Tasmota/sonoff/xdrv_23_zigbee_3_devices.ino

443 lines
15 KiB
C++

/*
xdrv_23_zigbee.ino - zigbee support for Sonoff-Tasmota
Copyright (C) 2019 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ZIGBEE
#include <vector>
#include <map>
typedef struct Z_Device {
uint16_t shortaddr; // unique key if not null, or unspecified if null
uint64_t longaddr; // 0x00 means unspecified
uint32_t firstSeen; // date when the device was first seen
uint32_t lastSeen; // date when the device was last seen
String manufacturerId;
String modelId;
String friendlyName;
std::vector<uint32_t> endpoints; // encoded as high 16 bits is endpoint, low 16 bits is ProfileId
std::vector<uint32_t> clusters_in; // encoded as high 16 bits is endpoint, low 16 bits is cluster number
std::vector<uint32_t> clusters_out; // encoded as high 16 bits is endpoint, low 16 bits is cluster number
} Z_Device;
// All devices are stored in a Vector
// Invariants:
// - shortaddr is unique if not null
// - longaddr is unique if not null
// - shortaddr and longaddr cannot be both null
// - clusters_in and clusters_out containt only endpoints listed in endpoints
class Z_Devices {
public:
Z_Devices() {};
// Add new device, provide ShortAddr and optional longAddr
// If it is already registered, update information, otherwise create the entry
void updateDevice(uint16_t shortaddr, uint64_t longaddr = 0);
// Add an endpoint to a device
void addEndoint(uint16_t shortaddr, uint8_t endpoint);
// Add endpoint profile
void addEndointProfile(uint16_t shortaddr, uint8_t endpoint, uint16_t profileId);
// Add cluster
void addCluster(uint16_t shortaddr, uint8_t endpoint, uint16_t cluster, bool out);
uint8_t findClusterEndpointIn(uint16_t shortaddr, uint16_t cluster);
void setManufId(uint16_t shortaddr, const char * str);
void setModelId(uint16_t shortaddr, const char * str);
void setFriendlyNameId(uint16_t shortaddr, const char * str);
// device just seen on the network, update the lastSeen field
void updateLastSeen(uint16_t shortaddr);
// Dump json
String dump(uint8_t dump_mode) const;
private:
std::vector<Z_Device> _devices = {};
template < typename T>
static bool findInVector(const std::vector<T> & vecOfElements, const T & element);
template < typename T>
static int32_t findEndpointInVector(const std::vector<T> & vecOfElements, const T & element);
// find the first endpoint match for a cluster
static int32_t findClusterEndpoint(const std::vector<uint32_t> & vecOfElements, uint16_t element);
Z_Device & getShortAddr(uint16_t shortaddr); // find Device from shortAddr, creates it if does not exist
Z_Device & getLongAddr(uint64_t longaddr); // find Device from shortAddr, creates it if does not exist
int32_t findShortAddr(uint16_t shortaddr);
int32_t findLongAddr(uint64_t longaddr);
void _updateLastSeen(Z_Device &device) {
if (&device != nullptr) {
device.lastSeen = Rtc.utc_time;
}
};
// Create a new entry in the devices list - must be called if it is sure it does not already exist
Z_Device & createDeviceEntry(uint16_t shortaddr, uint64_t longaddr = 0);
};
Z_Devices zigbee_devices = Z_Devices();
// https://thispointer.com/c-how-to-find-an-element-in-vector-and-get-its-index/
template < typename T>
bool Z_Devices::findInVector(const std::vector<T> & vecOfElements, const T & element) {
// Find given element in vector
auto it = std::find(vecOfElements.begin(), vecOfElements.end(), element);
if (it != vecOfElements.end()) {
return true;
} else {
return false;
}
}
template < typename T>
int32_t Z_Devices::findEndpointInVector(const std::vector<T> & vecOfElements, const T & element) {
// Find given element in vector
int32_t found = 0;
for (auto &elem : vecOfElements) {
if ((elem >> 16) & 0xFF == element) { return found; }
found++;
}
return -1;
}
//
// Find the first endpoint match for a cluster, whether in or out
// Clusters are stored in the format 0x00EECCCC (EE=endpoint, CCCC=cluster number)
// In:
// _devices.clusters_in or _devices.clusters_out
// cluster number looked for
// Out:
// Index of found Endpoint_Cluster number, or -1 if not found
//
int32_t Z_Devices::findClusterEndpoint(const std::vector<uint32_t> & vecOfElements, uint16_t cluster) {
int32_t found = 0;
for (auto &elem : vecOfElements) {
if ((elem & 0xFFFF) == cluster) { return found; }
found++;
}
return -1;
}
//
// Create a new Z_Device entry in _devices. Only to be called if you are sure that no
// entry with same shortaddr or longaddr exists.
