mirror of https://github.com/arendst/Tasmota.git
443 lines
15 KiB
C++
443 lines
15 KiB
C++
/*
|
|
xdrv_23_zigbee.ino - zigbee support for Sonoff-Tasmota
|
|
|
|
Copyright (C) 2019 Theo Arends and Stephan Hadinger
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifdef USE_ZIGBEE
|
|
|
|
#include <vector>
|
|
#include <map>
|
|
|
|
typedef struct Z_Device {
|
|
uint16_t shortaddr; // unique key if not null, or unspecified if null
|
|
uint64_t longaddr; // 0x00 means unspecified
|
|
uint32_t firstSeen; // date when the device was first seen
|
|
uint32_t lastSeen; // date when the device was last seen
|
|
String manufacturerId;
|
|
String modelId;
|
|
String friendlyName;
|
|
std::vector<uint32_t> endpoints; // encoded as high 16 bits is endpoint, low 16 bits is ProfileId
|
|
std::vector<uint32_t> clusters_in; // encoded as high 16 bits is endpoint, low 16 bits is cluster number
|
|
std::vector<uint32_t> clusters_out; // encoded as high 16 bits is endpoint, low 16 bits is cluster number
|
|
} Z_Device;
|
|
|
|
// All devices are stored in a Vector
|
|
// Invariants:
|
|
// - shortaddr is unique if not null
|
|
// - longaddr is unique if not null
|
|
// - shortaddr and longaddr cannot be both null
|
|
// - clusters_in and clusters_out containt only endpoints listed in endpoints
|
|
class Z_Devices {
|
|
public:
|
|
Z_Devices() {};
|
|
|
|
// Add new device, provide ShortAddr and optional longAddr
|
|
// If it is already registered, update information, otherwise create the entry
|
|
void updateDevice(uint16_t shortaddr, uint64_t longaddr = 0);
|
|
|
|
// Add an endpoint to a device
|
|
void addEndoint(uint16_t shortaddr, uint8_t endpoint);
|
|
|
|
// Add endpoint profile
|
|
void addEndointProfile(uint16_t shortaddr, uint8_t endpoint, uint16_t profileId);
|
|
|
|
// Add cluster
|
|
void addCluster(uint16_t shortaddr, uint8_t endpoint, uint16_t cluster, bool out);
|
|
|
|
uint8_t findClusterEndpointIn(uint16_t shortaddr, uint16_t cluster);
|
|
|
|
void setManufId(uint16_t shortaddr, const char * str);
|
|
void setModelId(uint16_t shortaddr, const char * str);
|
|
void setFriendlyNameId(uint16_t shortaddr, const char * str);
|
|
|
|
// device just seen on the network, update the lastSeen field
|
|
void updateLastSeen(uint16_t shortaddr);
|
|
|
|
// Dump json
|
|
String dump(uint8_t dump_mode) const;
|
|
|
|
private:
|
|
std::vector<Z_Device> _devices = {};
|
|
|
|
template < typename T>
|
|
static bool findInVector(const std::vector<T> & vecOfElements, const T & element);
|
|
|
|
template < typename T>
|
|
static int32_t findEndpointInVector(const std::vector<T> & vecOfElements, const T & element);
|
|
|
|
// find the first endpoint match for a cluster
|
|
static int32_t findClusterEndpoint(const std::vector<uint32_t> & vecOfElements, uint16_t element);
|
|
|
|
Z_Device & getShortAddr(uint16_t shortaddr); // find Device from shortAddr, creates it if does not exist
|
