Tasmota/sonoff/xdrv_03_energy.ino

914 lines
33 KiB
C++

/*
xdrv_03_energy.ino - Energy sensor support for Sonoff-Tasmota
Copyright (C) 2019 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ENERGY_SENSOR
/*********************************************************************************************\
* Energy
\*********************************************************************************************/
#define XDRV_03 3
#define XSNS_03 3
//#define USE_ENERGY_MARGIN_DETECTION
// #define USE_ENERGY_POWER_LIMIT
#define ENERGY_NONE 0
#define ENERGY_WATCHDOG 4 // Allow up to 4 seconds before deciding no valid data present
#include <Ticker.h>
#define D_CMND_POWERCAL "PowerCal"
#define D_CMND_VOLTAGECAL "VoltageCal"
#define D_CMND_CURRENTCAL "CurrentCal"
#define D_CMND_TARIFF "Tariff"
enum EnergyCommands {
CMND_POWERCAL, CMND_VOLTAGECAL, CMND_CURRENTCAL,
CMND_POWERSET, CMND_VOLTAGESET, CMND_CURRENTSET, CMND_FREQUENCYSET };
const char kEnergyCommands[] PROGMEM = "|" // No prefix
D_CMND_POWERCAL "|" D_CMND_VOLTAGECAL "|" D_CMND_CURRENTCAL "|"
D_CMND_POWERSET "|" D_CMND_VOLTAGESET "|" D_CMND_CURRENTSET "|" D_CMND_FREQUENCYSET "|"
#ifdef USE_ENERGY_MARGIN_DETECTION
D_CMND_POWERDELTA "|" D_CMND_POWERLOW "|" D_CMND_POWERHIGH "|" D_CMND_VOLTAGELOW "|" D_CMND_VOLTAGEHIGH "|" D_CMND_CURRENTLOW "|" D_CMND_CURRENTHIGH "|"
#ifdef USE_ENERGY_POWER_LIMIT
D_CMND_MAXENERGY "|" D_CMND_MAXENERGYSTART "|"
D_CMND_MAXPOWER "|" D_CMND_MAXPOWERHOLD "|" D_CMND_MAXPOWERWINDOW "|"
D_CMND_SAFEPOWER "|" D_CMND_SAFEPOWERHOLD "|" D_CMND_SAFEPOWERWINDOW "|"
#endif // USE_ENERGY_POWER_LIMIT
#endif // USE_ENERGY_MARGIN_DETECTION
D_CMND_ENERGYRESET "|" D_CMND_TARIFF ;
void (* const EnergyCommand[])(void) PROGMEM = {
&CmndPowerCal, &CmndVoltageCal, &CmndCurrentCal,
&CmndPowerSet, &CmndVoltageSet, &CmndCurrentSet, &CmndFrequencySet,
#ifdef USE_ENERGY_MARGIN_DETECTION
&CmndPowerDelta, &CmndPowerLow, &CmndPowerHigh, &CmndVoltageLow, &CmndVoltageHigh, &CmndCurrentLow, &CmndCurrentHigh,
#ifdef USE_ENERGY_POWER_LIMIT
&CmndMaxEnergy, &CmndMaxEnergyStart,
&CmndMaxPower, &CmndMaxPowerHold, &CmndMaxPowerWindow,
&CmndSafePower, &CmndSafePowerHold, &CmndSafePowerWindow,
#endif // USE_ENERGY_POWER_LIMIT
#endif // USE_ENERGY_MARGIN_DETECTION
&CmndEnergyReset, &CmndTariff };
struct ENERGY {
float voltage = 0; // 123.1 V
float current = 0; // 123.123 A
float active_power = 0; // 123.1 W
float apparent_power = NAN; // 123.1 VA
float reactive_power = NAN; // 123.1 VAr
float power_factor = NAN; // 0.12
float frequency = NAN; // 123.1 Hz
float start_energy = 0; // 12345.12345 kWh total previous
float daily = 0; // 123.123 kWh
float total = 0; // 12345.12345 kWh tariff 1 + 2
float total1 = 0; // 12345.12345 kWh tariff 1 - off-peak
unsigned long kWhtoday_delta = 0; // 1212312345 Wh 10^-5 (deca micro Watt hours) - Overflows to Energy.kWhtoday (HLW and CSE only)
unsigned long kWhtoday; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily
unsigned long kWhtoday1; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily
unsigned long period = 0; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily
uint8_t fifth_second = 0;
uint8_t command_code = 0;
uint8_t data_valid = 0;
bool voltage_available = true; // Enable if voltage is measured
bool current_available = true; // Enable if current is measured
bool type_dc = false;
bool power_on = true;
#ifdef USE_ENERGY_MARGIN_DETECTION
float power_history[3] = { 0 };
uint8_t power_steady_counter = 8; // Allow for power on stabilization
uint8_t power_delta = 0;
bool min_power_flag = false;
bool max_power_flag = false;
bool min_voltage_flag = false;
bool max_voltage_flag = false;
bool min_current_flag = false;
