mirror of https://github.com/arendst/Tasmota.git
646 lines
26 KiB
C++
646 lines
26 KiB
C++
/*
|
|
xsns_82_wiegand.ino - Support for Wiegand Interface 125kHz Rfid Tag Reader for Tasmota
|
|
|
|
Copyright (C) 2021 Sigurd Leuther and Theo Arends
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifdef USE_WIEGAND
|
|
/*********************************************************************************************\
|
|
* Wiegand 24, 26, 32, 34 bit Rfid reader 125 kHz
|
|
*
|
|
* Wire connections for https://www.benselectronics.nl/wiegand-2634-bit-rfid-reader-125khze248d29925d602d.html
|
|
* Red Vdc
|
|
* Black Gnd
|
|
* Green D0
|
|
* White D1
|
|
* Yellow/Grey Sound Buzzer if connected to Gnd
|
|
* Blue Light Led if connected to Gnd
|
|
* Grey/Purple 34-bit if connected to Gnd
|
|
*
|
|
* MQTT:
|
|
* %prefix%/%topic%/SENSOR = {"Time":"2021-01-21T16:04:12","Wiegand":{"UID":7748328,"Size":26}}
|
|
* %prefix%/%topic%/SENSOR = {"Time":"2021-01-21T15:48:49","Wiegand":{"UID":4302741608,"Size":34}}
|
|
*
|
|
* Rule:
|
|
* on wiegand#uid=4302741608 do publish cmnd/ailight/power 2 endon
|
|
*
|
|
* 20220215
|
|
* - fix 34-bit size parity chk
|
|
* - fix 64-bit representation after removal of %llu support (Tasmota does not support 64-bit decimal output specifier (%llu) saving 60k code)
|
|
* - change internal rfid size from uint64_t to uint32_t
|
|
* - limited max amount of kaypad presses to a 32-bit number (at least 999999999)
|
|
* ---
|
|
* 20201101
|
|
* - fix for #11047 Wiegand 26/34 missed some key press if they are press at normal speed
|
|
* - removed testing code for tests without attached hardware
|
|
* - added SetOption123 0-Wiegand UID decimal (default) 1-Wiegand UID hexadecimal
|
|
* - added SetOption124 0-all keys up to ending char (# or *) send as one tag by MQTT (default) 1-Keypad every key a single tag
|
|
* - added a new realtime testing option emulating a Wiegang reader output on same GPIOs where normally reader is attached. Details below
|
|
* - fix timing issue when fast glitches are detected on one on the datalines. The interbitgab was too short in that case
|
|
\*********************************************************************************************/
|
|
#pragma message("**** Wiegand interface enabled ****")
|
|
|
|
#define XSNS_82 82
|
|
|
|
#define WIEGAND_CODE_GAP_FACTOR 3 // Gap between 2 complete RFID codes send by the device. (WIEGAND_CODE_GAP_FACTOR * bitTime) to detect the end of a code
|
|
#define WIEGAND_BIT_TIME_DEFAULT 1250 // period time (µs) of one bit (impluse + impulse_gap time) 1250µs measured by oscilloscope on my RFID Reader
|
|
#define WIEGAND_RFID_ARRAY_SIZE 11 // storage of rfids found between 2 calls of FUNC_EVERY_100_MSECOND
|
|
#define WIEGAND_OPTION_HEX 123 // Index of option to switch output between hex (1) an decimal (0) (default)
|
|
#define WIEGAND_OPTION_HEX_POSTFIX "h" // will be added after UID output nothing = ""
|
|
#define WIEGAND_OPTION_KEYPAD_TO_TAG 124 //Index of option to switch output of key pad strokes between every single stroke one single char (0) (default)
|
|
// or all strokes until detecting ending char (WIEGAND_OPTION_KEYPAD_END_CHAR) as one tag (1)
|
|
|
|
#define DEV_WIEGAND_TEST_MODE 0
|
|
// using #define will save some space in the final code
|
|
// DEV_WIEGAND_TEST_MODE 1 : Use only without Wiegand reader device attache. On a second ESP to simulate reader output!
|
|
// DEV_WIEGAND_TEST_MODE 2 : testing with hardware correctly connected.
|
|
|
|
#ifdef DEV_WIEGAND_TEST_MODE
|
|
#if (DEV_WIEGAND_TEST_MODE==0)
|
|
#elif (DEV_WIEGAND_TEST_MODE==1)
|
|
#pragma message("\nWiegand Interface code generator (testing purpose only!) compiled with 'DEV_WIEGAND_TEST_MODE' 1 \nUse only on esp WITHOUT Wiegand reader hardware attached! GPIOS will be configured as OUTPUT!" )
|
|
// use on own risk for testing purpose only.
