output].temp_hysteresis)
|| ( ((Thermostat[ctr_output].temp_measured_gradient >= 0)
&& (flag_heating))
|| ( (Thermostat[ctr_output].temp_measured_gradient <= 0)
&& (!flag_heating)))){
Thermostat[ctr_output].time_total_pi = 0;
}
}
// If target value has not been reached
// AND we are within the histeresis
// AND gradient is positive for heating or negative for cooling
// then set value to 0
else if ((Thermostat[ctr_output].temp_pi_error > 0)
&& (abs((Thermostat[ctr_output].temp_pi_error) / 10) <= Thermostat[ctr_output].temp_hysteresis)
&& (((Thermostat[ctr_output].temp_measured_gradient > 0)
&& (flag_heating))
|| ( (Thermostat[ctr_output].temp_measured_gradient < 0)
&& (!flag_heating)))) {
Thermostat[ctr_output].time_total_pi = 0;
}
// Minimum action limiter
// If result is less than the minimum action time, adjust to minimum value
if ((Thermostat[ctr_output].time_total_pi <= abs(((uint32_t)Thermostat[ctr_output].time_min_action * 60)))
&& (Thermostat[ctr_output].time_total_pi != 0)) {
Thermostat[ctr_output].time_total_pi = ((int32_t)Thermostat[ctr_output].time_min_action * 60);
}
// Maximum action limiter
// If result is more than the maximum action time, adjust to maximum value
else if (Thermostat[ctr_output].time_total_pi > abs(((int32_t)Thermostat[ctr_output].time_max_action * 60))) {
Thermostat[ctr_output].time_total_pi = ((int32_t)Thermostat[ctr_output].time_max_action * 60);
}
// If switched off less time than safety time, do not switch off
else if (Thermostat[ctr_output].time_total_pi > (((int32_t)Thermostat[ctr_output].time_pi_cycle * 60) - ((int32_t)Thermostat[ctr_output].time_min_turnoff_action * 60))) {
Thermostat[ctr_output].time_total_pi = ((int32_t)Thermostat[ctr_output].time_pi_cycle * 60);
}
// Adjust output switch point
Thermostat[ctr_output].time_ctr_changepoint = TasmotaGlobal.uptime + (uint32_t)Thermostat[ctr_output].time_total_pi;
// Adjust next cycle point
Thermostat[ctr_output].time_ctr_checkpoint = TasmotaGlobal.uptime + ((uint32_t)Thermostat[ctr_output].time_pi_cycle * 60);
}
void ThermostatWorkAutomaticPI(uint8_t ctr_output)
{
bool flag_heating = (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING);
if ( (TasmotaGlobal.uptime >= Thermostat[ctr_output].time_ctr_checkpoint)
|| (Thermostat[ctr_output].temp_target_level != Thermostat[ctr_output].temp_target_level_ctr)
|| ( (( (Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_target_level)
&& (Thermostat[ctr_output].temp_measured_gradient < 0)
&& (flag_heating))
|| ((Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_target_level)
&& (Thermostat[ctr_output].temp_measured_gradient > 0)
&& (!flag_heating)))
&& (Thermostat[ctr_output].status.status_cycle_active == CYCLE_OFF))) {
Thermostat[ctr_output].temp_target_level_ctr = Thermostat[ctr_output].temp_target_level;
ThermostatCalculatePI(ctr_output);
// Reset cycle active
Thermostat[ctr_output].status.status_cycle_active = CYCLE_OFF;
}
if (TasmotaGlobal.uptime < Thermostat[ctr_output].time_ctr_changepoint) {
Thermostat[ctr_output].status.status_cycle_active = CYCLE_ON;
Thermostat[ctr_output].status.command_output = IFACE_ON;
}
else {
Thermostat[ctr_output].status.command_output = IFACE_OFF;
}
}
void ThermostatWorkAutomaticRampUp(uint8_t ctr_output)
{
uint32_t time_in_rampup;
int16_t aux_temp_delta;
int16_t temp_delta_rampup;
bool flag_heating = (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING);
// Update timestamp for temperature at start of ramp-up if temperature still
// dropping for heating or rising for cooling
if ( ((Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_rampup_start)
&& (flag_heating))
|| ((Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_rampup_start)
&& (!flag_heating)))
{
Thermostat[ctr_output].temp_rampup_start = Thermostat[ctr_output].temp_measured;
}
// Update time in ramp-up as well as delta temp
time_in_rampup = TasmotaGlobal.uptime - Thermostat[ctr_output].timestamp_rampup_start;
temp_delta_rampup = Thermostat[ctr_output].temp_measured - Thermostat[ctr_output].temp_rampup_start;
// Init command output status to true
Thermostat[ctr_output].status.command_output = IFACE_ON;
// Update temperature target level for controller
Thermostat[ctr_output].temp_target_level_ctr = Thermostat[ctr_output].temp_target_level;
// If time in ramp-up < max time
// AND temperature measured < target for heating or > for cooling
if ((time_in_rampup <= (60 * (uint32_t)Thermostat[ctr_output].time_rampup_max))
&& ( ((Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_target_level)
&& (flag_heating))
|| ((Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_target_level)
&& (!flag_heating)))){
// DEADTIME point reached
// If temperature measured minus temperature at start of ramp-up >= threshold
// AND deadtime still 0
if ( (abs(temp_delta_rampup) >= Thermostat[ctr_output].temp_rampup_delta_out)
&& (Thermostat[ctr_output].time_rampup_deadtime == 0)) {
// Set deadtime, assuming it is half of the time until slope, since thermal inertia of the temp. fall needs to be considered
// minus open time of the valve (arround 3 minutes). If rise/sink very fast limit it to delay of output valve
int32_t time_aux;
time_aux = ((time_in_rampup / 2) - Thermostat[ctr_output].time_output_delay);