bool max_current_flag = false;
#ifdef USE_ENERGY_POWER_LIMIT
uint16_t mplh_counter = 0;
uint16_t mplw_counter = 0;
uint8_t mplr_counter = 0;
uint8_t max_energy_state = 0;
#endif // USE_ENERGY_POWER_LIMIT
#endif // USE_ENERGY_MARGIN_DETECTION
} Energy;
Ticker ticker_energy;
/********************************************************************************************/
void EnergyUpdateToday(void)
{
if (Energy.kWhtoday_delta > 1000) {
unsigned long delta = Energy.kWhtoday_delta / 1000;
Energy.kWhtoday_delta -= (delta * 1000);
Energy.kWhtoday += delta;
}
uint32_t energy_diff = Energy.kWhtoday - RtcSettings.energy_kWhtoday;
RtcSettings.energy_kWhtoday = Energy.kWhtoday;
Energy.daily = (float)Energy.kWhtoday / 100000;
Energy.total = (float)(RtcSettings.energy_kWhtotal + Energy.kWhtoday) / 100000;
if ((RtcTime.hour < Settings.param[P_ENERGY_TARIFF2]) || // Tarrif1 = Off-Peak
(RtcTime.hour >= Settings.param[P_ENERGY_TARIFF1]) ||
(Settings.flag3.energy_weekend && ((RtcTime.day_of_week == 1) ||
(RtcTime.day_of_week == 7)))
) {
Energy.kWhtoday1 += energy_diff;
RtcSettings.energy_usage.usage1_kWhtoday = Energy.kWhtoday1;
Energy.total1 = (float)(RtcSettings.energy_usage.usage1_kWhtotal + Energy.kWhtoday1) / 100000;
}
}
/*********************************************************************************************/
void Energy200ms(void)
{
Energy.power_on = (power != 0) | Settings.flag.no_power_on_check;
Energy.fifth_second++;
if (5 == Energy.fifth_second) {
Energy.fifth_second = 0;
XnrgCall(FUNC_ENERGY_EVERY_SECOND);
if (RtcTime.valid) {
if (LocalTime() == Midnight()) {
Settings.energy_kWhyesterday = Energy.kWhtoday;
Settings.energy_kWhtotal += Energy.kWhtoday;
RtcSettings.energy_kWhtotal = Settings.energy_kWhtotal;
Energy.kWhtoday = 0;
RtcSettings.energy_kWhtoday = 0;
Settings.energy_usage.usage1_kWhtotal += Energy.kWhtoday1;
RtcSettings.energy_usage.usage1_kWhtotal = Settings.energy_usage.usage1_kWhtotal;
Energy.kWhtoday1 = 0;
RtcSettings.energy_usage.usage1_kWhtoday = 0;
Energy.kWhtoday_delta = 0;
Energy.period = Energy.kWhtoday;
EnergyUpdateToday();
#if defined(USE_ENERGY_MARGIN_DETECTION) && defined(USE_ENERGY_POWER_LIMIT)
Energy.max_energy_state = 3;
#endif // USE_ENERGY_POWER_LIMIT
}
#if defined(USE_ENERGY_MARGIN_DETECTION) && defined(USE_ENERGY_POWER_LIMIT)
if ((RtcTime.hour == Settings.energy_max_energy_start) && (3 == Energy.max_energy_state )) {
Energy.max_energy_state = 0;
}
#endif // USE_ENERGY_POWER_LIMIT
}
}
XnrgCall(FUNC_EVERY_200_MSECOND);
}
void EnergySaveState(void)
{
Settings.energy_kWhdoy = (RtcTime.valid) ? RtcTime.day_of_year : 0;
Settings.energy_kWhtoday = Energy.kWhtoday;
RtcSettings.energy_kWhtoday = Energy.kWhtoday;
Settings.energy_kWhtotal = RtcSettings.energy_kWhtotal;
Settings.energy_usage.usage1_kWhtoday = Energy.kWhtoday1;
RtcSettings.energy_usage.usage1_kWhtoday = Energy.kWhtoday1;
Settings.energy_usage.usage1_kWhtotal = RtcSettings.energy_usage.usage1_kWhtotal;
}
#ifdef USE_ENERGY_MARGIN_DETECTION
bool EnergyMargin(bool type, uint16_t margin, uint16_t value, bool &flag, bool &save_flag)
{
bool change;
if (!margin) return false;
change = save_flag;
if (type) {
flag = (value > margin);
} else {
flag = (value < margin);
}
save_flag = flag;
return (change != save_flag);
}
void EnergyMarginCheck(void)
{
uint16_t energy_daily_u = 0;
uint16_t energy_power_u = 0;
uint16_t energy_voltage_u = 0;
uint16_t energy_current_u = 0;
bool flag;
bool jsonflg;
if (Energy.power_steady_counter) {
Energy.power_steady_counter--;
return;
}
if (Settings.energy_power_delta) {
float delta = abs(Energy.power_history[0] - Energy.active_power);
// Any delta compared to minimal delta