//
Z_Device & Z_Devices::createDeviceEntry(uint16_t shortaddr, uint64_t longaddr) {
if (!shortaddr && !longaddr) { return *(Z_Device*) nullptr; } // it is not legal to create an enrty with both short/long addr null
Z_Device device = { shortaddr, longaddr,
Rtc.utc_time, Rtc.utc_time,
String(), // ManufId
String(), // DeviceId
String(), // FriendlyName
std::vector<uint32_t>(),
std::vector<uint32_t>(),
std::vector<uint32_t>() };
_devices.push_back(device);
return _devices.back();
}
//
// Scan all devices to find a corresponding shortaddr
// Looks info device.shortaddr entry
// In:
// shortaddr (non null)
// Out:
// index in _devices of entry, -1 if not found
//
int32_t Z_Devices::findShortAddr(uint16_t shortaddr) {
if (!shortaddr) { return -1; } // does not make sense to look for 0x0000 shortaddr (localhost)
int32_t found = 0;
if (shortaddr) {
for (auto &elem : _devices) {
if (elem.shortaddr == shortaddr) { return found; }
found++;
}
}
return -1;
}
//
// Scan all devices to find a corresponding longaddr
// Looks info device.longaddr entry
// In:
// longaddr (non null)
// Out:
// index in _devices of entry, -1 if not found
//
int32_t Z_Devices::findLongAddr(uint64_t longaddr) {
if (!longaddr) { return -1; }
int32_t found = 0;
if (longaddr) {
for (auto &elem : _devices) {
if (elem.longaddr == longaddr) { return found; }
found++;
}
}
return -1;
}
//
// We have a seen a shortaddr on the network, get the corresponding
//
Z_Device & Z_Devices::getShortAddr(uint16_t shortaddr) {
if (!shortaddr) { return *(Z_Device*) nullptr; } // this is not legal
int32_t found = findShortAddr(shortaddr);
if (found >= 0) {
return _devices[found];
}
//Serial.printf("Device entry created for shortaddr = 0x%02X, found = %d\n", shortaddr, found);
return createDeviceEntry(shortaddr, 0);
}
// find the Device object by its longaddr (unique key if not null)
Z_Device & Z_Devices::getLongAddr(uint64_t longaddr) {
if (!longaddr) { return *(Z_Device*) nullptr; }
int32_t found = findLongAddr(longaddr);
if (found > 0) {
return _devices[found];
}
return createDeviceEntry(0, longaddr);
}
//
// We have just seen a device on the network, update the info based on short/long addr
// In:
// shortaddr
// longaddr (both can't be null at the same time)
void Z_Devices::updateDevice(uint16_t shortaddr, uint64_t longaddr) {
int32_t s_found = findShortAddr(shortaddr); // is there already a shortaddr entry
int32_t l_found = findLongAddr(longaddr); // is there already a longaddr entry
if ((s_found >= 0) && (l_found >= 0)) { // both shortaddr and longaddr are already registered
if (s_found == l_found) {
updateLastSeen(shortaddr); // short/long addr match, all good
} else { // they don't match
// the device with longaddr got a new shortaddr
_devices[l_found].shortaddr = shortaddr; // update the shortaddr corresponding to the longaddr
// erase the previous shortaddr
_devices.erase(_devices.begin() + s_found);
updateLastSeen(shortaddr);
}
} else if (s_found >= 0) {
// shortaddr already exists but longaddr not
// add the longaddr to the entry
_devices[s_found].longaddr = longaddr;
updateLastSeen(shortaddr);
} else if (l_found >= 0) {
// longaddr entry exists, update shortaddr
_devices[l_found].shortaddr = shortaddr;
} else {
// neither short/lonf addr are found.
if (shortaddr || longaddr) {
createDeviceEntry(shortaddr, longaddr);
}
}
}
//
// Add an endpoint to a shortaddr
//
void Z_Devices::addEndoint(uint16_t shortaddr, uint8_t endpoint) {
if (!shortaddr) { return; }
uint32_t ep_profile = (endpoint << 16);
Z_Device &device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
_updateLastSeen(device);
if (findEndpointInVector(device.endpoints, ep_profile) < 0) {
device.endpoints.push_back(ep_profile);
}
}
void Z_Devices::addEndointProfile(uint16_t shortaddr, uint8_t endpoint, uint16_t profileId) {
if (!shortaddr) { return; }
uint32_t ep_profile = (endpoint << 16) | profileId;
Z_Device &device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
_updateLastSeen(device);
int32_t found = findEndpointInVector(device.endpoints, ep_profile);
if (found < 0) {
device.endpoints.push_back(ep_profile);
} else {
device.endpoints[found] = ep_profile;
}
}
void Z_Devices::addCluster(uint16_t shortaddr, uint8_t endpoint, uint16_t cluster, bool out) {
if (!shortaddr) { return; }
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
_updateLastSeen(device);
uint32_t ep_cluster = (endpoint << 16) | cluster;
if (!out) {
if (!findInVector(device.clusters_in, ep_cluster)) {