|
|
// please don't attach your reader to the ESP when you use this option. The GPIOS will be defined as OUTPUT
|
|
// the interrupts will be enabled and normally recognize the generated code, that's the idea behind for testing.
|
|
// Commands:
|
|
// WieBitTime [time] : get or set the bit impuls length
|
|
// WieInterBitTime [time]: get or set the length of the gap between 2 bits
|
|
// WieTagGap [tagGap]: get or set the current used gap time between 2 tags send in µs minimal WIEGAND_BIT_TIME_DEFAULT µs default WIEGAND_BIT_TIME_DEFAULT * WIEGAND_CODE_GAP_FACTOR
|
|
// WieTagSize [tagsize]: get or set the tagsize (4,8,24,26,32,34) default 26.
|
|
// WieTag [tag]: get or set the current used tag. For tagsize 4,8 only one char will be used.
|
|
// WieSend [tag[:tagsize];tag[:tagsize];...] : Generate the current Tag with current TagSize to GPIOs if the paramters are used
|
|
// tags and tagsize from commandline are used as current values. If tagsize is omitted always last value will be used
|
|
// WieSend 4:4;5:8; will send 4 in 4 bit mode and 5 in 8 bit mode with a pause of current TagGab between the chars
|
|
// WieSend will send the last used tag with last used tagsize
|
|
#elif (DEV_WIEGAND_TEST_MODE==2)
|
|
#pragma message("\nWiegand Interface compiled with 'DEV_WIEGAND_TEST_MODE' 2 (Hardware connected)")
|
|
#else
|
|
#pragma message("\nWiegand Interface compiled with unknown mode")
|
|
#endif
|
|
#endif
|
|
|
|
typedef struct rfid_store { uint64_t RFID; uint16_t bitCount; } RFID_store;
|
|
|
|
class Wiegand {
|
|
public:
|
|
Wiegand(void);
|
|
void Init(void);
|
|
void ScanForTag(void);
|
|
#ifdef USE_WEBSERVER
|
|
void Show(void);
|
|
#endif // USE_WEBSERVER
|
|
|
|
bool isInit = false;
|
|
|
|
#if (DEV_WIEGAND_TEST_MODE!=1)
|
|
private:
|
|
#endif //(DEV_WIEGAND_TEST_MODE==1)
|
|
uint32_t CheckAndConvertRfid(uint64_t,uint16_t);
|
|
uint8_t CalculateParities(uint64_t, int);
|
|
bool WiegandConversion (uint64_t , uint16_t );
|
|
void HandleKeyPad(void); //handle one tag for multi key strokes
|
|
|
|
static void handleD0Interrupt(void);
|
|
static void handleD1Interrupt(void);
|
|
static void handleDxInterrupt(int in); // fix #11047
|
|
static void ClearRFIDBuffer(int);
|
|
|
|
uint32_t rfid;
|
|
uint32_t tagSize;
|
|
const char* outFormat;
|
|
uint32_t mqttRFIDKeypadBuffer;
|
|
uint32_t webRFIDKeypadBuffer;
|
|
|
|
static volatile uint64_t rfidBuffer;
|
|
static volatile uint16_t bitCount;
|
|
static volatile uint32_t lastFoundTime;
|
|
// fix #11047
|
|
static volatile uint32_t bitTime;
|
|
static volatile uint32_t FirstBitTimeStamp;
|
|
static volatile uint32_t CodeGapTime;
|
|
static volatile bool CodeComplete;
|
|
static volatile RFID_store rfid_found[];
|
|
static volatile int currentFoundRFIDcount;
|
|
};
|
|
|
|
Wiegand* oWiegand = new Wiegand();
|
|
|
|
volatile uint64_t Wiegand::rfidBuffer;
|
|
volatile uint16_t Wiegand::bitCount;
|
|
volatile uint32_t Wiegand::lastFoundTime;
|
|
// fix for #11047
|
|
volatile uint32_t Wiegand::bitTime;
|
|
volatile uint32_t Wiegand::FirstBitTimeStamp;
|
|
volatile uint32_t Wiegand::CodeGapTime;
|
|
volatile bool Wiegand::CodeComplete;
|
|
volatile RFID_store Wiegand::rfid_found[WIEGAND_RFID_ARRAY_SIZE];