float min_power = (Energy.power_history[0] > Energy.active_power) ? Energy.active_power : Energy.power_history[0];
if (((delta / min_power) * 100) > Settings.energy_power_delta) {
Energy.power_delta = 1;
Energy.power_history[1] = Energy.active_power; // We only want one report so reset history
Energy.power_history[2] = Energy.active_power;
}
}
Energy.power_history[0] = Energy.power_history[1]; // Shift in history every second allowing power changes to settle for up to three seconds
Energy.power_history[1] = Energy.power_history[2];
Energy.power_history[2] = Energy.active_power;
if (Energy.power_on && (Settings.energy_min_power || Settings.energy_max_power || Settings.energy_min_voltage || Settings.energy_max_voltage || Settings.energy_min_current || Settings.energy_max_current)) {
energy_power_u = (uint16_t)(Energy.active_power);
energy_voltage_u = (uint16_t)(Energy.voltage);
energy_current_u = (uint16_t)(Energy.current * 1000);
DEBUG_DRIVER_LOG(PSTR("NRG: W %d, U %d, I %d"), energy_power_u, energy_voltage_u, energy_current_u);
Response_P(PSTR("{"));
jsonflg = false;
if (EnergyMargin(false, Settings.energy_min_power, energy_power_u, flag, Energy.min_power_flag)) {
ResponseAppend_P(PSTR("%s\"" D_CMND_POWERLOW "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
jsonflg = true;
}
if (EnergyMargin(true, Settings.energy_max_power, energy_power_u, flag, Energy.max_power_flag)) {
ResponseAppend_P(PSTR("%s\"" D_CMND_POWERHIGH "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
jsonflg = true;
}
if (EnergyMargin(false, Settings.energy_min_voltage, energy_voltage_u, flag, Energy.min_voltage_flag)) {
ResponseAppend_P(PSTR("%s\"" D_CMND_VOLTAGELOW "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
jsonflg = true;
}
if (EnergyMargin(true, Settings.energy_max_voltage, energy_voltage_u, flag, Energy.max_voltage_flag)) {
ResponseAppend_P(PSTR("%s\"" D_CMND_VOLTAGEHIGH "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
jsonflg = true;
}
if (EnergyMargin(false, Settings.energy_min_current, energy_current_u, flag, Energy.min_current_flag)) {
ResponseAppend_P(PSTR("%s%s\"" D_CMND_CURRENTLOW "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
jsonflg = true;
}
if (EnergyMargin(true, Settings.energy_max_current, energy_current_u, flag, Energy.max_current_flag)) {
ResponseAppend_P(PSTR("%s%s\"" D_CMND_CURRENTHIGH "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag));
jsonflg = true;
}
if (jsonflg) {
ResponseJsonEnd();
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_MARGINS), MQTT_TELE_RETAIN);
EnergyMqttShow();
}
}
#ifdef USE_ENERGY_POWER_LIMIT
// Max Power
if (Settings.energy_max_power_limit) {
if (Energy.active_power > Settings.energy_max_power_limit) {
if (!Energy.mplh_counter) {
Energy.mplh_counter = Settings.energy_max_power_limit_hold;
} else {
Energy.mplh_counter--;
if (!Energy.mplh_counter) {
Response_P(PSTR("{\"" D_JSON_MAXPOWERREACHED "\":\"%d%s\"}"), energy_power_u, (Settings.flag.value_units) ? " " D_UNIT_WATT : "");
MqttPublishPrefixTopic_P(STAT, S_RSLT_WARNING);
EnergyMqttShow();
ExecuteCommandPower(1, POWER_OFF, SRC_MAXPOWER);
if (!Energy.mplr_counter) {
Energy.mplr_counter = Settings.param[P_MAX_POWER_RETRY] +1;
}
Energy.mplw_counter = Settings.energy_max_power_limit_window;
}
}
}
else if (power && (energy_power_u <= Settings.energy_max_power_limit)) {
Energy.mplh_counter = 0;
Energy.mplr_counter = 0;
Energy.mplw_counter = 0;
}
if (!power) {
if (Energy.mplw_counter) {
Energy.mplw_counter--;
} else {
if (Energy.mplr_counter) {
Energy.mplr_counter--;
if (Energy.mplr_counter) {
Response_P(PSTR("{\"" D_JSON_POWERMONITOR "\":\"%s\"}"), GetStateText(1));