device.clusters_in.push_back(ep_cluster);
}
} else { // out
if (!findInVector(device.clusters_out, ep_cluster)) {
device.clusters_out.push_back(ep_cluster);
}
}
}
// Look for the best endpoint match to send a command for a specific Cluster ID
// return 0x00 if none found
uint8_t Z_Devices::findClusterEndpointIn(uint16_t shortaddr, uint16_t cluster){
int32_t short_found = findShortAddr(shortaddr);
if (short_found < 0) return 0; // avoid creating an entry if the device was never seen
Z_Device &device = getShortAddr(shortaddr);
if (&device == nullptr) { return 0; } // don't crash if not found
int32_t found = findClusterEndpoint(device.clusters_in, cluster);
if (found >= 0) {
return (device.clusters_in[found] >> 16) & 0xFF;
} else {
return 0;
}
}
void Z_Devices::setManufId(uint16_t shortaddr, const char * str) {
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
_updateLastSeen(device);
device.manufacturerId = str;
}
void Z_Devices::setModelId(uint16_t shortaddr, const char * str) {
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
_updateLastSeen(device);
device.modelId = str;
}
void Z_Devices::setFriendlyNameId(uint16_t shortaddr, const char * str) {
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
_updateLastSeen(device);
device.friendlyName = str;
}
// device just seen on the network, update the lastSeen field
void Z_Devices::updateLastSeen(uint16_t shortaddr) {
Z_Device & device = getShortAddr(shortaddr);
if (&device == nullptr) { return; } // don't crash if not found
_updateLastSeen(device);
}
// Dump the internal memory of Zigbee devices
// Mode = 1: simple dump of devices addresses and names
// Mode = 2: Mode 1 + also dump the endpoints, profiles and clusters
String Z_Devices::dump(uint8_t dump_mode) const {
DynamicJsonBuffer jsonBuffer;
JsonArray& json = jsonBuffer.createArray();
JsonArray& devices = json;
//JsonArray& devices = json.createNestedArray(F("ZigbeeDevices"));
for (std::vector<Z_Device>::const_iterator it = _devices.begin(); it != _devices.end(); ++it) {
const Z_Device& device = *it;
uint16_t shortaddr = device.shortaddr;
char hex[20];
JsonObject& dev = devices.createNestedObject();
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), shortaddr);
dev[F(D_JSON_ZIGBEE_DEVICE)] = hex;
if (device.friendlyName.length() > 0) {
dev[F(D_JSON_ZIGBEE_NAME)] = device.friendlyName;
}
if (1 == dump_mode) {
Uint64toHex(device.longaddr, hex, 64);
dev[F("IEEEAddr")] = hex;
if (device.modelId.length() > 0) {
dev[F(D_JSON_MODEL D_JSON_ID)] = device.modelId;
}
if (device.manufacturerId.length() > 0) {
dev[F("Manufacturer")] = device.manufacturerId;
}
}
// If dump_mode == 2, dump a lot more details
if (2 == dump_mode) {
JsonObject& dev_endpoints = dev.createNestedObject(F("Endpoints"));
for (std::vector<uint32_t>::const_iterator ite = device.endpoints.begin() ; ite != device.endpoints.end(); ++ite) {
uint32_t ep_profile = *ite;
uint8_t endpoint = (ep_profile >> 16) & 0xFF;
uint16_t profileId = ep_profile & 0xFFFF;
snprintf_P(hex, sizeof(hex), PSTR("0x%02X"), endpoint);
JsonObject& ep = dev_endpoints.createNestedObject(hex);
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), profileId);
ep[F("ProfileId")] = hex;
int32_t found = -1;
for (uint32_t i = 0; i < sizeof(Z_ProfileIds) / sizeof(Z_ProfileIds[0]); i++) {
if (pgm_read_word(&Z_ProfileIds[i]) == profileId) {
found = i;
break;
}
}
if (found > 0) {
GetTextIndexed(hex, sizeof(hex), found, Z_ProfileNames);
ep[F("ProfileIdName")] = hex;
}
ep.createNestedArray(F("ClustersIn"));
ep.createNestedArray(F("ClustersOut"));
}
for (std::vector<uint32_t>::const_iterator itc = device.clusters_in.begin() ; itc != device.clusters_in.end(); ++itc) {
uint16_t cluster = *itc & 0xFFFF;
uint8_t endpoint = (*itc >> 16) & 0xFF;
snprintf_P(hex, sizeof(hex), PSTR("0x%02X"), endpoint);
JsonArray &cluster_arr = dev_endpoints[hex][F("ClustersIn")];
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), cluster);
cluster_arr.add(hex);
}
for (std::vector<uint32_t>::const_iterator itc = device.clusters_out.begin() ; itc != device.clusters_out.end(); ++itc) {
uint16_t cluster = *itc & 0xFFFF;
uint8_t endpoint = (*itc >> 16) & 0xFF;
snprintf_P(hex, sizeof(hex), PSTR("0x%02X"), endpoint);
JsonArray &cluster_arr = dev_endpoints[hex][F("ClustersOut")];
snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), cluster);
cluster_arr.add(hex);
}
}
}
String payload = "";
payload.reserve(200);
json.printTo(payload);
return payload;
}
#endif // USE_ZIGBEE