|
|
volatile int Wiegand::currentFoundRFIDcount;
|
|
|
|
void IRAM_ATTR Wiegand::ClearRFIDBuffer(int endIndex = WIEGAND_RFID_ARRAY_SIZE) {
|
|
currentFoundRFIDcount = WIEGAND_RFID_ARRAY_SIZE - endIndex; // clear all buffers
|
|
for (uint32_t i = 0; i < endIndex; i++) {
|
|
rfid_found[i].RFID=0;
|
|
rfid_found[i].bitCount=0;
|
|
}
|
|
}
|
|
|
|
void IRAM_ATTR Wiegand::handleD1Interrupt() { // Receive a 1 bit. (D0=high & D1=low)
|
|
handleDxInterrupt(1);
|
|
}
|
|
|
|
void IRAM_ATTR Wiegand::handleD0Interrupt() { // Receive a 0 bit. (D0=low & D1=high)
|
|
handleDxInterrupt(0);
|
|
}
|
|
|
|
void IRAM_ATTR Wiegand::handleDxInterrupt(int in) {
|
|
uint32_t curTime = micros(); // to be sure I will use micros() instead of millis() overflow is handle by using the minus operator to compare
|
|
uint32_t diffTime = curTime - lastFoundTime;
|
|
if ((diffTime > CodeGapTime) && (bitCount > 0)) {
|
|
// previous RFID tag (key pad numer)is complete. Will be detected by the code ending gap
|
|
// one bit will take the time of impulse_time + impulse_gap_time. it (bitTime) will be recalculated each time an impulse is detected
|
|
// the devices will add some inter_code_gap_time to separate codes this will be much longer than the bit_time. (WIEGAND_CODE_GAP_FACTOR)
|
|
// unfortunately there's no timing defined for Wiegand. On my test reader the impulse time = 125 µs impulse gap time = 950 µs.
|
|
if (currentFoundRFIDcount < WIEGAND_RFID_ARRAY_SIZE) { // when reaching the end of rfid buffer we will overwrite the last one.
|
|
currentFoundRFIDcount++;
|
|
}
|
|
// start a new tag
|
|
rfidBuffer = 0;
|
|
bitCount = 0;
|
|
FirstBitTimeStamp = 0;
|
|
}
|
|
|
|
if (in == 0) { rfidBuffer = rfidBuffer << 1; } // Receive a 0 bit. (D0=low & D1=high): Leftshift the 0 bit is now at the end of rfidBuffer
|
|
else if (in == 1) {rfidBuffer = (rfidBuffer << 1) | 1; } // Receive a 1 bit. (D0=high & D1=low): Leftshift + 1 bit
|
|
else { return; } // (in==3) called by ScanForTag to get the last tag, because the interrupt handler is no longer called after receiving the last bit
|
|
|
|
bitCount++;
|
|
if (bitCount == 1) { // first bit was detected
|
|
FirstBitTimeStamp = (curTime != 0) ? curTime : 1; // accept 1µs differenct to avoid a miss the first timestamp if curTime is 0.
|
|
}
|
|
else if (bitCount == 2) { // only calculate once per RFID tag, but restrict to values, which are in within a plausible range
|
|
bitTime = ((diffTime > (WIEGAND_BIT_TIME_DEFAULT / 4)) && (diffTime < (4 * WIEGAND_BIT_TIME_DEFAULT))) ? diffTime : WIEGAND_BIT_TIME_DEFAULT;
|
|
CodeGapTime = WIEGAND_CODE_GAP_FACTOR * bitTime;
|
|
}
|
|
//save current rfid in array otherwise we will never see the last found tag
|
|
rfid_found[currentFoundRFIDcount].RFID=rfidBuffer;
|
|
rfid_found[currentFoundRFIDcount].bitCount= bitCount;
|
|
lastFoundTime = curTime; // Last time a bit was detected
|
|
}
|
|
|
|
Wiegand::Wiegand() {
|
|
rfid = 0;
|
|
lastFoundTime = 0;
|
|
tagSize = 0;
|
|
rfidBuffer = 0;
|
|
bitCount = 0 ;
|
|
isInit = false;
|
|
// fix #11047
|
|
bitTime = WIEGAND_BIT_TIME_DEFAULT;
|
|
FirstBitTimeStamp = 0;
|
|
CodeGapTime = WIEGAND_CODE_GAP_FACTOR * bitTime;
|
|
CodeComplete = false;
|
|
ClearRFIDBuffer();