MqttPublishPrefixTopic_P(RESULT_OR_STAT, PSTR(D_JSON_POWERMONITOR));
ExecuteCommandPower(1, POWER_ON, SRC_MAXPOWER);
} else {
Response_P(PSTR("{\"" D_JSON_MAXPOWERREACHEDRETRY "\":\"%s\"}"), GetStateText(0));
MqttPublishPrefixTopic_P(STAT, S_RSLT_WARNING);
EnergyMqttShow();
}
}
}
}
}
// Max Energy
if (Settings.energy_max_energy) {
energy_daily_u = (uint16_t)(Energy.daily * 1000);
if (!Energy.max_energy_state && (RtcTime.hour == Settings.energy_max_energy_start)) {
Energy.max_energy_state = 1;
Response_P(PSTR("{\"" D_JSON_ENERGYMONITOR "\":\"%s\"}"), GetStateText(1));
MqttPublishPrefixTopic_P(RESULT_OR_STAT, PSTR(D_JSON_ENERGYMONITOR));
ExecuteCommandPower(1, POWER_ON, SRC_MAXENERGY);
}
else if ((1 == Energy.max_energy_state ) && (energy_daily_u >= Settings.energy_max_energy)) {
Energy.max_energy_state = 2;
dtostrfd(Energy.daily, 3, mqtt_data);
Response_P(PSTR("{\"" D_JSON_MAXENERGYREACHED "\":\"%s%s\"}"), mqtt_data, (Settings.flag.value_units) ? " " D_UNIT_KILOWATTHOUR : "");
MqttPublishPrefixTopic_P(STAT, S_RSLT_WARNING);
EnergyMqttShow();
ExecuteCommandPower(1, POWER_OFF, SRC_MAXENERGY);
}
}
#endif // USE_ENERGY_POWER_LIMIT
if (Energy.power_delta) { EnergyMqttShow(); }
}
void EnergyMqttShow(void)
{
// {"Time":"2017-12-16T11:48:55","ENERGY":{"Total":0.212,"Yesterday":0.000,"Today":0.014,"Period":2.0,"Power":22.0,"Factor":1.00,"Voltage":213.6,"Current":0.100}}
ResponseBeginTime();
int tele_period_save = tele_period;
tele_period = 2;
EnergyShow(true);
tele_period = tele_period_save;
ResponseJsonEnd();
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR), Settings.flag.mqtt_sensor_retain);
Energy.power_delta = 0;
}
#endif // USE_ENERGY_MARGIN_DETECTION
void EnergyOverTempCheck()
{
if (global_update) {
if (power && (global_temperature != 9999) && (global_temperature > Settings.param[P_OVER_TEMP])) { // Device overtemp, turn off relays
SetAllPower(POWER_ALL_OFF, SRC_OVERTEMP);
}
}
if (Energy.data_valid <= ENERGY_WATCHDOG) {
Energy.data_valid++;
if (Energy.data_valid > ENERGY_WATCHDOG) {
// Reset energy registers
Energy.voltage = 0;
Energy.current = 0;
Energy.active_power = 0;
if (!isnan(Energy.frequency)) { Energy.frequency = 0; }
if (!isnan(Energy.power_factor)) { Energy.power_factor = 0; }
Energy.start_energy = 0;
}
}
}
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
void EnergyCommandResponse(uint32_t nvalue, uint32_t unit)
{
if (UNIT_MILLISECOND == unit) {
snprintf_P(XdrvMailbox.command, CMDSZ, PSTR("%sCal"), XdrvMailbox.command);
unit = UNIT_MICROSECOND;
}
if (Settings.flag.value_units) {
char sunit[CMDSZ];
Response_P(S_JSON_COMMAND_LVALUE_SPACE_UNIT, XdrvMailbox.command, nvalue, GetTextIndexed(sunit, sizeof(sunit), unit, kUnitNames));
} else {
Response_P(S_JSON_COMMAND_LVALUE, XdrvMailbox.command, nvalue);
}
}
void CmndEnergyReset(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= 3)) {
char *p;
unsigned long lnum = strtoul(XdrvMailbox.data, &p, 10);
if (p != XdrvMailbox.data) {
switch (XdrvMailbox.index) {
case 1:
Energy.kWhtoday = lnum *100;
Energy.kWhtoday_delta = 0;
Energy.period = Energy.kWhtoday;
Settings.energy_kWhtoday = Energy.kWhtoday;
RtcSettings.energy_kWhtoday = Energy.kWhtoday;
Energy.daily = (float)Energy.kWhtoday / 100000;
if (!RtcSettings.energy_kWhtotal && !Energy.kWhtoday) { Settings.energy_kWhtotal_time = LocalTime(); }
break;
case 2:
Settings.energy_kWhyesterday = lnum *100;
break;
case 3:
RtcSettings.energy_kWhtotal = lnum *100;
Settings.energy_kWhtotal = RtcSettings.energy_kWhtotal;
Energy.total = (float)(RtcSettings.energy_kWhtotal + Energy.kWhtoday) / 100000;
Settings.energy_kWhtotal_time = (!Energy.kWhtoday) ? LocalTime() : Midnight();
break;
}
}