if (time_aux >= Thermostat[ctr_output].time_output_delay) {
Thermostat[ctr_output].time_rampup_deadtime = (uint32_t)time_aux;
}
else {
Thermostat[ctr_output].time_rampup_deadtime = Thermostat[ctr_output].time_output_delay;
}
// Calculate absolute gradient since start of ramp-up (considering deadtime) in thousandths of º/hour
Thermostat[ctr_output].temp_rampup_meas_gradient = (int32_t)((360000 * (int32_t)temp_delta_rampup) / (int32_t)time_in_rampup);
Thermostat[ctr_output].time_rampup_nextcycle = TasmotaGlobal.uptime + ((uint32_t)Thermostat[ctr_output].time_rampup_cycle * 60);
// Set auxiliary variables
Thermostat[ctr_output].temp_rampup_cycle = Thermostat[ctr_output].temp_measured;
Thermostat[ctr_output].time_ctr_changepoint = TasmotaGlobal.uptime + (60 * (uint32_t)Thermostat[ctr_output].time_rampup_max);
Thermostat[ctr_output].temp_rampup_output_off = Thermostat[ctr_output].temp_target_level_ctr;
}
// Gradient calculation every time_rampup_cycle
else if ((Thermostat[ctr_output].time_rampup_deadtime > 0) && (TasmotaGlobal.uptime >= Thermostat[ctr_output].time_rampup_nextcycle)) {
// Calculate temp. gradient in º/hour and set again time_rampup_nextcycle and temp_rampup_cycle
// temp_rampup_meas_gradient = ((3600 * temp_delta_rampup) / (os.time() - time_rampup_nextcycle))
temp_delta_rampup = Thermostat[ctr_output].temp_measured - Thermostat[ctr_output].temp_rampup_cycle;
uint32_t time_total_rampup = (uint32_t)Thermostat[ctr_output].time_rampup_cycle * 60 * Thermostat[ctr_output].counter_rampup_cycles;
// Translate into gradient per hour (thousandths of ° per hour)
Thermostat[ctr_output].temp_rampup_meas_gradient = int32_t((360000 * (int32_t)temp_delta_rampup) / (int32_t)time_total_rampup);
if ( ((Thermostat[ctr_output].temp_rampup_meas_gradient > 0)
&& ((flag_heating)))
|| ((Thermostat[ctr_output].temp_rampup_meas_gradient < 0)
&& ((!flag_heating)))) {
// Calculate time to switch Off and come out of ramp-up
// y-y1 = m(x-x1) -> x = ((y-y1) / m) + x1 -> y1 = temp_rampup_cycle, x1 = (time_rampup_nextcycle - time_rampup_cycle), m = gradient in º/sec
// Better Alternative -> (y-y1)/(x-x1) = ((y2-y1)/(x2-x1)) -> where y = temp (target) and x = time (to switch off, what its needed)
// x = ((y-y1)/(y2-y1))*(x2-x1) + x1 - deadtime
aux_temp_delta =Thermostat[ctr_output].temp_target_level_ctr - Thermostat[ctr_output].temp_rampup_cycle;
Thermostat[ctr_output].time_ctr_changepoint = (uint32_t)(uint32_t)(((uint32_t)(aux_temp_delta) * (uint32_t)(time_total_rampup)) / (uint32_t)temp_delta_rampup) + (uint32_t)Thermostat[ctr_output].time_rampup_nextcycle - (uint32_t)time_total_rampup - (uint32_t)Thermostat[ctr_output].time_rampup_deadtime;
// Calculate temperature for switching off the output
// y = (((y2-y1)/(x2-x1))*(x-x1)) + y1
Thermostat[ctr_output].temp_rampup_output_off = (int16_t)(((int32_t)temp_delta_rampup * (int32_t)(Thermostat[ctr_output].time_ctr_changepoint - (TasmotaGlobal.uptime - (time_total_rampup)))) / (int32_t)(time_total_rampup * Thermostat[ctr_output].counter_rampup_cycles)) + Thermostat[ctr_output].temp_rampup_cycle;
// Set auxiliary variables
Thermostat[ctr_output].time_rampup_nextcycle = TasmotaGlobal.uptime + ((uint32_t)Thermostat[ctr_output].time_rampup_cycle * 60);
Thermostat[ctr_output].temp_rampup_cycle = Thermostat[ctr_output].temp_measured;
// Reset period counter
Thermostat[ctr_output].counter_rampup_cycles = 1;
}
else {
// Increase the period counter
Thermostat[ctr_output].counter_rampup_cycles++;
// Set another period
Thermostat[ctr_output].time_rampup_nextcycle = TasmotaGlobal.uptime + ((uint32_t)Thermostat[ctr_output].time_rampup_cycle * 60);
// Reset time_ctr_changepoint and temp_rampup_output_off
Thermostat[ctr_output].time_ctr_changepoint = TasmotaGlobal.uptime + (60 * (uint32_t)Thermostat[ctr_output].time_rampup_max) - time_in_rampup;
Thermostat[ctr_output].temp_rampup_output_off = Thermostat[ctr_output].temp_target_level_ctr;
}
// Set time to get out of ramp-up
Thermostat[ctr_output].time_ctr_checkpoint = Thermostat[ctr_output].time_ctr_changepoint + Thermostat[ctr_output].time_rampup_deadtime;
}
// Set output switch ON or OFF
// If deadtime has not been calculated
// or checkpoint has not been calculated
// or it is not yet time and temperature to switch it off acc. to calculations
// or gradient is <= 0 for heating of >= 0 for cooling
if ((Thermostat[ctr_output].time_rampup_deadtime == 0)
|| (Thermostat[ctr_output].time_ctr_checkpoint == 0)
|| (TasmotaGlobal.uptime < Thermostat[ctr_output].time_ctr_changepoint)
|| ( ((Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_rampup_output_off)
&& (flag_heating))
|| ((Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_rampup_output_off)
&& (!flag_heating)))
|| ( ((Thermostat[ctr_output].temp_rampup_meas_gradient <= 0)
&& (flag_heating))
|| ((Thermostat[ctr_output].temp_rampup_meas_gradient >= 0)
&& (!flag_heating)))) {
Thermostat[ctr_output].status.command_output = IFACE_ON;
}
else {
Thermostat[ctr_output].status.command_output = IFACE_OFF;
}
}
else {
// If we have not reached the temperature, start with an initial value for accumulated error for the PI controller