|
Z_Device & getLongAddr(uint64_t longaddr); // find Device from shortAddr, creates it if does not exist
|
|
|
|
int32_t findShortAddr(uint16_t shortaddr);
|
|
int32_t findLongAddr(uint64_t longaddr);
|
|
|
|
void _updateLastSeen(Z_Device &device) {
|
|
if (&device != nullptr) {
|
|
device.lastSeen = Rtc.utc_time;
|
|
}
|
|
};
|
|
|
|
// Create a new entry in the devices list - must be called if it is sure it does not already exist
|
|
Z_Device & createDeviceEntry(uint16_t shortaddr, uint64_t longaddr = 0);
|
|
};
|
|
|
|
Z_Devices zigbee_devices = Z_Devices();
|
|
|
|
// https://thispointer.com/c-how-to-find-an-element-in-vector-and-get-its-index/
|
|
template < typename T>
|
|
bool Z_Devices::findInVector(const std::vector<T> & vecOfElements, const T & element) {
|
|
// Find given element in vector
|
|
auto it = std::find(vecOfElements.begin(), vecOfElements.end(), element);
|
|
|
|
if (it != vecOfElements.end()) {
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
template < typename T>
|
|
int32_t Z_Devices::findEndpointInVector(const std::vector<T> & vecOfElements, const T & element) {
|
|
// Find given element in vector
|
|
|
|
int32_t found = 0;
|
|
for (auto &elem : vecOfElements) {
|
|
if ((elem >> 16) & 0xFF == element) { return found; }
|
|
found++;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
//
|
|
// Find the first endpoint match for a cluster, whether in or out
|
|
// Clusters are stored in the format 0x00EECCCC (EE=endpoint, CCCC=cluster number)
|
|
// In:
|
|
// _devices.clusters_in or _devices.clusters_out
|
|
// cluster number looked for
|
|
// Out:
|
|
// Index of found Endpoint_Cluster number, or -1 if not found
|
|
//
|
|
int32_t Z_Devices::findClusterEndpoint(const std::vector<uint32_t> & vecOfElements, uint16_t cluster) {
|
|
int32_t found = 0;
|
|
for (auto &elem : vecOfElements) {
|
|
if ((elem & 0xFFFF) == cluster) { return found; }
|
|
found++;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
//
|
|
// Create a new Z_Device entry in _devices. Only to be called if you are sure that no
|
|
// entry with same shortaddr or longaddr exists.
|
|
//
|
|
Z_Device & Z_Devices::createDeviceEntry(uint16_t shortaddr, uint64_t longaddr) {
|
|
if (!shortaddr && !longaddr) { return *(Z_Device*) nullptr; } // it is not legal to create an enrty with both short/long addr null
|
|
Z_Device device = { shortaddr, longaddr,
|
|
Rtc.utc_time, Rtc.utc_time,
|
|
String(), // ManufId
|
|
String(), // DeviceId
|
|
String(), // FriendlyName
|
|
std::vector<uint32_t>(),
|
|
std::vector<uint32_t>(),
|
|
std::vector<uint32_t>() };
|
|
_devices.push_back(device);
|
|
return _devices.back();
|
|
}
|
|
|
|
//
|
|
// Scan all devices to find a corresponding shortaddr
|
|
// Looks info device.shortaddr entry
|
|
// In:
|
|
// shortaddr (non null)
|
|
// Out:
|
|
// index in _devices of entry, -1 if not found
|
|
//
|
|
int32_t Z_Devices::findShortAddr(uint16_t shortaddr) {