if (Energy.kWhtoday1 > Energy.kWhtoday) {
Energy.kWhtoday1 = Energy.kWhtoday;
}
if (Settings.energy_usage.usage1_kWhtoday > Settings.energy_kWhtoday) {
Settings.energy_usage.usage1_kWhtoday = Settings.energy_kWhtoday;
RtcSettings.energy_usage.usage1_kWhtoday = Settings.energy_kWhtoday;
}
if (Settings.energy_usage.usage1_kWhtotal > Settings.energy_kWhtotal) {
Settings.energy_usage.usage1_kWhtotal = Settings.energy_kWhtotal;
RtcSettings.energy_usage.usage1_kWhtotal = Settings.energy_kWhtotal;
}
char energy_total_chr[33];
dtostrfd(Energy.total, Settings.flag2.energy_resolution, energy_total_chr);
char energy_daily_chr[33];
dtostrfd(Energy.daily, Settings.flag2.energy_resolution, energy_daily_chr);
char energy_yesterday_chr[33];
dtostrfd((float)Settings.energy_kWhyesterday / 100000, Settings.flag2.energy_resolution, energy_yesterday_chr);
Response_P(PSTR("{\"%s\":{\"" D_JSON_TOTAL "\":%s,\"" D_JSON_YESTERDAY "\":%s,\"" D_JSON_TODAY "\":%s}}"),
XdrvMailbox.command, energy_total_chr, energy_yesterday_chr, energy_daily_chr);
}
}
void CmndTariff(void)
{
// Tariff1 23
// Tariff2 7
// Tariff3 0/1
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= 2)) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 24)) {
Settings.param[P_ENERGY_TARIFF1 + XdrvMailbox.index -1] = XdrvMailbox.payload;
}
}
else if (XdrvMailbox.index == 3) {
Settings.flag3.energy_weekend = XdrvMailbox.payload & 1;
}
Response_P(PSTR("{\"%s\":{\"Off-Peak\":%d,\"Standard\":%d,\"Weekend\":\"%s\"}}"),
XdrvMailbox.command, Settings.param[P_ENERGY_TARIFF1], Settings.param[P_ENERGY_TARIFF2], GetStateText(Settings.flag3.energy_weekend));
}
void CmndPowerCal(void)
{
Energy.command_code = CMND_POWERCAL;
if (XnrgCall(FUNC_COMMAND)) { // microseconds
if ((XdrvMailbox.payload > 999) && (XdrvMailbox.payload < 32001)) {
Settings.energy_power_calibration = XdrvMailbox.payload;
}
EnergyCommandResponse(Settings.energy_power_calibration, UNIT_MICROSECOND);
}
}
void CmndVoltageCal(void)
{
Energy.command_code = CMND_VOLTAGECAL;
if (XnrgCall(FUNC_COMMAND)) { // microseconds
if ((XdrvMailbox.payload > 999) && (XdrvMailbox.payload < 32001)) {
Settings.energy_voltage_calibration = XdrvMailbox.payload;
}
EnergyCommandResponse(Settings.energy_voltage_calibration, UNIT_MICROSECOND);
}
}
void CmndCurrentCal(void)
{
Energy.command_code = CMND_CURRENTCAL;
if (XnrgCall(FUNC_COMMAND)) { // microseconds
if ((XdrvMailbox.payload > 999) && (XdrvMailbox.payload < 32001)) {
Settings.energy_current_calibration = XdrvMailbox.payload;
}
EnergyCommandResponse(Settings.energy_current_calibration, UNIT_MICROSECOND);
}
}
void CmndPowerSet(void)
{
Energy.command_code = CMND_POWERSET;
if (XnrgCall(FUNC_COMMAND)) { // Watt
EnergyCommandResponse(Settings.energy_power_calibration, UNIT_MILLISECOND);
}
}
void CmndVoltageSet(void)
{
Energy.command_code = CMND_VOLTAGESET;
if (XnrgCall(FUNC_COMMAND)) { // Volt
EnergyCommandResponse(Settings.energy_voltage_calibration, UNIT_MILLISECOND);
}
}
void CmndCurrentSet(void)
{
Energy.command_code = CMND_CURRENTSET;
if (XnrgCall(FUNC_COMMAND)) { // milliAmpere
EnergyCommandResponse(Settings.energy_current_calibration, UNIT_MILLISECOND);
}
}
void CmndFrequencySet(void)
{
Energy.command_code = CMND_FREQUENCYSET;
if (XnrgCall(FUNC_COMMAND)) { // Hz
EnergyCommandResponse(Settings.energy_frequency_calibration, UNIT_MILLISECOND);
}
}
#ifdef USE_ENERGY_MARGIN_DETECTION
void CmndPowerDelta(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 101)) {
Settings.energy_power_delta = XdrvMailbox.payload;
}
EnergyCommandResponse(Settings.energy_power_delta, UNIT_PERCENTAGE);
}
void CmndPowerLow(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
