Tasmota/tasmota/xdrv_04_light.ino

3148 lines
116 KiB
C++

/*
xdrv_04_light.ino - PWM, WS2812 and sonoff led support for Tasmota
Copyright (C) 2020 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_LIGHT
/*********************************************************************************************\
* PWM, WS2812, Sonoff B1, AiLight, Sonoff Led and BN-SZ01, H801, MagicHome and Arilux
*
* light_type Module Color ColorTemp Modules
* ---------- --------- ----- --------- ----------------------------
* 0 - no (Sonoff Basic)
* 1 PWM1 W no (Sonoff BN-SZ)
* 2 PWM2 CW yes (Sonoff Led)
* 3 PWM3 RGB no (H801, MagicHome and Arilux LC01)
* 4 PWM4 RGBW no (H801, MagicHome and Arilux)
* 5 PWM5 RGBCW yes (H801, Arilux LC11)
* 9 reserved no
* 10 reserved yes
* 11 +WS2812 RGB no (One WS2812 RGB or RGBW ledstrip)
* 12 AiLight RGBW no
* 13 Sonoff B1 RGBCW yes
*
* light_scheme WS2812 3+ Colors 1+2 Colors Effect
* ------------ ------ --------- ---------- -----------------
* 0 yes yes yes Color On/Off
* 1 yes yes yes Wakeup light
* 2 yes yes no Color cycle RGB
* 3 yes yes no Color cycle RBG
* 4 yes yes no Random RGB colors
* 5 yes no no Clock
* 6 yes no no Incandescent
* 7 yes no no RGB
* 8 yes no no Christmas
* 9 yes no no Hanukkah
* 10 yes no no Kwanzaa
* 11 yes no no Rainbow
* 12 yes no no Fire
*
\*********************************************************************************************/
/*********************************************************************************************\
*
* Light management has been refactored to provide a cleaner class-based interface.
* Also, now all values are stored as integer, no more floats that could generate
* rounding errors.
*
* Two singletons are now used to control the state of the light.
* - light_state (LightStateClass) stores the color / white temperature and
* brightness. Use this object to READ only.
* - light_controller (LightControllerClass) is used to change light state
* and adjust all Settings and levels accordingly.
* Always use this object to change light status.
*
* As there have been lots of changes in light control, here is a summary out
* the whole flow from setting colors to drving the PMW pins.
*
* 1. To change colors, always use 'light_controller' object.
* 'light_state' is only to be used to read current state.
* .a For color bulbs, set color via changeRGB() or changeHS() for Hue/Sat.
* Set the overall brightness changeBri(0..255) or changeDimmer(0..100%)
* RGB and Hue/Sat are always kept in sync. Internally, RGB are stored at
* full range (max brightness) so that when you reduce brightness and
* raise it back again, colors don't change due to rounding errors.
* .b For white bulbs with Cold/Warm colortone, use changeCW() or changeCT()
* to change color-tone. Set overall brightness separately.
* Color-tone temperature can range from 153 (Cold) to 500 (Warm).
* SetOption82 can expand the rendering from 200-380 due to Alexa reduced range.
* CW channels are stored at full brightness to avoid rounding errors.
* .c Alternatively, you can set all 5 channels at once with changeChannels(),
* in this case it will also set the corresponding brightness.
*
* 2.a After any change, the Settings object is updated so that changes
* survive a reboot and can be stored in flash - in saveSettings()
* .b Actual channel values are computed from RGB or CT combined with brightness.
* Range is still 0..255 (8 bits) - in getActualRGBCW()
* .c The 5 internal channels RGBWC are mapped to the actual channels supported
* by the light_type: in calcLevels()
* 1 channel - 0:Brightness
* 2 channels - 0:Coldwhite 1:Warmwhite
* 3 channels - 0:Red 1:Green 2:Blue
* 4 chennels - 0:Red 1:Green 2:Blue 3:White
* 5 chennels - 0:Red 1:Green 2:Blue 3:ColdWhite 4:Warmwhite
*
* 3. In LightAnimate(), final PWM values are computed at next tick.
* .a If color did not change since last tick - ignore.
* .b Extend resolution from 8 bits to 10 bits, which makes a significant
* difference when applying gamma correction at low brightness.
* .c Apply Gamma Correction if LedTable==1 (by default).
* Gamma Correction uses an adaptative resolution table from 11 to 8 bits.
* .d For Warm/Cold-white channels, Gamma correction is calculated in combined mode.
* Ie. total white brightness (C+W) is used for Gamma correction and gives
* the overall light power required. Then this light power is split among
* Wamr/Cold channels.
* .e Gamma correction is still applied to 8 bits channels for compatibility
* with other non-PMW modules.