|
|
if (!shortaddr) { return -1; } // does not make sense to look for 0x0000 shortaddr (localhost)
|
|
int32_t found = 0;
|
|
if (shortaddr) {
|
|
for (auto &elem : _devices) {
|
|
if (elem.shortaddr == shortaddr) { return found; }
|
|
found++;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
//
|
|
// Scan all devices to find a corresponding longaddr
|
|
// Looks info device.longaddr entry
|
|
// In:
|
|
// longaddr (non null)
|
|
// Out:
|
|
// index in _devices of entry, -1 if not found
|
|
//
|
|
int32_t Z_Devices::findLongAddr(uint64_t longaddr) {
|
|
if (!longaddr) { return -1; }
|
|
int32_t found = 0;
|
|
if (longaddr) {
|
|
for (auto &elem : _devices) {
|
|
if (elem.longaddr == longaddr) { return found; }
|
|
found++;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
//
|
|
// We have a seen a shortaddr on the network, get the corresponding
|
|
//
|
|
Z_Device & Z_Devices::getShortAddr(uint16_t shortaddr) {
|
|
if (!shortaddr) { return *(Z_Device*) nullptr; } // this is not legal
|
|
int32_t found = findShortAddr(shortaddr);
|
|
if (found >= 0) {
|
|
return _devices[found];
|
|
}
|
|
//Serial.printf("Device entry created for shortaddr = 0x%02X, found = %d\n", shortaddr, found);
|
|
return createDeviceEntry(shortaddr, 0);
|
|
}
|
|
|
|
// find the Device object by its longaddr (unique key if not null)
|
|
Z_Device & Z_Devices::getLongAddr(uint64_t longaddr) {
|
|
if (!longaddr) { return *(Z_Device*) nullptr; }
|
|
int32_t found = findLongAddr(longaddr);
|
|
if (found > 0) {
|
|
return _devices[found];
|
|
}
|
|
return createDeviceEntry(0, longaddr);
|
|
}
|
|
|
|
//
|
|
// We have just seen a device on the network, update the info based on short/long addr
|
|
// In:
|
|
// shortaddr
|
|
// longaddr (both can't be null at the same time)
|
|
void Z_Devices::updateDevice(uint16_t shortaddr, uint64_t longaddr) {
|
|
int32_t s_found = findShortAddr(shortaddr); // is there already a shortaddr entry
|
|
int32_t l_found = findLongAddr(longaddr); // is there already a longaddr entry
|
|
|
|
if ((s_found >= 0) && (l_found >= 0)) { // both shortaddr and longaddr are already registered
|
|
if (s_found == l_found) {
|
|
updateLastSeen(shortaddr); // short/long addr match, all good
|
|
} else { // they don't match
|
|
// the device with longaddr got a new shortaddr
|
|
_devices[l_found].shortaddr = shortaddr; // update the shortaddr corresponding to the longaddr
|
|
// erase the previous shortaddr
|
|
_devices.erase(_devices.begin() + s_found);
|
|
updateLastSeen(shortaddr);
|
|
}
|
|
} else if (s_found >= 0) {
|
|
// shortaddr already exists but longaddr not
|
|
// add the longaddr to the entry
|
|
_devices[s_found].longaddr = longaddr;
|
|
updateLastSeen(shortaddr);
|
|
} else if (l_found >= 0) {
|
|
// longaddr entry exists, update shortaddr
|
|
_devices[l_found].shortaddr = shortaddr;
|
|
} else {
|
|
// neither short/lonf addr are found.