Settings.energy_min_power = XdrvMailbox.payload;
}
EnergyCommandResponse(Settings.energy_min_power, UNIT_WATT);
}
void CmndPowerHigh(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
Settings.energy_max_power = XdrvMailbox.payload;
}
EnergyCommandResponse(Settings.energy_max_power, UNIT_WATT);
}
void CmndVoltageLow(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 501)) {
Settings.energy_min_voltage = XdrvMailbox.payload;
}
EnergyCommandResponse(Settings.energy_min_voltage, UNIT_VOLT);
}
void CmndVoltageHigh(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 501)) {
Settings.energy_max_voltage = XdrvMailbox.payload;
}
EnergyCommandResponse(Settings.energy_max_voltage, UNIT_VOLT);
}
void CmndCurrentLow(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 16001)) {
Settings.energy_min_current = XdrvMailbox.payload;
}
EnergyCommandResponse(Settings.energy_min_current, UNIT_MILLIAMPERE);
}
void CmndCurrentHigh(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 16001)) {
Settings.energy_max_current = XdrvMailbox.payload;
}
EnergyCommandResponse(Settings.energy_max_current, UNIT_MILLIAMPERE);
}
#ifdef USE_ENERGY_POWER_LIMIT
void CmndMaxPower(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
Settings.energy_max_power_limit = XdrvMailbox.payload;
}
EnergyCommandResponse(Settings.energy_max_power_limit, UNIT_WATT);
}
void CmndMaxPowerHold(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
Settings.energy_max_power_limit_hold = (1 == XdrvMailbox.payload) ? MAX_POWER_HOLD : XdrvMailbox.payload;
}
EnergyCommandResponse(Settings.energy_max_power_limit_hold, UNIT_SECOND);
}
void CmndMaxPowerWindow(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
Settings.energy_max_power_limit_window = (1 == XdrvMailbox.payload) ? MAX_POWER_WINDOW : XdrvMailbox.payload;
}
EnergyCommandResponse(Settings.energy_max_power_limit_window, UNIT_SECOND);
}
void CmndSafePower(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
Settings.energy_max_power_safe_limit = XdrvMailbox.payload;
}
EnergyCommandResponse(Settings.energy_max_power_safe_limit, UNIT_WATT);
}
void CmndSafePowerHold(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
Settings.energy_max_power_safe_limit_hold = (1 == XdrvMailbox.payload) ? SAFE_POWER_HOLD : XdrvMailbox.payload;
}
EnergyCommandResponse(Settings.energy_max_power_safe_limit_hold, UNIT_SECOND);
}
void CmndSafePowerWindow(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 1440)) {
Settings.energy_max_power_safe_limit_window = (1 == XdrvMailbox.payload) ? SAFE_POWER_WINDOW : XdrvMailbox.payload;
}
EnergyCommandResponse(Settings.energy_max_power_safe_limit_window, UNIT_MINUTE);
}
void CmndMaxEnergy(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) {
Settings.energy_max_energy = XdrvMailbox.payload;
Energy.max_energy_state = 3;
}
EnergyCommandResponse(Settings.energy_max_energy, UNIT_WATTHOUR);
}
void CmndMaxEnergyStart(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 24)) {
Settings.energy_max_energy_start = XdrvMailbox.payload;
}
EnergyCommandResponse(Settings.energy_max_energy_start, UNIT_HOUR);
}
#endif // USE_ENERGY_POWER_LIMIT
#endif // USE_ENERGY_MARGIN_DETECTION
void EnergyDrvInit(void)
{
energy_flg = ENERGY_NONE;
XnrgCall(FUNC_PRE_INIT);
}
void EnergySnsInit(void)
{
XnrgCall(FUNC_INIT);
if (energy_flg) {
Energy.kWhtoday = (RtcSettingsValid()) ? RtcSettings.energy_kWhtoday : (RtcTime.day_of_year == Settings.energy_kWhdoy) ? Settings.energy_kWhtoday : 0;
Energy.kWhtoday1 = (RtcSettingsValid()) ? RtcSettings.energy_usage.usage1_kWhtoday : (RtcTime.day_of_year == Settings.energy_kWhdoy) ? Settings.energy_usage.usage1_kWhtoday : 0;
Energy.kWhtoday_delta = 0;