if ( ((Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_target_level_ctr)
&& (flag_heating))
|| ((Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_target_level_ctr)
&& (!flag_heating))) {
Thermostat[ctr_output].temp_pi_accum_error = Thermostat[ctr_output].temp_rampup_pi_acc_error;
}
// Set to now time to get out of ramp-up
Thermostat[ctr_output].time_ctr_checkpoint = TasmotaGlobal.uptime;
// Switch Off output
Thermostat[ctr_output].status.command_output = IFACE_OFF;
}
}
#ifdef USE_PI_AUTOTUNING
void ThermostatPeakDetectorInit(uint8_t ctr_output)
{
for (uint8_t i = 0; i < THERMOSTAT_PEAKNUMBER_AUTOTUNE; i++) {
Thermostat[ctr_output].temp_peaks_atune[i] = 0;
}
Thermostat[ctr_output].pU_pi_atune = 0;
Thermostat[ctr_output].kP_pi_atune = 0;
Thermostat[ctr_output].kI_pi_atune = 0;
Thermostat[ctr_output].kU_pi_atune = 0;
Thermostat[ctr_output].peak_ctr = 0;
Thermostat[ctr_output].temp_abs_max_atune = 0;
Thermostat[ctr_output].temp_abs_min_atune = 100;
Thermostat[ctr_output].time_ctr_checkpoint = TasmotaGlobal.uptime + THERMOSTAT_TIME_MAX_AUTOTUNE;
}
void ThermostatPeakDetector(uint8_t ctr_output)
{
uint8_t peak_num = Thermostat[ctr_output].peak_ctr;
int16_t peak_avg = 0;
bool peak_transition = false;
// Update Max/Min Thermostat[ctr_output].temp_abs_max_atune
if (Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_abs_max_atune) {
Thermostat[ctr_output].temp_abs_max_atune = Thermostat[ctr_output].temp_measured;
}
if (Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_abs_min_atune) {
Thermostat[ctr_output].temp_abs_min_atune = Thermostat[ctr_output].temp_measured;
}
// For heating, even peak numbers look for maxes, odd for minds, the contrary for cooling
// If we did not found all peaks yet
if (peak_num < THERMOSTAT_PEAKNUMBER_AUTOTUNE) {
bool flag_heating = (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING);
bool cond_peak_1 = ( (Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_peaks_atune[peak_num])
&& (flag_heating)
|| (Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_peaks_atune[peak_num])
&& (!flag_heating));
bool cond_peak_2 = ( (Thermostat[ctr_output].temp_measured < Thermostat[ctr_output].temp_peaks_atune[peak_num])
&& (flag_heating)
|| (Thermostat[ctr_output].temp_measured > Thermostat[ctr_output].temp_peaks_atune[peak_num])
&& (!flag_heating));
bool cond_gradient_1 = ( (Thermostat[ctr_output].temp_measured_gradient > 0)
&& (flag_heating)
|| (Thermostat[ctr_output].temp_measured_gradient < 0)
&& (!flag_heating));
bool cond_gradient_2 = ( (Thermostat[ctr_output].temp_measured_gradient < 0)
&& (flag_heating)
|| (Thermostat[ctr_output].temp_measured_gradient > 0)
&& (!flag_heating));
// If peak number is even (look for max if heating and min if cooling)
if ((peak_num % 2) == 0) {
// If current temperature higher (heating) or lower (cooling) than registered value for peak
// AND temperature gradient > 0 for heating or < 0 for cooling
// then, update value
if (cond_peak_1 && cond_gradient_1) {
Thermostat[ctr_output].temp_peaks_atune[peak_num] = Thermostat[ctr_output].temp_measured;
}
// Else if current temperature lower (heating) or higher (cooling) then registered value for peak
// AND difference to peak is outside of the peak no detection band
// then the current peak value is the peak (max for heating, min for cooling), switch detection
if ( (cond_peak_2)
&& (abs(Thermostat[ctr_output].temp_measured - Thermostat[ctr_output].temp_peaks_atune[peak_num]) > Thermostat[ctr_output].temp_band_no_peak_det)) {
// Register peak timestamp;
Thermostat[ctr_output].time_peak_timestamps_atune[peak_num] = (TasmotaGlobal.uptime / 60);
Thermostat[ctr_output].peak_ctr++;
peak_transition = true;
}
}
// Peak number is odd (look for min if heating and max if cooling)
else {
// If current temperature lower (heating) or higher (cooling) than registered value for peak
// AND temperature gradient < 0 for heating or > 0 for cooling
// then, update value
if (cond_peak_2 && cond_gradient_2) {
Thermostat[ctr_output].temp_peaks_atune[peak_num] = Thermostat[ctr_output].temp_measured;
}
// Else if current temperature higher (heating) or lower (cooling) then registered value for peak
// AND difference to peak is outside of the peak no detection band
// then the current peak value is the peak (min for heating, max for cooling), switch detection
if ( (cond_peak_1)
&& (abs(Thermostat[ctr_output].temp_measured - Thermostat[ctr_output].temp_peaks_atune[peak_num]) > Thermostat[ctr_output].temp_band_no_peak_det)) {
// Calculate period
// Register peak timestamp;
Thermostat[ctr_output].time_peak_timestamps_atune[peak_num] = (TasmotaGlobal.uptime / 60);
Thermostat[ctr_output].peak_ctr++;
peak_transition = true;
}
}
}
else {
// Peak detection done, proceed to evaluate results
ThermostatAutotuneParamCalc(ctr_output);
Thermostat[ctr_output].status.autotune_flag = AUTOTUNE_OFF;
}
// If peak detection not finalized but bigger than 3 and we have just found a peak, check if results can be extracted
if ((Thermostat[ctr_output].peak_ctr > 2) && (peak_transition)) {
//Update peak_num
peak_num = Thermostat[ctr_output].peak_ctr;
// Calculate average value among the last 3 peaks
peak_avg = (abs(Thermostat[ctr_output].temp_peaks_atune[peak_num - 1]