|
|
if (shortaddr || longaddr) {
|
|
createDeviceEntry(shortaddr, longaddr);
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// Add an endpoint to a shortaddr
|
|
//
|
|
void Z_Devices::addEndoint(uint16_t shortaddr, uint8_t endpoint) {
|
|
if (!shortaddr) { return; }
|
|
uint32_t ep_profile = (endpoint << 16);
|
|
Z_Device &device = getShortAddr(shortaddr);
|
|
if (&device == nullptr) { return; } // don't crash if not found
|
|
_updateLastSeen(device);
|
|
if (findEndpointInVector(device.endpoints, ep_profile) < 0) {
|
|
device.endpoints.push_back(ep_profile);
|
|
}
|
|
}
|
|
|
|
void Z_Devices::addEndointProfile(uint16_t shortaddr, uint8_t endpoint, uint16_t profileId) {
|
|
if (!shortaddr) { return; }
|
|
uint32_t ep_profile = (endpoint << 16) | profileId;
|
|
Z_Device &device = getShortAddr(shortaddr);
|
|
if (&device == nullptr) { return; } // don't crash if not found
|
|
_updateLastSeen(device);
|
|
int32_t found = findEndpointInVector(device.endpoints, ep_profile);
|
|
if (found < 0) {
|
|
device.endpoints.push_back(ep_profile);
|
|
} else {
|
|
device.endpoints[found] = ep_profile;
|
|
}
|
|
}
|
|
|
|
void Z_Devices::addCluster(uint16_t shortaddr, uint8_t endpoint, uint16_t cluster, bool out) {
|
|
if (!shortaddr) { return; }
|
|
Z_Device & device = getShortAddr(shortaddr);
|
|
if (&device == nullptr) { return; } // don't crash if not found
|
|
_updateLastSeen(device);
|
|
uint32_t ep_cluster = (endpoint << 16) | cluster;
|
|
if (!out) {
|
|
if (!findInVector(device.clusters_in, ep_cluster)) {
|
|
device.clusters_in.push_back(ep_cluster);
|
|
}
|
|
} else { // out
|
|
if (!findInVector(device.clusters_out, ep_cluster)) {
|
|
device.clusters_out.push_back(ep_cluster);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Look for the best endpoint match to send a command for a specific Cluster ID
|
|
// return 0x00 if none found
|
|
uint8_t Z_Devices::findClusterEndpointIn(uint16_t shortaddr, uint16_t cluster){
|
|
int32_t short_found = findShortAddr(shortaddr);
|
|
if (short_found < 0) return 0; // avoid creating an entry if the device was never seen
|
|
Z_Device &device = getShortAddr(shortaddr);
|
|
if (&device == nullptr) { return 0; } // don't crash if not found
|
|
int32_t found = findClusterEndpoint(device.clusters_in, cluster);
|
|
if (found >= 0) {
|
|
return (device.clusters_in[found] >> 16) & 0xFF;
|
|
} else {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
void Z_Devices::setManufId(uint16_t shortaddr, const char * str) {
|
|
Z_Device & device = getShortAddr(shortaddr);
|
|
if (&device == nullptr) { return; } // don't crash if not found
|
|
_updateLastSeen(device);
|
|
device.manufacturerId = str;
|
|
}
|
|
void Z_Devices::setModelId(uint16_t shortaddr, const char * str) {
|
|
Z_Device & device = getShortAddr(shortaddr);
|
|
if (&device == nullptr) { return; } // don't crash if not found
|
|
_updateLastSeen(device);
|
|
device.modelId = str;
|
|
}
|
|
void Z_Devices::setFriendlyNameId(uint16_t shortaddr, const char * str) {
|
|
Z_Device & device = getShortAddr(shortaddr);
|
|
if (&device == nullptr) { return; } // don't crash if not found
|
|
_updateLastSeen(device);
|
|
device.friendlyName = str;
|
|
}
|
|
|
|
// device just seen on the network, update the lastSeen field
|
|
void Z_Devices::updateLastSeen(uint16_t shortaddr) {
|
|
Z_Device & device = getShortAddr(shortaddr);
|
|