Energy.period = Energy.kWhtoday;
EnergyUpdateToday();
ticker_energy.attach_ms(200, Energy200ms);
}
}
#ifdef USE_WEBSERVER
const char HTTP_ENERGY_SNS1[] PROGMEM =
"{s}" D_POWERUSAGE_APPARENT "{m}%s " D_UNIT_VA "{e}"
"{s}" D_POWERUSAGE_REACTIVE "{m}%s " D_UNIT_VAR "{e}"
"{s}" D_POWER_FACTOR "{m}%s{e}";
const char HTTP_ENERGY_SNS2[] PROGMEM =
"{s}" D_ENERGY_TODAY "{m}%s " D_UNIT_KILOWATTHOUR "{e}"
"{s}" D_ENERGY_YESTERDAY "{m}%s " D_UNIT_KILOWATTHOUR "{e}"
"{s}" D_ENERGY_TOTAL "{m}%s " D_UNIT_KILOWATTHOUR "{e}"; // {s} = <tr><th>, {m} = </th><td>, {e} = </td></tr>
#endif // USE_WEBSERVER
void EnergyShow(bool json)
{
char speriod[20];
// char sfrequency[20];
bool show_energy_period = (0 == tele_period);
float power_factor = Energy.power_factor;
char apparent_power_chr[33];
char reactive_power_chr[33];
char power_factor_chr[33];
char frequency_chr[33];
if (!Energy.type_dc) {
if (Energy.current_available && Energy.voltage_available) {
float apparent_power = Energy.apparent_power;
if (isnan(apparent_power)) {
apparent_power = Energy.voltage * Energy.current;
}
if (apparent_power < Energy.active_power) { // Should be impossible
Energy.active_power = apparent_power;
}
if (isnan(power_factor)) {
power_factor = (Energy.active_power && apparent_power) ? Energy.active_power / apparent_power : 0;
if (power_factor > 1) power_factor = 1;
}
float reactive_power = Energy.reactive_power;
if (isnan(reactive_power)) {
reactive_power = 0;
uint32_t difference = ((uint32_t)(apparent_power * 100) - (uint32_t)(Energy.active_power * 100)) / 10;
if ((Energy.current > 0.005) && ((difference > 15) || (difference > (uint32_t)(apparent_power * 100 / 1000)))) {
// calculating reactive power only if current is greater than 0.005A and
// difference between active and apparent power is greater than 1.5W or 1%
reactive_power = (float)(RoundSqrtInt((uint32_t)(apparent_power * apparent_power * 100) - (uint32_t)(Energy.active_power * Energy.active_power * 100))) / 10;
}
}
dtostrfd(apparent_power, Settings.flag2.wattage_resolution, apparent_power_chr);
dtostrfd(reactive_power, Settings.flag2.wattage_resolution, reactive_power_chr);
dtostrfd(power_factor, 2, power_factor_chr);
}
if (!isnan(Energy.frequency)) {
dtostrfd(Energy.frequency, Settings.flag2.frequency_resolution, frequency_chr);
}
}
char voltage_chr[33];
dtostrfd(Energy.voltage, Settings.flag2.voltage_resolution, voltage_chr);
char current_chr[33];
dtostrfd(Energy.current, Settings.flag2.current_resolution, current_chr);
char active_power_chr[33];
dtostrfd(Energy.active_power, Settings.flag2.wattage_resolution, active_power_chr);
char energy_daily_chr[33];
dtostrfd(Energy.daily, Settings.flag2.energy_resolution, energy_daily_chr);
char energy_yesterday_chr[33];
dtostrfd((float)Settings.energy_kWhyesterday / 100000, Settings.flag2.energy_resolution, energy_yesterday_chr);
char energy_total_chr[33];
dtostrfd(Energy.total, Settings.flag2.energy_resolution, energy_total_chr);
float energy = 0;
char energy_period_chr[33];
if (show_energy_period) {
if (Energy.period) energy = (float)(Energy.kWhtoday - Energy.period) / 100;
Energy.period = Energy.kWhtoday;
dtostrfd(energy, Settings.flag2.wattage_resolution, energy_period_chr);
snprintf_P(speriod, sizeof(speriod), PSTR(",\"" D_JSON_PERIOD "\":%s"), energy_period_chr);
}
if (json) {
ResponseAppend_P(PSTR(",\"" D_RSLT_ENERGY "\":{\"" D_JSON_TOTAL_START_TIME "\":\"%s\",\"" D_JSON_TOTAL "\":%s,\"" D_JSON_YESTERDAY "\":%s,\"" D_JSON_TODAY "\":%s%s,\"" D_JSON_POWERUSAGE "\":%s"),
GetDateAndTime(DT_ENERGY).c_str(), energy_total_chr, energy_yesterday_chr, energy_daily_chr, (show_energy_period) ? speriod : "", active_power_chr);