|
|
outFormat="u"; // standard output format decimal
|
|
mqttRFIDKeypadBuffer = 0;
|
|
webRFIDKeypadBuffer = 0;
|
|
}
|
|
|
|
void Wiegand::Init() {
|
|
isInit = false;
|
|
if (PinUsed(GPIO_WIEGAND_D0) && PinUsed(GPIO_WIEGAND_D1)) { // Only start, if the Wiegang pins are selected
|
|
#if (DEV_WIEGAND_TEST_MODE)>0
|
|
AddLog(LOG_LEVEL_INFO, PSTR("WIE: Init()"));
|
|
#endif // DEV_WIEGAND_TEST_MODE>0
|
|
pinMode(Pin(GPIO_WIEGAND_D0), INPUT_PULLUP);
|
|
pinMode(Pin(GPIO_WIEGAND_D1), INPUT_PULLUP);
|
|
#if (DEV_WIEGAND_TEST_MODE==1) // overwrite the setting
|
|
pinMode(Pin(GPIO_WIEGAND_D0), OUTPUT);
|
|
pinMode(Pin(GPIO_WIEGAND_D1), OUTPUT);
|
|
#endif //(DEV_WIEGAND_TEST_MODE==1)
|
|
attachInterrupt(Pin(GPIO_WIEGAND_D0), handleD0Interrupt, FALLING);
|
|
attachInterrupt(Pin(GPIO_WIEGAND_D1), handleD1Interrupt, FALLING);
|
|
isInit = true; // Helps to run only if correctly setup
|
|
#if (DEV_WIEGAND_TEST_MODE)>0
|
|
AddLog(LOG_LEVEL_INFO, PSTR("WIE: Testmode, D0:%u, D1:%u"), Pin(GPIO_WIEGAND_D0), Pin(GPIO_WIEGAND_D1)); // For tests without reader attaiched
|
|
#else
|
|
AddLog(LOG_LEVEL_INFO, PSTR("WIE: Wiegand Rfid Reader detected"));
|
|
#endif // DEV_WIEGAND_TEST_MODE>0
|
|
}
|
|
#if (DEV_WIEGAND_TEST_MODE)>0
|
|
else {
|
|
AddLog(LOG_LEVEL_INFO, PSTR("WIE: no GPIOs."));
|
|
}
|
|
#endif // DEV_WIEGAND_TEST_MODE>0
|
|
}
|
|
|
|
uint32_t Wiegand::CheckAndConvertRfid(uint64_t rfidIn, uint16_t bitCount) {
|
|
uint8_t evenParityBit = 0;
|
|
uint8_t oddParityBit = (uint8_t) (rfidIn & 0x1); // Last bit = odd parity
|
|
uint8_t calcParity = 0;
|
|
switch (bitCount) {
|
|
case 24:
|
|
evenParityBit = (rfidIn & 0x800000) ? 0x80 : 0;
|
|
rfidIn = (rfidIn & 0x7FFFFE) >>1;
|
|
break;
|
|
|
|
case 26:
|
|
evenParityBit = (rfidIn & 0x2000000) ? 0x80 : 0;
|
|
rfidIn = (rfidIn & 0x1FFFFFE) >>1;
|
|
break;
|
|
|
|
case 32:
|
|
evenParityBit = (rfidIn & 0x80000000) ? 0x80 : 0;
|
|
rfidIn = (rfidIn & 0x7FFFFFFE) >>1;
|
|
break;
|
|
|
|
case 34:
|
|
evenParityBit = (rfidIn & 0x200000000) ? 0x80 : 0;
|
|
rfidIn = (rfidIn & 0x1FFFFFFFE) >>1;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
calcParity = CalculateParities(rfidIn, bitCount); // Check result on http://www.ccdesignworks.com/wiegand_calc.htm with raw tag as input
|
|
if (calcParity != (evenParityBit | oddParityBit)) { // Parity bit is wrong
|
|
AddLog(LOG_LEVEL_DEBUG, PSTR("WIE: %_X parity error"), &rfidIn); // Print up to uint64_t
|
|
rfidIn=0;
|
|
}
|
|
#if (DEV_WIEGAND_TEST_MODE)>0
|
|
AddLog(LOG_LEVEL_INFO, PSTR("WIE: even (left) parity: %u "), (evenParityBit>>7));
|
|
AddLog(LOG_LEVEL_INFO, PSTR("WIE: even (calc) parity: %u "), (calcParity & 0x80)>>7);
|
|
AddLog(LOG_LEVEL_INFO, PSTR("WIE: odd (right) parity: %u "), oddParityBit);
|
|
AddLog(LOG_LEVEL_INFO, PSTR("WIE: odd (calc) parity: %u "), (calcParity & 0x01));
|
|
#endif // DEV_WIEGAND_TEST_MODE>0
|
|
return (uint32_t)rfidIn;
|
|
}
|
|
|
|
uint8_t Wiegand::CalculateParities(uint64_t tagWithoutParities, int tag_size = 26) {
|
|
// tag_size is the size of the final tag including the 2 parity bits
|
|
// So length if the tagWithoutParities should be (tag_size-2) !! That will be not profed and
|
|
// lead to wrong results if the input value is larger!