- Thermostat[ctr_output].temp_peaks_atune[peak_num - 2])
+ abs(Thermostat[ctr_output].temp_peaks_atune[peak_num - 2]
- Thermostat[ctr_output].temp_peaks_atune[peak_num - 3])) / 2;
if ((20 * (int32_t)peak_avg) < (int32_t)(Thermostat[ctr_output].temp_abs_max_atune - Thermostat[ctr_output].temp_abs_min_atune)) {
// Calculate average temperature among all peaks
for (uint8_t i = 0; i < peak_num; i++) {
peak_avg += Thermostat[ctr_output].temp_peaks_atune[i];
}
peak_avg /= peak_num;
// If last period crosses the average value, result valid
if (10 * abs(Thermostat[ctr_output].temp_peaks_atune[peak_num - 1] - Thermostat[ctr_output].temp_peaks_atune[peak_num - 2]) < (Thermostat[ctr_output].temp_abs_max_atune - peak_avg)) {
// Peak detection done, proceed to evaluate results
ThermostatAutotuneParamCalc(ctr_output);
Thermostat[ctr_output].status.autotune_flag = AUTOTUNE_OFF;
}
}
}
peak_transition = false;
}
void ThermostatAutotuneParamCalc(uint8_t ctr_output)
{
uint8_t peak_num = Thermostat[ctr_output].peak_ctr;
// Calculate the tunning parameters
// Resolution increased to avoid float operations
Thermostat[ctr_output].kU_pi_atune = (uint16_t)(100 * ((uint32_t)400000 * (uint32_t)(Thermostat[ctr_output].dutycycle_step_autotune)) / ((uint32_t)(Thermostat[ctr_output].temp_abs_max_atune - Thermostat[ctr_output].temp_abs_min_atune) * (uint32_t)314159));
Thermostat[ctr_output].pU_pi_atune = (Thermostat[ctr_output].time_peak_timestamps_atune[peak_num - 1] - Thermostat[ctr_output].time_peak_timestamps_atune[peak_num - 2]);
switch (Thermostat[ctr_output].status.autotune_perf_mode) {
case AUTOTUNE_PERF_FAST:
// Calculate kP/Ki autotune
Thermostat[ctr_output].kP_pi_atune = (4 * Thermostat[ctr_output].kU_pi_atune) / 10;
break;
case AUTOTUNE_PERF_NORMAL:
// Calculate kP/Ki autotune
Thermostat[ctr_output].kP_pi_atune = (18 * Thermostat[ctr_output].kU_pi_atune) / 100;
break;
case AUTOTUNE_PERF_SLOW:
// Calculate kP/Ki autotune
Thermostat[ctr_output].kP_pi_atune = (13 * Thermostat[ctr_output].kU_pi_atune) / 100;
break;
}
// Resolution increased to avoid float operations
Thermostat[ctr_output].kI_pi_atune = (12 * (6000 * Thermostat[ctr_output].kU_pi_atune / Thermostat[ctr_output].pU_pi_atune)) / 10;
// Calculate PropBand Autotune
Thermostat[ctr_output].val_prop_band_atune = 100 / Thermostat[ctr_output].kP_pi_atune;
// Calculate Reset Time Autotune
Thermostat[ctr_output].time_reset_atune = (uint32_t)((((uint32_t)Thermostat[ctr_output].kP_pi_atune * (uint32_t)Thermostat[ctr_output].time_pi_cycle * 6000)) / (uint32_t)Thermostat[ctr_output].kI_pi_atune);
}
void ThermostatWorkAutomaticPIAutotune(uint8_t ctr_output)
{
bool flag_heating = (Thermostat[ctr_output].status.climate_mode == CLIMATE_HEATING);
// If no timeout of the PI Autotune function
// AND no change in setpoint
if ((TasmotaGlobal.uptime < Thermostat[ctr_output].time_ctr_checkpoint)
&&(Thermostat[ctr_output].temp_target_level_ctr == Thermostat[ctr_output].temp_target_level)) {
if (TasmotaGlobal.uptime >= Thermostat[ctr_output].time_ctr_checkpoint) {
Thermostat[ctr_output].temp_target_level_ctr = Thermostat[ctr_output].temp_target_level;
// Calculate time_ctr_changepoint
Thermostat[ctr_output].time_ctr_changepoint = TasmotaGlobal.uptime + (((uint32_t)Thermostat[ctr_output].time_pi_cycle * (uint32_t)Thermostat[ctr_output].dutycycle_step_autotune) / (uint32_t)100);
// Reset cycle active
Thermostat[ctr_output].status.status_cycle_active = CYCLE_OFF;
}
// Set Output On/Off depending on the changepoint
if (TasmotaGlobal.uptime < Thermostat[ctr_output].time_ctr_changepoint) {
Thermostat[ctr_output].status.status_cycle_active = CYCLE_ON;
Thermostat[ctr_output].status.command_output = IFACE_ON;
}
else {
Thermostat[ctr_output].status.command_output = IFACE_OFF;
}
// Update peak values
ThermostatPeakDetector(ctr_output);
}
else {
// Disable Autotune flag
Thermostat[ctr_output].status.autotune_flag = AUTOTUNE_OFF;
}
if (Thermostat[ctr_output].status.autotune_flag == AUTOTUNE_OFF) {
// Set output Off
Thermostat[ctr_output].status.command_output = IFACE_OFF;
}
}
#endif //USE_PI_AUTOTUNING
void ThermostatCtrWork(uint8_t ctr_output)
{
switch (Thermostat[ctr_output].status.controller_mode) {
// Hybrid controller (Ramp-up + PI)
case CTR_HYBRID:
switch (Thermostat[ctr_output].status.phase_hybrid_ctr) {
case CTR_HYBRID_RAMP_UP:
ThermostatWorkAutomaticRampUp(ctr_output);
break;
case CTR_HYBRID_PI:
ThermostatWorkAutomaticPI(ctr_output);
break;
#ifdef USE_PI_AUTOTUNING
// PI autotune
case CTR_HYBRID_PI_AUTOTUNE:
ThermostatWorkAutomaticPIAutotune(ctr_output);
break;
#endif //USE_PI_AUTOTUNING
}
break;
// PI controller
case CTR_PI:
ThermostatWorkAutomaticPI(ctr_output);
break;
// Ramp-up controller (predictive)
case CTR_RAMP_UP:
ThermostatWorkAutomaticRampUp(ctr_output);
break;
#ifdef USE_PI_AUTOTUNING
// PI autotune
case CTR_PI_AUTOTUNE:
ThermostatWorkAutomaticPIAutotune(ctr_output);
break;
#endif //USE_PI_AUTOTUNING
}
}
void ThermostatWork(uint8_t ctr_output)
{
switch (Thermostat[ctr_output].status.thermostat_mode) {
// State if thermostat Off or Emergency
case THERMOSTAT_OFF:
Thermostat[ctr_output].status.command_output = IFACE_OFF;
break;
// State automatic thermostat active following to command target temp.