if (!Energy.type_dc) {
if (Energy.current_available && Energy.voltage_available) {
ResponseAppend_P(PSTR(",\"" D_JSON_APPARENT_POWERUSAGE "\":%s,\"" D_JSON_REACTIVE_POWERUSAGE "\":%s,\"" D_JSON_POWERFACTOR "\":%s"),
apparent_power_chr, reactive_power_chr, power_factor_chr);
}
if (!isnan(Energy.frequency)) {
ResponseAppend_P(PSTR(",\"" D_JSON_FREQUENCY "\":%s"), frequency_chr);
}
}
if (Energy.voltage_available) {
ResponseAppend_P(PSTR(",\"" D_JSON_VOLTAGE "\":%s"), voltage_chr);
}
if (Energy.current_available) {
ResponseAppend_P(PSTR(",\"" D_JSON_CURRENT "\":%s"), current_chr);
}
ResponseJsonEnd();
#ifdef USE_DOMOTICZ
if (show_energy_period) { // Only send if telemetry
dtostrfd(Energy.total * 1000, 1, energy_total_chr);
DomoticzSensorPowerEnergy((int)Energy.active_power, energy_total_chr); // PowerUsage, EnergyToday
dtostrfd((Energy.total - Energy.total1) * 1000, 1, energy_total_chr); // Tariff2
char energy_total1_chr[33];
dtostrfd(Energy.total1 * 1000, 1, energy_total1_chr); // Tariff1
char energy_non[2] = "0";
DomoticzSensorP1SmartMeter(energy_total1_chr, energy_total_chr, energy_non, energy_non, (int)Energy.active_power, 0);
if (Energy.voltage_available) {
DomoticzSensor(DZ_VOLTAGE, voltage_chr); // Voltage
}
if (Energy.current_available) {
DomoticzSensor(DZ_CURRENT, current_chr); // Current
}
}
#endif // USE_DOMOTICZ
#ifdef USE_KNX
if (show_energy_period) {
if (Energy.voltage_available) {
KnxSensor(KNX_ENERGY_VOLTAGE, Energy.voltage);
}
if (Energy.current_available) {
KnxSensor(KNX_ENERGY_CURRENT, Energy.current);
}
KnxSensor(KNX_ENERGY_POWER, Energy.active_power);
if (!Energy.type_dc) { KnxSensor(KNX_ENERGY_POWERFACTOR, power_factor); }
KnxSensor(KNX_ENERGY_DAILY, Energy.daily);
KnxSensor(KNX_ENERGY_TOTAL, Energy.total);
KnxSensor(KNX_ENERGY_START, Energy.start_energy);
}
#endif // USE_KNX
#ifdef USE_WEBSERVER
} else {
if (Energy.voltage_available) {
WSContentSend_PD(PSTR("{s}" D_VOLTAGE "{m}%s " D_UNIT_VOLT "{e}"), voltage_chr);
}
if (Energy.current_available) {
WSContentSend_PD(PSTR("{s}" D_CURRENT "{m}%s " D_UNIT_AMPERE "{e}"), current_chr);
}
WSContentSend_PD(PSTR("{s}" D_POWERUSAGE "{m}%s " D_UNIT_WATT "{e}"), active_power_chr);
if (!Energy.type_dc) {
if (Energy.current_available && Energy.voltage_available) {
WSContentSend_PD(HTTP_ENERGY_SNS1, apparent_power_chr, reactive_power_chr, power_factor_chr);
}
if (!isnan(Energy.frequency)) {
WSContentSend_PD(PSTR("{s}" D_FREQUENCY "{m}%s " D_UNIT_HERTZ "{e}"), frequency_chr);
}
}
WSContentSend_PD(HTTP_ENERGY_SNS2, energy_daily_chr, energy_yesterday_chr, energy_total_chr);
#endif // USE_WEBSERVER
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv03(uint8_t function)
{
bool result = false;
if (FUNC_PRE_INIT == function) {
EnergyDrvInit();
}
else if (energy_flg) {
switch (function) {
case FUNC_LOOP:
XnrgCall(FUNC_LOOP);
break;
#ifdef USE_ENERGY_MARGIN_DETECTION
case FUNC_SET_POWER:
Energy.power_steady_counter = 2;
break;
#endif // USE_ENERGY_MARGIN_DETECTION
case FUNC_SERIAL:
result = XnrgCall(FUNC_SERIAL);
break;
case FUNC_COMMAND:
result = DecodeCommand(kEnergyCommands, EnergyCommand);
break;
}
}
return result;
}
bool Xsns03(uint8_t function)
{
bool result = false;
if (energy_flg) {
switch (function) {
case FUNC_INIT:
EnergySnsInit();
break;
case FUNC_EVERY_SECOND:
#ifdef USE_ENERGY_MARGIN_DETECTION
EnergyMarginCheck();
#endif // USE_ENERGY_MARGIN_DETECTION
EnergyOverTempCheck();
break;
case FUNC_JSON_APPEND:
EnergyShow(true);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
EnergyShow(false);
break;
#endif // USE_WEBSERVER
case FUNC_SAVE_BEFORE_RESTART:
EnergySaveState();
break;
}
}
return result;
}
#endif // USE_ENERGY_SENSOR