|
|
// Calculated start parity (even) will be returned as bit 8
|
|
// calculated end parity (odd) will be returned as bit 1
|
|
uint8_t retValue=0;
|
|
tag_size -= 2;
|
|
if (tag_size <= 0) { return retValue; } // Prohibit div zero exception and other wrong inputs
|
|
uint8_t parity = 1; // Check for odd parity on LSB
|
|
for (uint32_t i = 0; i < (tag_size / 2); i++) {
|
|
parity ^= (tagWithoutParities & 1);
|
|
tagWithoutParities >>= 1;
|
|
}
|
|
retValue |= parity;
|
|
|
|
parity = 0; // Check for even parity on MSB
|
|
while (tagWithoutParities) {
|
|
parity ^= (tagWithoutParities & 1);
|
|
tagWithoutParities >>= 1;
|
|
}
|
|
retValue |= (parity << 7);
|
|
|
|
return retValue;
|
|
}
|
|
|
|
bool Wiegand::WiegandConversion (uint64_t rfidBuffer, uint16_t bitCount) {
|
|
bool bRet = false;
|
|
#if (DEV_WIEGAND_TEST_MODE)>0
|
|
AddLog(LOG_LEVEL_INFO, PSTR("WIE: Raw tag %_X, Bit count %u"), &rfidBuffer, bitCount); // Print up to uint64_t
|
|
#endif // DEV_WIEGAND_TEST_MODE>0
|
|
if ((24 == bitCount) || (26 == bitCount) || (32 == bitCount) || (34 == bitCount)) {
|
|
// 24, 26, 32, 34-bit Wiegand codes
|
|
rfid = CheckAndConvertRfid(rfidBuffer, bitCount);
|
|
tagSize = bitCount;
|
|
bRet = true;
|
|
}
|
|
else if (4 == bitCount) {
|
|
// 4-bit Wiegand codes for keypads
|
|
rfid = (uint32_t)(rfidBuffer & 0x0000000F);
|
|
tagSize = bitCount;
|
|
bRet = true;
|
|
}
|
|
else if (8 == bitCount) {
|
|
// 8-bit Wiegand codes for keypads with integrity
|
|
// 8-bit Wiegand keyboard data, high nibble is the "NOT" of low nibble
|
|
// eg if key 1 pressed, data=E1 in binary 11100001 , high nibble=1110 , low nibble = 0001
|
|
char highNibble = (rfidBuffer & 0xf0) >>4;
|
|
char lowNibble = (rfidBuffer & 0x0f);
|
|
if (lowNibble == (~highNibble & 0x0f)) { // Check if low nibble matches the "NOT" of high nibble.
|
|
rfid = (uint32_t)(lowNibble);
|
|
bRet = true;
|
|
} else {
|
|
bRet = false;
|
|
}
|
|
tagSize = bitCount;
|
|
} else {
|
|
// Time reached but unknown bitCount, clear and start again
|
|
tagSize = 0;
|
|
bRet = false;
|
|
}
|
|
#if (DEV_WIEGAND_TEST_MODE)>0
|
|
AddLog(LOG_LEVEL_INFO, PSTR("WIE: Tag out %u, tag size %u "), rfid, tagSize);
|
|
#endif // DEV_WIEGAND_TEST_MODE>0
|
|
return bRet;
|
|
}
|
|
|
|
void Wiegand::HandleKeyPad(void) { // will be called if a valid key pad input was recognized
|
|
if (GetOption(WIEGAND_OPTION_KEYPAD_TO_TAG) == 0) { // handle all key pad inputs as ONE Tag until # is recognized
|
|
if ((tagSize == 4) || (tagSize == 8)) {
|
|
//only handle Keypad strokes if it is requested
|
|
if (rfid >= 0x0a) { // # * as end of input detected -> all key values which are larger than 9
|
|
rfid = mqttRFIDKeypadBuffer; // original tagsize of 4 or 8 will be kept.