case THERMOSTAT_AUTOMATIC_OP:
ThermostatCtrWork(ctr_output);
break;
// State manual operation following input switch
case THERMOSTAT_MANUAL_OP:
Thermostat[ctr_output].time_ctr_checkpoint = 0;
Thermostat[ctr_output].status.command_output = Thermostat[ctr_output].status.status_input;
break;
}
ThermostatOutputRelay(ctr_output, Thermostat[ctr_output].status.command_output);
}
void ThermostatDiagnostics(uint8_t ctr_output)
{
// Diagnostic related to the plausibility of the output state
if ((Thermostat[ctr_output].diag.diagnostic_mode == DIAGNOSTIC_ON)
&&(Thermostat[ctr_output].diag.output_inconsist_ctr >= THERMOSTAT_TIME_MAX_OUTPUT_INCONSIST)) {
Thermostat[ctr_output].status.thermostat_mode = THERMOSTAT_OFF;
Thermostat[ctr_output].diag.state_emergency = EMERGENCY_ON;
}
// Diagnostic related to the plausibility of the output power implemented
// already into the energy driver
// If diagnostics fail, emergency enabled and thermostat shutdown triggered
if (Thermostat[ctr_output].diag.state_emergency == EMERGENCY_ON) {
ThermostatEmergencyShutdown(ctr_output);
}
}
void ThermostatController(uint8_t ctr_output)
{
ThermostatState(ctr_output);
ThermostatWork(ctr_output);
}
bool ThermostatTimerArm(uint8_t ctr_output, int16_t tempVal)
{
bool result = false;
// TempVal unit is tenths of degrees celsius
if ((tempVal >= -1000)
&& (tempVal <= 1000)
&& (tempVal >= (int16_t)Thermostat[ctr_output].temp_frost_protect)) {
Thermostat[ctr_output].temp_target_level = tempVal;
Thermostat[ctr_output].status.thermostat_mode = THERMOSTAT_AUTOMATIC_OP;
result = true;
}
// Returns true if setpoint plausible and thermostat armed, false on the contrary
return result;
}
void ThermostatTimerDisarm(uint8_t ctr_output)
{
Thermostat[ctr_output].temp_target_level = THERMOSTAT_TEMP_INIT;
Thermostat[ctr_output].status.thermostat_mode = THERMOSTAT_OFF;
}
#ifdef DEBUG_THERMOSTAT
void ThermostatVirtualSwitch(uint8_t ctr_output)
{
char domoticz_in_topic[] = DOMOTICZ_IN_TOPIC;
if (ctr_output < DOMOTICZ_MAX_IDX) {
Response_P(DOMOTICZ_MES, Domoticz_Virtual_Switches[ctr_output], (0 == Thermostat[ctr_output].status.command_output) ? 0 : 1, "");
MqttPublish(domoticz_in_topic);
}
}
void ThermostatVirtualSwitchCtrState(uint8_t ctr_output)
{
char domoticz_in_topic[] = DOMOTICZ_IN_TOPIC;
Response_P(DOMOTICZ_MES, DOMOTICZ_IDX2, (0 == Thermostat[0].status.phase_hybrid_ctr) ? 0 : 1, "");
MqttPublish(domoticz_in_topic);
}
void ThermostatDebug(uint8_t ctr_output)
{
char result_chr[FLOATSZ];
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(""));
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("------ Thermostat Start ------"));
dtostrfd(Thermostat[ctr_output].status.counter_seconds, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].status.counter_seconds: %s"), result_chr);
dtostrfd(Thermostat[ctr_output].status.thermostat_mode, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].status.thermostat_mode: %s"), result_chr);
dtostrfd(Thermostat[ctr_output].diag.state_emergency, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].diag.state_emergency: %s"), result_chr);
dtostrfd(Thermostat[ctr_output].diag.output_inconsist_ctr, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].diag.output_inconsist_ctr: %s"), result_chr);
dtostrfd(Thermostat[ctr_output].status.controller_mode, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].status.controller_mode: %s"), result_chr);
dtostrfd(Thermostat[ctr_output].status.command_output, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].status.command_output: %s"), result_chr);
dtostrfd(Thermostat[ctr_output].status.status_output, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].status.status_output: %s"), result_chr);
dtostrfd(Thermostat[ctr_output].status.status_input, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].status.status_input: %s"), result_chr);
dtostrfd(Thermostat[ctr_output].status.phase_hybrid_ctr, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].status.phase_hybrid_ctr: %s"), result_chr);
dtostrfd(Thermostat[ctr_output].status.sensor_alive, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].status.sensor_alive: %s"), result_chr);
dtostrfd(Thermostat[ctr_output].status.status_cycle_active, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].status.status_cycle_active: %s"), result_chr);
dtostrfd(Thermostat[ctr_output].temp_pi_error, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].temp_pi_error: %s"), result_chr);
dtostrfd(Thermostat[ctr_output].temp_pi_accum_error, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].temp_pi_accum_error: %s"), result_chr);
dtostrfd(Thermostat[ctr_output].time_proportional_pi, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].time_proportional_pi: %s"), result_chr);
dtostrfd(Thermostat[ctr_output].time_integral_pi, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].time_integral_pi: %s"), result_chr);
dtostrfd(Thermostat[ctr_output].time_total_pi, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].time_total_pi: %s"), result_chr);
dtostrfd(Thermostat[ctr_output].temp_measured_gradient, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].temp_measured_gradient: %s"), result_chr);
dtostrfd(Thermostat[ctr_output].time_rampup_deadtime, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].time_rampup_deadtime: %s"), result_chr);
dtostrfd(Thermostat[ctr_output].temp_rampup_meas_gradient, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].temp_rampup_meas_gradient: %s"), result_chr);
dtostrfd(Thermostat[ctr_output].time_ctr_changepoint, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].time_ctr_changepoint: %s"), result_chr);
dtostrfd(Thermostat[ctr_output].temp_rampup_output_off, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].temp_rampup_output_off: %s"), result_chr);
dtostrfd(Thermostat[ctr_output].time_ctr_checkpoint, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Thermostat[ctr_output].time_ctr_checkpoint: %s"), result_chr);