if (&device == nullptr) { return; } // don't crash if not found
|
|
_updateLastSeen(device);
|
|
}
|
|
|
|
// Dump the internal memory of Zigbee devices
|
|
// Mode = 1: simple dump of devices addresses and names
|
|
// Mode = 2: Mode 1 + also dump the endpoints, profiles and clusters
|
|
String Z_Devices::dump(uint8_t dump_mode) const {
|
|
DynamicJsonBuffer jsonBuffer;
|
|
JsonArray& json = jsonBuffer.createArray();
|
|
JsonArray& devices = json;
|
|
//JsonArray& devices = json.createNestedArray(F("ZigbeeDevices"));
|
|
|
|
for (std::vector<Z_Device>::const_iterator it = _devices.begin(); it != _devices.end(); ++it) {
|
|
const Z_Device& device = *it;
|
|
uint16_t shortaddr = device.shortaddr;
|
|
char hex[20];
|
|
|
|
JsonObject& dev = devices.createNestedObject();
|
|
|
|
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), shortaddr);
|
|
dev[F(D_JSON_ZIGBEE_DEVICE)] = hex;
|
|
|
|
if (device.friendlyName.length() > 0) {
|
|
dev[F(D_JSON_ZIGBEE_NAME)] = device.friendlyName;
|
|
}
|
|
|
|
if (1 == dump_mode) {
|
|
Uint64toHex(device.longaddr, hex, 64);
|
|
dev[F("IEEEAddr")] = hex;
|
|
if (device.modelId.length() > 0) {
|
|
dev[F(D_JSON_MODEL D_JSON_ID)] = device.modelId;
|
|
}
|
|
if (device.manufacturerId.length() > 0) {
|
|
dev[F("Manufacturer")] = device.manufacturerId;
|
|
}
|
|
}
|
|
|
|
// If dump_mode == 2, dump a lot more details
|
|
if (2 == dump_mode) {
|
|
JsonObject& dev_endpoints = dev.createNestedObject(F("Endpoints"));
|
|
for (std::vector<uint32_t>::const_iterator ite = device.endpoints.begin() ; ite != device.endpoints.end(); ++ite) {
|
|
uint32_t ep_profile = *ite;
|
|
uint8_t endpoint = (ep_profile >> 16) & 0xFF;
|
|
uint16_t profileId = ep_profile & 0xFFFF;
|
|
|
|
snprintf_P(hex, sizeof(hex), PSTR("0x%02X"), endpoint);
|
|
JsonObject& ep = dev_endpoints.createNestedObject(hex);
|
|
|
|
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), profileId);
|
|
ep[F("ProfileId")] = hex;
|
|
|
|
int32_t found = -1;
|
|
for (uint32_t i = 0; i < sizeof(Z_ProfileIds) / sizeof(Z_ProfileIds[0]); i++) {
|
|
if (pgm_read_word(&Z_ProfileIds[i]) == profileId) {
|
|
found = i;
|
|
break;
|
|
}
|
|
}
|
|
if (found > 0) {
|
|
GetTextIndexed(hex, sizeof(hex), found, Z_ProfileNames);
|
|
ep[F("ProfileIdName")] = hex;
|
|
}
|
|
|
|
ep.createNestedArray(F("ClustersIn"));
|
|
ep.createNestedArray(F("ClustersOut"));
|
|
}
|
|
|
|
for (std::vector<uint32_t>::const_iterator itc = device.clusters_in.begin() ; itc != device.clusters_in.end(); ++itc) {
|
|
uint16_t cluster = *itc & 0xFFFF;
|
|
uint8_t endpoint = (*itc >> 16) & 0xFF;
|
|
|
|
snprintf_P(hex, sizeof(hex), PSTR("0x%02X"), endpoint);
|
|
JsonArray &cluster_arr = dev_endpoints[hex][F("ClustersIn")];
|
|
|
|
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), cluster);
|
|
cluster_arr.add(hex);
|
|
}
|
|
|
|
for (std::vector<uint32_t>::const_iterator itc = device.clusters_out.begin() ; itc != device.clusters_out.end(); ++itc) {
|
|
uint16_t cluster = *itc & 0xFFFF;
|
|
uint8_t endpoint = (*itc >> 16) & 0xFF;
|
|
|
|
snprintf_P(hex, sizeof(hex), PSTR("0x%02X"), endpoint);
|
|
JsonArray &cluster_arr = dev_endpoints[hex][F("ClustersOut")];
|
|
|
|
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), cluster);
|
|
cluster_arr.add(hex);
|
|
}
|
|
}
|
|
}
|
|
String payload = "";
|
|
payload.reserve(200);
|
|
json.printTo(payload);
|
|
return payload;
|
|
}
|
|
|
|
#endif // USE_ZIGBEE
|