|
|
webRFIDKeypadBuffer = 0; // can be resetted, because now rfid > 0 will be used at web interface
|
|
mqttRFIDKeypadBuffer = 0;
|
|
}
|
|
else {
|
|
mqttRFIDKeypadBuffer = (mqttRFIDKeypadBuffer * 10) + rfid; //left shift + new key
|
|
webRFIDKeypadBuffer = mqttRFIDKeypadBuffer; // visualising the current typed keys
|
|
rfid = 0;
|
|
tagSize = 0;
|
|
}
|
|
}
|
|
else { //it's not a key pad entry, so another key come in, we will reset the buffer, if it is not finished yet
|
|
webRFIDKeypadBuffer = 0;
|
|
mqttRFIDKeypadBuffer = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Wiegand::ScanForTag() {
|
|
uint32_t startTime = micros();
|
|
handleDxInterrupt(3);
|
|
if (currentFoundRFIDcount > 0) {
|
|
uint32_t lastFoundRFIDcount = currentFoundRFIDcount;
|
|
#if (DEV_WIEGAND_TEST_MODE)>0
|
|
AddLog(LOG_LEVEL_INFO, PSTR("WIE: ScanForTag(). bitTime: %u lastFoundTime: %u RFIDS in buffer: %u"), bitTime, lastFoundTime, currentFoundRFIDcount);
|
|
#endif
|
|
for (uint32_t i = 0; i < WIEGAND_RFID_ARRAY_SIZE; i++) {
|
|
if (rfid_found[i].RFID != 0 || (rfid_found[i].RFID == 0 && i == 0)) {
|
|
uint32_t oldTag = rfid;
|
|
bool validKey = WiegandConversion(rfid_found[i].RFID, rfid_found[i].bitCount);
|
|
#if (DEV_WIEGAND_TEST_MODE)>0
|
|
AddLog(LOG_LEVEL_INFO, PSTR("WIE: ValidKey %d, Previous tag %u"), validKey, oldTag);
|
|
#endif // DEV_WIEGAND_TEST_MODE>0
|
|
if (validKey) { // Only in case of valid key do action. Issue#10585
|
|
HandleKeyPad(); //support one tag for multi key input
|
|
if (tagSize > 0) { //do output only for rfids which are complete
|
|
if (oldTag == rfid) {
|
|
AddLog(LOG_LEVEL_DEBUG, PSTR("WIE: Old tag"));
|
|
}
|
|
ResponseTime_P(PSTR(",\"Wiegand\":{\"UID\":"));
|
|
if (GetOption(WIEGAND_OPTION_HEX) == 0) {
|
|
ResponseAppend_P(PSTR("%u"), rfid);
|
|
} else {
|
|
ResponseAppend_P(PSTR("\"%X" WIEGAND_OPTION_HEX_POSTFIX "\""), rfid);
|
|
}
|
|
ResponseAppend_P(PSTR(",\"" D_JSON_SIZE "\":%d}}"), tagSize);
|
|
MqttPublishTeleSensor();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (currentFoundRFIDcount > lastFoundRFIDcount) {
|
|
// if that happens: we need to move the id found during the loop to top of the array
|
|
// and correct the currentFoundRFIDcount
|
|
AddLog(LOG_LEVEL_INFO, PSTR("WIE: ScanForTag() %u tags added while working on buffer"), (currentFoundRFIDcount - lastFoundRFIDcount));
|
|
}
|
|
ClearRFIDBuffer(); //reset array
|
|
#if (DEV_WIEGAND_TEST_MODE)>0
|
|
AddLog(LOG_LEVEL_INFO, PSTR("WIE: ScanForTag() time elapsed %u"), (micros() - startTime));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#ifdef USE_WEBSERVER
|
|
void Wiegand::Show(void) {
|
|
WSContentSend_P(PSTR("{s}Wiegand UID{m}"));
|
|
if (GetOption(WIEGAND_OPTION_HEX) == 0) {
|
|
WSContentSend_P(PSTR("%u"), (tagSize > 0) ? rfid : webRFIDKeypadBuffer);
|
|
} else {
|
|
WSContentSend_P(PSTR("%X" WIEGAND_OPTION_HEX_POSTFIX), (tagSize > 0) ? rfid : webRFIDKeypadBuffer);
|
|
}
|
|