* .f Apply color balance correction from rgbwwTable[].
* Note: correction is done after Gamma correction, it is meant
* to adjust leds with different power
* .g If rgbwwTable[4] is zero, blend RGB with White and adjust the level of
* White channel according to rgbwwTable[3]
* .h Scale ranges from 10 bits to 0..PWMRange (by default 1023) so no change
* by default.
* .i Apply port remapping from Option37
* .j Invert PWM value if port is of type PMWxi instead of PMWx
* .k Apply PWM value with analogWrite() - if pin is configured
*
\*********************************************************************************************/
#define XDRV_04 4
// #define DEBUG_LIGHT
enum LightSchemes { LS_POWER, LS_WAKEUP, LS_CYCLEUP, LS_CYCLEDN, LS_RANDOM, LS_MAX };
const uint8_t LIGHT_COLOR_SIZE = 25; // Char array scolor size
const char kLightCommands[] PROGMEM = "|" // No prefix
D_CMND_COLOR "|" D_CMND_COLORTEMPERATURE "|" D_CMND_DIMMER "|" D_CMND_DIMMER_RANGE "|" D_CMND_LEDTABLE "|" D_CMND_FADE "|"
D_CMND_RGBWWTABLE "|" D_CMND_SCHEME "|" D_CMND_SPEED "|" D_CMND_WAKEUP "|" D_CMND_WAKEUPDURATION "|"
D_CMND_WHITE "|" D_CMND_CHANNEL "|" D_CMND_HSBCOLOR
#ifdef USE_LIGHT_PALETTE
"|" D_CMND_PALETTE
#endif // USE_LIGHT_PALETTE
#ifdef USE_DGR_LIGHT_SEQUENCE
"|" D_CMND_SEQUENCE_OFFSET
#endif // USE_DGR_LIGHT_SEQUENCE
"|UNDOCA" ;
void (* const LightCommand[])(void) PROGMEM = {
&CmndColor, &CmndColorTemperature, &CmndDimmer, &CmndDimmerRange, &CmndLedTable, &CmndFade,
&CmndRgbwwTable, &CmndScheme, &CmndSpeed, &CmndWakeup, &CmndWakeupDuration,
&CmndWhite, &CmndChannel, &CmndHsbColor,
#ifdef USE_LIGHT_PALETTE
&CmndPalette,
#endif // USE_LIGHT_PALETTE
#ifdef USE_DGR_LIGHT_SEQUENCE
&CmndSequenceOffset,
#endif // USE_DGR_LIGHT_SEQUENCE
&CmndUndocA };
// Light color mode, either RGB alone, or white-CT alone, or both only available if ct_rgb_linked is false
enum LightColorModes {
LCM_RGB = 1, LCM_CT = 2, LCM_BOTH = 3 };
struct LRgbColor {
uint8_t R, G, B;
};
const uint8_t MAX_FIXED_COLOR = 12;
const LRgbColor kFixedColor[MAX_FIXED_COLOR] PROGMEM =
{ 255,0,0, 0,255,0, 0,0,255, 228,32,0, 0,228,32, 0,32,228, 188,64,0, 0,160,96, 160,32,240, 255,255,0, 255,0,170, 255,255,255 };
struct LWColor {
uint8_t W;
};
const uint8_t MAX_FIXED_WHITE = 4;
const LWColor kFixedWhite[MAX_FIXED_WHITE] PROGMEM = { 0, 255, 128, 32 };
struct LCwColor {
uint8_t C, W;
};
const uint8_t MAX_FIXED_COLD_WARM = 4;
const LCwColor kFixedColdWarm[MAX_FIXED_COLD_WARM] PROGMEM = { 0,0, 255,0, 0,255, 128,128 };
// CT min and max
const uint16_t CT_MIN = 153; // 6500K
const uint16_t CT_MAX = 500; // 2000K
// Ranges used for Alexa
const uint16_t CT_MIN_ALEXA = 200; // also 5000K
const uint16_t CT_MAX_ALEXA = 380; // also 2600K
// New version of Gamma correction compute
// Instead of a table, we do a multi-linear approximation, which is close enough
// At low levels, the slope is a bit higher than actual gamma, to make changes smoother
// Internal resolution is 10 bits.