dtostrfd(TasmotaGlobal.uptime, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("uptime: %s"), result_chr);
dtostrfd(TasmotaGlobal.power, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("power: %s"), result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("------ Thermostat End ------"));
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(""));
}
#endif // DEBUG_THERMOSTAT
void ThermostatGetLocalSensor(uint8_t ctr_output) {
String buf = TasmotaGlobal.mqtt_data; // copy the string into a new buffer that will be modified
JsonParser parser((char*)buf.c_str());
JsonParserObject root = parser.getRootObject();
if (root) {
JsonParserToken value_token = root[PSTR(THERMOSTAT_SENSOR_NAME)].getObject()[PSTR("Temperature")];
if (value_token.isNum()) {
int16_t value = value_token.getFloat() * 10;
if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) {
value = ThermostatFahrenheitToCelsius(value, TEMP_CONV_ABSOLUTE);
}
if ( (value >= -1000)
&& (value <= 1000)
&& (Thermostat[ctr_output].status.sensor_type == SENSOR_LOCAL)) {
uint32_t timestamp = TasmotaGlobal.uptime;
// Calculate temperature gradient if temperature value has changed
if (value != Thermostat[ctr_output].temp_measured) {
int32_t temp_delta = (value - Thermostat[ctr_output].temp_measured); // in tenths of degrees
uint32_t time_delta = (timestamp - Thermostat[ctr_output].timestamp_temp_meas_change_update); // in seconds
Thermostat[ctr_output].temp_measured_gradient = (int32_t)((360000 * temp_delta) / ((int32_t)time_delta)); // thousandths of degrees per hour
Thermostat[ctr_output].temp_measured = value;
Thermostat[ctr_output].timestamp_temp_meas_change_update = timestamp;
}
Thermostat[ctr_output].timestamp_temp_measured_update = timestamp;
Thermostat[ctr_output].status.sensor_alive = IFACE_ON;
}
}
}
}
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
void CmndThermostatModeSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data));
if ((value >= THERMOSTAT_OFF) && (value < THERMOSTAT_MODES_MAX)) {
Thermostat[ctr_output].status.thermostat_mode = value;
Thermostat[ctr_output].timestamp_input_on = 0; // Reset last manual switch timer if command set externally
}
}
ResponseCmndNumber((int)Thermostat[ctr_output].status.thermostat_mode);
}
}
void CmndClimateModeSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data));
if ((value >= CLIMATE_HEATING) && (value < CLIMATE_MODES_MAX)) {
Thermostat[ctr_output].status.climate_mode = value;
// Trigger a restart of the controller
Thermostat[ctr_output].time_ctr_checkpoint = TasmotaGlobal.uptime;
}
}
ResponseCmndNumber((int)Thermostat[ctr_output].status.climate_mode);
}
}
void CmndTempFrostProtectSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
int16_t value;
if (XdrvMailbox.data_len > 0) {
if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) {
value = (int16_t)ThermostatFahrenheitToCelsius((int32_t)(CharToFloat(XdrvMailbox.data) * 10), TEMP_CONV_ABSOLUTE);
}
else {
value = (int16_t)(CharToFloat(XdrvMailbox.data) * 10);
}
if ( (value >= 0)
&& (value <= 127)) {
Thermostat[ctr_output].temp_frost_protect = (uint8_t)value;
}
}
if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) {
value = ThermostatCelsiusToFahrenheit((int32_t)Thermostat[ctr_output].temp_frost_protect, TEMP_CONV_ABSOLUTE);
}
else {
value = (int16_t)Thermostat[ctr_output].temp_frost_protect;
}
ResponseCmndFloat((float)value / 10, 1);
}
}
void CmndControllerModeSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(XdrvMailbox.payload);
if ((value >= CTR_HYBRID) && (value < CTR_MODES_MAX)) {
Thermostat[ctr_output].status.controller_mode = value;
// Reset controller variables
Thermostat[ctr_output].timestamp_rampup_start = TasmotaGlobal.uptime;
Thermostat[ctr_output].temp_rampup_start = Thermostat[ctr_output].temp_measured;
Thermostat[ctr_output].temp_rampup_meas_gradient = 0;
Thermostat[ctr_output].time_rampup_deadtime = 0;
Thermostat[ctr_output].counter_rampup_cycles = 1;
Thermostat[ctr_output].time_ctr_changepoint = 0;
Thermostat[ctr_output].time_ctr_checkpoint = 0;
}
}
ResponseCmndNumber((int)Thermostat[ctr_output].status.controller_mode);
}
}
void CmndInputSwitchSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(XdrvMailbox.payload);
if (ThermostatSwitchIdValid(value)) {
Thermostat[ctr_output].status.input_switch_number = value;
Thermostat[ctr_output].timestamp_input_on = TasmotaGlobal.uptime;
}
}
ResponseCmndNumber((int)Thermostat[ctr_output].status.input_switch_number);
}
}
void CmndInputSwitchUse(void)
{
if ((XdrvMailbox.index >= INPUT_NOT_USED) && (XdrvMailbox.index <= INPUT_USED)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
Thermostat[ctr_output].status.use_input = (uint32_t)(XdrvMailbox.payload);
}
ResponseCmndNumber((int)Thermostat[ctr_output].status.use_input);
}
}
void CmndSensorInputSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(XdrvMailbox.payload);
if ((value >= SENSOR_MQTT) && (value < SENSOR_MAX)) {
Thermostat[ctr_output].status.sensor_type = value;
}
}
ResponseCmndNumber((int)Thermostat[ctr_output].status.sensor_type);
}
}
void CmndOutputRelaySet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(XdrvMailbox.payload);
if (ThermostatRelayIdValid(value)) {
Thermostat[ctr_output].status.output_relay_number = value;
}
}
ResponseCmndNumber((int)Thermostat[ctr_output].status.output_relay_number);
}
}
void CmndTimeAllowRampupSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value < 1440)) {
Thermostat[ctr_output].time_allow_rampup = (uint16_t)value;
}
}
ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_allow_rampup));
}
}
void CmndTempFormatSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= TEMP_FAHRENHEIT)) {
Thermostat[ctr_output].status.temp_format = value;
}
}
ResponseCmndNumber((int)Thermostat[ctr_output].status.temp_format);
}
}
void CmndTempMeasuredSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
int16_t value;
if (XdrvMailbox.data_len > 0) {
if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) {