WSContentSend_P(PSTR("{e}"));
|
|
|
|
|
|
#if (DEV_WIEGAND_TEST_MODE)>0
|
|
AddLog(LOG_LEVEL_INFO, PSTR("WIE: Tag %u, Bits %u"), rfid, bitCount);
|
|
#endif // DEV_WIEGAND_TEST_MODE>0
|
|
}
|
|
#endif // USE_WEBSERVER
|
|
|
|
#if (DEV_WIEGAND_TEST_MODE==1)
|
|
void CmndTag(void);
|
|
void CmndTagSize(void);
|
|
void CmndTagGap(void);
|
|
void CmndTimeReset(void);
|
|
void CmndAllReset(void);
|
|
void CmndSend(void);
|
|
void CmndBitTime(void);
|
|
void CmndInterBitTime(void);
|
|
unsigned int setTagSize( char *);
|
|
unsigned int setTag ( char * );
|
|
void sendBit(unsigned int b);
|
|
void sendTag(uint32_t Tag, uint32_t TagSize);
|
|
|
|
uint32_t currTag = 0;
|
|
uint32_t currTagSize = 26; //default value 26 Wiegand
|
|
uint32_t currBitTime=(WIEGAND_BIT_TIME_DEFAULT/10); //length of the bit impluse in µs
|
|
uint32_t currInterBitTime = ((WIEGAND_BIT_TIME_DEFAULT/10)*9); //time to wait before next bit is send in µs
|
|
uint32_t currTagGabTime = (WIEGAND_BIT_TIME_DEFAULT * WIEGAND_CODE_GAP_FACTOR) ; //time to wait before next tag is send in µs
|
|
|
|
|
|
void CmndTag(void){
|
|
if (XdrvMailbox.data_len > 0) {
|
|
currTag= strtoul(XdrvMailbox.data, nullptr, 0);
|
|
}
|
|
ResponseCmndNumber(currTag);
|
|
}
|
|
void CmndTagSize(void){
|
|
if (XdrvMailbox.data_len > 0) {
|
|
currTagSize = setTagSize(XdrvMailbox.data);
|
|
}
|
|
ResponseCmndNumber(currTagSize);
|
|
}
|
|
void CmndTagGap(void){
|
|
if (XdrvMailbox.data_len > 0) {
|
|
currTagGabTime = strtoul(XdrvMailbox.data, nullptr, 0);
|
|
if (currTagGabTime < (currBitTime+currInterBitTime) ) // doesn't make sense
|
|
{ currTagGabTime = (currBitTime+currInterBitTime) * WIEGAND_CODE_GAP_FACTOR; }
|
|
}
|
|
ResponseCmndNumber(currTagGabTime);
|
|
}
|
|
void CmndBitTime(void){
|
|
if (XdrvMailbox.data_len > 0) {
|
|
uint32_t newBitTime = strtoul(XdrvMailbox.data, nullptr, 0);
|
|
if ( (newBitTime >= 100) && (newBitTime <= 500000) ) // accept only values between 100µs and 5s
|
|
{ currBitTime = newBitTime; }
|
|
}
|
|
ResponseCmndNumber(currBitTime);
|
|
}
|
|
void CmndInterBitTime(void){
|
|
if (XdrvMailbox.data_len > 0) {
|
|
uint32_t newInterBitTime = strtoul(XdrvMailbox.data, nullptr, 0);
|
|
if ( (newInterBitTime >= currBitTime) && (newInterBitTime <= (100 * currBitTime)) ) // accept only values between 100µs and 5s
|
|
{ currInterBitTime = newInterBitTime; }
|
|
}
|
|
ResponseCmndNumber(currInterBitTime);
|
|
}
|
|
void CmndTimeReset(void){
|
|
currBitTime=(WIEGAND_BIT_TIME_DEFAULT/10);
|
|
currInterBitTime = ((WIEGAND_BIT_TIME_DEFAULT/10)*9);
|
|
currTagGabTime = (WIEGAND_BIT_TIME_DEFAULT * WIEGAND_CODE_GAP_FACTOR) ;
|
|
ResponseCmndChar_P(PSTR("All timings reset to default!"));
|
|
}
|
|
void CmndAllReset(void){
|
|
CmndTimeReset();
|
|
currTagSize = 26;
|
|
ResponseCmndChar_P(PSTR("All timings and tag size reset to default"));
|
|
}
|
|
void CmndSend(void){
|
|
if (XdrvMailbox.data_len > 0) { // parameter [tag[:tagsize];tag[:tagsize];...]