typedef struct gamma_table_t {
uint16_t to_src;
uint16_t to_gamma;
} gamma_table_t;
const gamma_table_t gamma_table[] = { // don't put in PROGMEM for performance reasons
{ 1, 1 },
{ 4, 1 },
{ 209, 13 },
{ 312, 41 },
{ 457, 106 },
{ 626, 261 },
{ 762, 450 },
{ 895, 703 },
{ 1023, 1023 },
{ 0xFFFF, 0xFFFF } // fail-safe if out of range
};
// simplified Gamma table for Fade, cheating a little at low brightness
const gamma_table_t gamma_table_fast[] = {
{ 384, 192 },
{ 768, 576 },
{ 1023, 1023 },
{ 0xFFFF, 0xFFFF } // fail-safe if out of range
};
// For reference, below are the computed gamma tables, via ledGamma()
// for 8 bits output:
// 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
// 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
// 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3,
// 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6,
// 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 11,
// 11, 12, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 17, 18,
// 18, 19, 19, 20, 20, 21, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25,
// 25, 26, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 37, 38,
// 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 53,
// 54, 55, 56, 57, 58, 59, 60, 61, 61, 62, 63, 64, 65, 67, 68, 69,
// 71, 72, 73, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 89, 90, 91,
// 93, 94, 95, 97, 98,100,101,102,104,105,107,108,109,111,112,114,
// 116,118,120,122,124,125,127,129,131,133,135,137,139,141,143,144,
// 146,148,150,152,154,156,158,160,162,164,166,168,170,171,173,175,
// 178,180,183,185,188,190,193,195,198,200,203,205,208,210,213,215,
// 218,220,223,225,228,230,233,235,238,240,243,245,248,250,253,255
//
// and for 10 bits output:
// 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4,
// 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8,
// 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12,
// 12, 12, 13, 13, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25,
// 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43,
// 45, 47, 49, 50, 52, 54, 56, 58, 59, 61, 63, 65, 67, 68, 70, 72,
// 74, 76, 77, 79, 81, 83, 84, 86, 88, 90, 92, 93, 95, 97, 99, 101,
// 102, 104, 106, 110, 113, 117, 121, 124, 128, 132, 135, 139, 143, 146, 150, 154,
// 158, 162, 166, 169, 173, 177, 180, 184, 188, 191, 195, 199, 202, 206, 210, 213,
// 217, 221, 224, 228, 232, 235, 239, 243, 246, 250, 254, 257, 261, 267, 272, 278,
// 283, 289, 294, 300, 305, 311, 317, 322, 328, 333, 339, 344, 350, 356, 361, 367,
// 372, 378, 383, 389, 394, 400, 406, 411, 417, 422, 428, 433, 439, 444, 450, 458,
// 465, 473, 480, 488, 496, 503, 511, 518, 526, 534, 541, 549, 557, 564, 572, 579,
// 587, 595, 602, 610, 617, 627, 635, 642, 650, 657, 665, 673, 680, 688, 695, 703,
// 713, 723, 733, 743, 753, 763, 773, 783, 793, 803, 813, 823, 833, 843, 853, 863,
// 873, 883, 893, 903, 913, 923, 933, 943, 953, 963, 973, 983, 993,1003,1013,1023
//
// Output for Dimmer 0..100 values
// 0, 1, 2, 3, 3, 4, 4, 5, 5, 6, 7, 7, 8, 8, 9,
// 10, 10, 11, 12, 12, 13, 15, 17, 21, 23, 26, 28, 31, 34, 37,
// 40, 43, 49, 52, 58, 61, 67, 70, 76, 79, 84, 90, 93, 99,102,
// 110,117,128,135,146,158,166,177,184,195,202,213,221,232,239,
// 250,261,272,289,300,317,328,344,356,372,389,400,417,428,444,
// 458,480,496,518,534,557,579,595,617,635,657,673,695,713,743,
// 773,793,823,843,873,893,923,943,973,993,1023
struct LIGHT {
uint32_t strip_timer_counter = 0; // Bars and Gradient
power_t power = 0; // Power<x> for each channel if SetOption68, or boolean if single light
uint8_t entry_color[LST_MAX];
uint8_t current_color[LST_MAX];
uint8_t new_color[LST_MAX];
uint8_t last_color[LST_MAX];
uint8_t color_remap[LST_MAX];
uint8_t wheel = 0;
uint8_t random = 0;
uint8_t subtype = 0; // LST_ subtype
uint8_t device = 0;
uint8_t old_power = 1;
uint8_t wakeup_active = 0; // 0=inctive, 1=on-going, 2=about to start, 3=will be triggered next cycle
uint8_t fixed_color_index = 1;
uint8_t pwm_offset = 0; // Offset in color buffer
uint8_t max_scheme = LS_MAX -1;
uint32_t wakeup_start_time = 0;
bool update = true;
bool pwm_multi_channels = false; // SetOption68, treat each PWM channel as an independant dimmer
bool virtual_ct = false; // SetOption106, add a 5th virtual channel, only if SO106 = 1, SO68 = 0, Light is RGBW (4 channels), SO37 < 128