value = ThermostatFahrenheitToCelsius((int32_t)(CharToFloat(XdrvMailbox.data) * 10), TEMP_CONV_ABSOLUTE);
}
else {
value = (int16_t)(CharToFloat(XdrvMailbox.data) * 10);
}
if ( (value >= -1000)
&& (value <= 1000)
&& (Thermostat[ctr_output].status.sensor_type == SENSOR_MQTT)) {
uint32_t timestamp = TasmotaGlobal.uptime;
// Calculate temperature gradient if temperature value has changed
if (value != Thermostat[ctr_output].temp_measured) {
int32_t temp_delta = (value - Thermostat[ctr_output].temp_measured); // in tenths of degrees
uint32_t time_delta = (timestamp - Thermostat[ctr_output].timestamp_temp_meas_change_update); // in seconds
Thermostat[ctr_output].temp_measured_gradient = (int32_t)((360000 * temp_delta) / ((int32_t)time_delta)); // thousandths of degrees per hour
Thermostat[ctr_output].temp_measured = value;
Thermostat[ctr_output].timestamp_temp_meas_change_update = timestamp;
}
Thermostat[ctr_output].timestamp_temp_measured_update = timestamp;
Thermostat[ctr_output].status.sensor_alive = IFACE_ON;
}
}
if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) {
value = ThermostatCelsiusToFahrenheit((int32_t)Thermostat[ctr_output].temp_measured, TEMP_CONV_ABSOLUTE);
}
else {
value = Thermostat[ctr_output].temp_measured;
}
ResponseCmndFloat((float)value / 10, 1);
}
}
void CmndTempTargetSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
int16_t value;
if (XdrvMailbox.data_len > 0) {
if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) {
value = ThermostatFahrenheitToCelsius((int32_t)(CharToFloat(XdrvMailbox.data) * 10), TEMP_CONV_ABSOLUTE);
}
else {
value = (int16_t)(CharToFloat(XdrvMailbox.data) * 10);
}
if ( (value >= -1000)
&& (value <= 1000)
&& (value >= (int16_t)Thermostat[ctr_output].temp_frost_protect)) {
Thermostat[ctr_output].temp_target_level = value;
}
}
if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) {
value = ThermostatCelsiusToFahrenheit((int32_t)Thermostat[ctr_output].temp_target_level, TEMP_CONV_ABSOLUTE);
}
else {
value = Thermostat[ctr_output].temp_target_level;
}
ResponseCmndFloat((float)value / 10, 1);
}
}
void CmndTempMeasuredGrdRead(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
int16_t value;
if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) {
value = ThermostatCelsiusToFahrenheit((int32_t)Thermostat[ctr_output].temp_measured_gradient, TEMP_CONV_RELATIVE);
}
else {
value = Thermostat[ctr_output].temp_measured_gradient;
}
ResponseCmndFloat(((float)value) / 1000, 1);
}
}
void CmndStateEmergencySet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 1)) {
Thermostat[ctr_output].diag.state_emergency = (uint16_t)value;
}
}
ResponseCmndNumber((int)Thermostat[ctr_output].diag.state_emergency);
}
}
void CmndTimeManualToAutoSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 1440)) {
Thermostat[ctr_output].time_manual_to_auto = (uint16_t)value;
}
}
ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_manual_to_auto));
}
}
void CmndPropBandSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 20)) {
Thermostat[ctr_output].val_prop_band = value;
}
}
ResponseCmndNumber((int)Thermostat[ctr_output].val_prop_band);
}
}
void CmndTimeResetSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Thermostat[ctr_output].time_reset = value;
}
}
ResponseCmndNumber((int)Thermostat[ctr_output].time_reset);
}
}
void CmndTimePiProportRead(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
ResponseCmndNumber((int)Thermostat[ctr_output].time_proportional_pi);
}
}
void CmndTimePiIntegrRead(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
ResponseCmndNumber((int)Thermostat[ctr_output].time_integral_pi);
}
}
void CmndTimePiCycleSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 1440)) {
Thermostat[ctr_output].time_pi_cycle = (uint16_t)value;
}
}
ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_pi_cycle));
}
}
void CmndTempAntiWindupResetSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
uint8_t value;
if (XdrvMailbox.data_len > 0) {
if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) {
value = (uint8_t)ThermostatFahrenheitToCelsius((int32_t)(CharToFloat(XdrvMailbox.data) * 10), TEMP_CONV_RELATIVE);
}
else {
value = (uint8_t)(CharToFloat(XdrvMailbox.data) * 10);
}
if ( (value >= 0)
&& (value <= 100)) {
Thermostat[ctr_output].temp_reset_anti_windup = value;
}
}
if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) {
value = ThermostatCelsiusToFahrenheit((int32_t)Thermostat[ctr_output].temp_reset_anti_windup, TEMP_CONV_RELATIVE);
}
else {
value = Thermostat[ctr_output].temp_reset_anti_windup;
}
ResponseCmndFloat((float)value / 10, 1);
}
}
void CmndTempHystSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
int8_t value;
if (XdrvMailbox.data_len > 0) {
if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) {
value = (int8_t)ThermostatFahrenheitToCelsius((int32_t)(CharToFloat(XdrvMailbox.data) * 10), TEMP_CONV_RELATIVE);
}
else {
value = (int8_t)(CharToFloat(XdrvMailbox.data) * 10);
}
if ( (value >= -100)
&& (value <= 100)) {
Thermostat[ctr_output].temp_hysteresis = value;
}
}
if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) {
value = ThermostatCelsiusToFahrenheit((int32_t)Thermostat[ctr_output].temp_hysteresis, TEMP_CONV_RELATIVE);
}
else {
value = Thermostat[ctr_output].temp_hysteresis;
}
ResponseCmndFloat((float)value / 10, 1);
}
}
#ifdef USE_PI_AUTOTUNING
void CmndPerfLevelAutotune(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= AUTOTUNE_PERF_MAX)) {
Thermostat[ctr_output].status.autotune_perf_mode = value;
}
}
ResponseCmndNumber((int)Thermostat[ctr_output].status.autotune_perf_mode);
}
}
#endif // USE_PI_AUTOTUNING
void CmndTimeMaxActionSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 1440)) {
Thermostat[ctr_output].time_max_action = (uint16_t)value;
}
}
ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_max_action));
}
}
void CmndTimeMinActionSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 1440)) {
Thermostat[ctr_output].time_min_action = (uint16_t)value;
}
}
ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_min_action));