|
|
char *parameter = strtok(XdrvMailbox.data, ";");
|
|
while (parameter != nullptr) {
|
|
char* pTagSize = strchr(parameter,':'); // find optional tagsizes
|
|
if (pTagSize != 0) { // 2 parameters found tag:tagsize
|
|
*pTagSize = 0; //replace separator ':' by \0 string end
|
|
currTag = setTag(parameter); // is now ending before tagsize
|
|
pTagSize++; //set the starting char of tagsize correctly
|
|
currTagSize = setTagSize(pTagSize);
|
|
ResponseCmndChar(pTagSize);
|
|
}
|
|
else {//only one parameter (tag) found
|
|
currTag = setTag(parameter);
|
|
}
|
|
ResponseCmndChar(parameter);
|
|
sendTag(currTag, currTagSize);
|
|
ResponseCmndNumber(currTag);
|
|
parameter = strtok(nullptr, ";");
|
|
}
|
|
}
|
|
else { // send last used values again
|
|
sendTag(currTag, currTagSize);
|
|
ResponseCmndNumber(currTag);
|
|
}
|
|
}
|
|
unsigned int setTag ( char * newTag) {
|
|
unsigned int retValue = strtoul(newTag, nullptr, 0);
|
|
if ( (currTagSize == 4) || (currTagSize == 8) ) //key pad input simulation requested
|
|
{ retValue &= 0x0F; }
|
|
return retValue;
|
|
}
|
|
unsigned int setTagSize ( char * newTagSize) {
|
|
unsigned int retValue = strtoul(newTagSize, nullptr, 0);
|
|
// accept only supported TagSize
|
|
if ( retValue <= 4) { retValue = 4;}
|
|
else if ( retValue <= 8) { retValue = 8;}
|
|
else if ( retValue <= 24) { retValue = 24;}
|
|
else if ( retValue <= 26) { retValue = 26;}
|
|
else if ( retValue <= 32) { retValue = 32;}
|
|
else if ( retValue <= 34) { retValue = 34;}
|
|
else { retValue = 26;} //default value
|
|
return retValue;
|
|
}
|
|
void sendBit(unsigned int b) {
|
|
int sel = (b == 0) ? Pin(GPIO_WIEGAND_D0) : Pin(GPIO_WIEGAND_D1);
|
|
digitalWrite(sel, 0);
|
|
delayMicroseconds(currBitTime); // bit impuls time
|
|
digitalWrite(sel, 1);
|
|
delayMicroseconds(currBitTime+currInterBitTime); // bit + inter bit gap time
|
|
}
|
|
void sendPlainTag( uint32_t pTag, uint32_t pTagSize){ // send tag without parity
|
|
for (int i=1; i<=pTagSize; ++i)
|
|
{
|
|
sendBit((pTag >> (pTagSize-i)) & 1);
|
|
}
|
|
}
|
|
void sendTag(uint32_t Tag, uint32_t TagSize) {
|
|
// TagSize is the requested output tagSize. means b.e. 24 bit == 24 Tag without parity 26 bit = 24 bit with parity bits
|
|
// supported tag sizes 4/8 for key pad simulation 24/26 and 32/34 for RFID tags
|
|
switch (TagSize){
|
|
case 24:
|
|
case 32:
|
|
case 4:
|
|
sendPlainTag( Tag, TagSize);
|
|
break;
|
|
case 26:
|
|
case 34:
|
|
uint8_t parity;
|
|
parity = oWiegand->CalculateParities(Tag, TagSize);
|
|
sendBit(parity & 0x01); //even parity (starting parity)
|
|
sendPlainTag( Tag, TagSize-2);
|
|
sendBit(parity & 0x80); //odd parity (ending parity)
|
|
break;
|
|
case 8: // high nibble is ~ low nibble
|
|
Tag = Tag & 0x0F; // low nibble in case of more the one char input it will be cut here
|
|
Tag = Tag | ((~Tag) << 4);
|
|
sendPlainTag ( Tag, TagSize);
|
|
break;
|
|
}
|
|
//delay to simulate end of tag
|
|
delayMicroseconds(currTagGabTime); // inter code gap
|
|
return;
|
|
}
|
|
const char kWiegandCommands[] PROGMEM = "Wie|" // No prefix
|
|
"Tag|"
|
|
"TagSize|"
|
|
"TagGap|"
|
|
"BitTime|"
|
|
"InterBitTime|"
|
|
"TimeReset|"
|
|
"AllReset|"
|
|
"Send";
|
|
|
|
void (* const WiegandCommand[])(void) PROGMEM = {
|
|
&CmndTag,
|
|
&CmndTagSize,
|
|
&CmndTagGap,
|
|
&CmndBitTime,
|
|
&CmndInterBitTime,
|
|
&CmndTimeReset,
|
|
&CmndAllReset,
|
|
&CmndSend
|
|
};
|
|
#endif //(DEV_WIEGAND_TEST_MODE==1)
|
|
/*********************************************************************************************\
|
|
* Interface
|
|
\*********************************************************************************************/
|
|
|
|
bool Xsns82(uint32_t function) {
|
|
bool result = false;
|
|
|
|
if (FUNC_INIT == function) {
|
|
oWiegand->Init();
|
|
}
|
|
else if (oWiegand->isInit) {
|
|
switch (function) {
|
|
case FUNC_EVERY_100_MSECOND: // fix for #11047 Wiegand 26/34 missed some key press
|
|
oWiegand->ScanForTag();
|
|
break;
|
|
#ifdef USE_WEBSERVER
|
|
case FUNC_WEB_SENSOR:
|
|
oWiegand->Show();
|
|
break;
|
|
#endif // USE_WEBSERVER
|
|
#if (DEV_WIEGAND_TEST_MODE==1)
|
|
case FUNC_COMMAND:
|
|
result = DecodeCommand(kWiegandCommands, WiegandCommand);
|
|
break;
|
|
#endif //(DEV_WIEGAND_TEST_MODE==1)
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#endif // USE_WIEGAND
|