}
}
void CmndTimeSensLostSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 1440)) {
Thermostat[ctr_output].time_sens_lost = (uint16_t)value;
}
}
ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_sens_lost));
}
}
void CmndTimeMinTurnoffActionSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 1440)) {
Thermostat[ctr_output].time_min_turnoff_action = (uint16_t)value;
}
}
ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_min_turnoff_action));
}
}
void CmndTempRupDeltInSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
uint8_t value;
if (XdrvMailbox.data_len > 0) {
if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) {
value = (uint8_t)ThermostatFahrenheitToCelsius((int32_t)(CharToFloat(XdrvMailbox.data) * 10), TEMP_CONV_RELATIVE);
}
else {
value = (uint8_t)(CharToFloat(XdrvMailbox.data) * 10);
}
if ( (value >= 0)
&& (value <= 100)) {
Thermostat[ctr_output].temp_rampup_delta_in = value;
}
}
if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) {
value = ThermostatCelsiusToFahrenheit((int32_t)Thermostat[ctr_output].temp_rampup_delta_in, TEMP_CONV_RELATIVE);
}
else {
value = Thermostat[ctr_output].temp_rampup_delta_in;
}
ResponseCmndFloat((float)value / 10, 1);
}
}
void CmndTempRupDeltOutSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
uint8_t value;
if (XdrvMailbox.data_len > 0) {
if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) {
value = (uint8_t)ThermostatFahrenheitToCelsius((int32_t)(CharToFloat(XdrvMailbox.data) * 10), TEMP_CONV_RELATIVE);
}
else {
value = (uint8_t)(CharToFloat(XdrvMailbox.data) * 10);
}
if ( (value >= 0)
&& (value <= 100)) {
Thermostat[ctr_output].temp_rampup_delta_out = value;
}
}
if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) {
value = ThermostatCelsiusToFahrenheit((int32_t)Thermostat[ctr_output].temp_rampup_delta_out, TEMP_CONV_RELATIVE);
}
else {
value = Thermostat[ctr_output].temp_rampup_delta_out;
}
ResponseCmndFloat((float)value / 10, 1);
}
}
void CmndTimeRampupMaxSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 1440)) {
Thermostat[ctr_output].time_rampup_max = (uint16_t)value;
}
}
ResponseCmndNumber((int)((uint32_t)Thermostat[ctr_output].time_rampup_max));
}
}
void CmndTimeRampupCycleSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 1440)) {
Thermostat[ctr_output].time_rampup_cycle = (uint16_t)value;
}
}
ResponseCmndNumber((int)Thermostat[ctr_output].time_rampup_cycle);
}
}
void CmndTempRampupPiAccErrSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
uint16_t value;
if (XdrvMailbox.data_len > 0) {
if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) {
value = (uint16_t)ThermostatFahrenheitToCelsius((int32_t)(CharToFloat(XdrvMailbox.data) * 100), TEMP_CONV_RELATIVE);
}
else {
value = (uint16_t)(CharToFloat(XdrvMailbox.data) * 100);
}
if ( (value >= 0)
&& (value <= 2500)) {
Thermostat[ctr_output].temp_rampup_pi_acc_error = value;
}
}
if (Thermostat[ctr_output].status.temp_format == TEMP_FAHRENHEIT) {
value = ThermostatCelsiusToFahrenheit((int32_t)Thermostat[ctr_output].temp_rampup_pi_acc_error, TEMP_CONV_RELATIVE);
}
else {
value = Thermostat[ctr_output].temp_rampup_pi_acc_error;
}
ResponseCmndFloat((float)value / 100, 1);
}
}
void CmndDiagnosticModeSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data));
if ((value >= DIAGNOSTIC_OFF) && (value <= DIAGNOSTIC_ON)) {
Thermostat[ctr_output].diag.diagnostic_mode = value;
}
}
ResponseCmndNumber((int)Thermostat[ctr_output].diag.diagnostic_mode);
}
}
void CmndCtrDutyCycleRead(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
uint8_t value = 0;
if ( (Thermostat[ctr_output].status.controller_mode == CTR_PI)
|| ((Thermostat[ctr_output].status.controller_mode == CTR_HYBRID)
&&(Thermostat[ctr_output].status.phase_hybrid_ctr == CTR_HYBRID_PI))) {
value = Thermostat[ctr_output].time_total_pi / Thermostat[ctr_output].time_pi_cycle;
}
else if ( (Thermostat[ctr_output].status.controller_mode == CTR_RAMP_UP)
|| ((Thermostat[ctr_output].status.controller_mode == CTR_HYBRID)
&&(Thermostat[ctr_output].status.phase_hybrid_ctr == CTR_HYBRID_RAMP_UP))) {
if (Thermostat[ctr_output].status.status_output == IFACE_ON) {
value = 100;
}
else {
value = 0;
}
}
ResponseCmndNumber((int)value);
}
}
void CmndEnableOutputSet(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= THERMOSTAT_CONTROLLER_OUTPUTS)) {
uint8_t ctr_output = XdrvMailbox.index - 1;
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data));
if ((value >= IFACE_OFF) && (value <= IFACE_ON)) {
Thermostat[ctr_output].status.enable_output = value;
}
}
ResponseCmndNumber((int)Thermostat[ctr_output].status.enable_output);
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv39(uint8_t function)
{
bool result = false;
uint8_t ctr_output;
switch (function) {
case FUNC_INIT:
for (ctr_output = 0; ctr_output < THERMOSTAT_CONTROLLER_OUTPUTS; ctr_output++) {
ThermostatInit(ctr_output);
}
break;
case FUNC_LOOP:
for (ctr_output = 0; ctr_output < THERMOSTAT_CONTROLLER_OUTPUTS; ctr_output++) {
if (Thermostat[ctr_output].status.thermostat_mode != THERMOSTAT_OFF) {
ThermostatSignalProcessingFast(ctr_output);
ThermostatDiagnostics(ctr_output);
}
}
break;
case FUNC_SERIAL:
break;
case FUNC_EVERY_SECOND:
for (ctr_output = 0; ctr_output < THERMOSTAT_CONTROLLER_OUTPUTS; ctr_output++) {
if ((ThermostatMinuteCounter(ctr_output))
&& (Thermostat[ctr_output].status.thermostat_mode != THERMOSTAT_OFF)) {
ThermostatSignalPreProcessingSlow(ctr_output);
ThermostatController(ctr_output);
ThermostatSignalPostProcessingSlow(ctr_output);
#ifdef DEBUG_THERMOSTAT
ThermostatDebug(ctr_output);
#endif // DEBUG_THERMOSTAT
}
}
break;
case FUNC_SHOW_SENSOR:
for (ctr_output = 0; ctr_output < THERMOSTAT_CONTROLLER_OUTPUTS; ctr_output++) {
if (Thermostat[ctr_output].status.thermostat_mode != THERMOSTAT_OFF) {
ThermostatGetLocalSensor(ctr_output);
}
}
break;
case FUNC_COMMAND:
result = DecodeCommand(kThermostatCommands, ThermostatCommand);
break;
}
return result;
}
#endif // USE_THERMOSTAT