bool fade_initialized = false; // dont't fade at startup
bool fade_running = false;
#ifdef USE_DEVICE_GROUPS
uint8_t last_scheme = 0;
bool devgrp_no_channels_out = false; // don't share channels with device group (e.g. if scheme set by other device)
#ifdef USE_DGR_LIGHT_SEQUENCE
uint8_t sequence_offset = 0; // number of channel changes this light is behind the master
uint8_t * channels_fifo;
#endif // USE_DGR_LIGHT_SEQUENCE
#endif // USE_DEVICE_GROUPS
#ifdef USE_LIGHT_PALETTE
uint8_t palette_count = 0; // palette entry count
uint8_t * palette; // dynamically allocated palette color array
#endif // USE_LIGHT_PALETTE
uint16_t fade_start_10[LST_MAX] = {0,0,0,0,0};
uint16_t fade_cur_10[LST_MAX];
uint16_t fade_end_10[LST_MAX]; // 10 bits resolution target channel values
uint16_t fade_duration = 0; // duration of fade in milliseconds
uint32_t fade_start = 0; // fade start time in milliseconds, compared to millis()
uint16_t pwm_min = 0; // minimum value for PWM, from DimmerRange, 0..1023
uint16_t pwm_max = 1023; // maxumum value for PWM, from DimmerRange, 0..1023
} Light;
power_t LightPower(void)
{
return Light.power; // Make external
}
uint8_t LightDevice(void)
{
return Light.device; // Make external
}
static uint32_t min3(uint32_t a, uint32_t b, uint32_t c) {
return (a < b && a < c) ? a : (b < c) ? b : c;
}
//
// LightStateClass
// This class is an abstraction of the current light state.
// It allows for b/w, full colors, or white colortone
//
// This class has 2 independant slots
// 1/ Brightness 0.255, dimmer controls both RGB and WC (warm-cold)
// 1/ RGB and Hue/Sat - always kept in sync and stored at full brightness,
// i.e. R G or B are 255
// briRGB specifies the brightness for the RGB slot.
// If Brightness is 0, it is equivalent to Off (for compatibility)
// Dimmer is Brightness converted to range 0..100
// 2/ White with colortone - or CW (Cold / Warm)
// ct is 153..500 temperature (153=cold, 500=warm)
// briCT specifies the brightness for white channel
//
// Dimmer (0.100) is automatically derived from brightness
//
// INVARIANTS:
// 1. RGB components are always stored at full brightness and modulated with briRGB
// ((R == 255) || (G == 255) || (B == 255))
// 2. RGB and Hue/Sat are always kept in sync whether you use setRGB() or setHS()
// 3. Warm/Cold white channels are always stored at full brightness
// ((WW == 255) || (WC == 255))
// 4. WC/WW and CT are always kept in sync.
// Note: if you use setCT() then WC+WW == 255 (both channels are linked)
// but if you use setCW() both channels can be set independantly
// 5. If RGB or CT channels are deactivated, then corresponding brightness is zero
// if (colot_tone == LCM_RGB) then briCT = 0
// if (color_tone == LCM_CT) then briRGB = 0
// if (colot_tone == LCM_BOTH) then briRGB and briCT can have any values
//
// Note: If you want the actual RGB, you need to multiply with Bri, or use getActualRGBCW()
// Note: all values are stored as unsigned integer, no floats.
// Note: you can query vaules from this singleton. But to change values,
// use the LightController - changing this object will have no effect on actual light.
//
class LightStateClass {
private:
uint16_t _hue = 0; // 0..359
uint8_t _sat = 255; // 0..255
uint8_t _briRGB = 255; // 0..255
// dimmer is same as _bri but with a range of 0%-100%
uint8_t _r = 255; // 0..255
uint8_t _g = 255; // 0..255
uint8_t _b = 255; // 0..255
uint8_t _subtype = 0; // local copy of Light.subtype, if we need multiple lights
uint16_t _ct = CT_MIN; // 153..500, default to 153 (cold white)
uint8_t _wc = 255; // white cold channel
uint8_t _ww = 0; // white warm channel
uint8_t _briCT = 255;
uint8_t _color_mode = LCM_RGB; // RGB by default
// the CT range below represents the rendered range,
// This is due to Alexa whose CT range is 199..383
// Hence setting Min=200 and Max=380 makes Alexa use the full range
// Please note that you can still set CT to 153..500, but any
// value below _ct_min_range or above _ct_max_range not change the CT
uint16_t _ct_min_range = CT_MIN; // the minimum CT rendered range
uint16_t _ct_max_range = CT_MAX; // the maximum CT rendered range
public:
LightStateClass() {
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::Constructor RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _bri);
}
void setSubType(uint8_t sub_type) {
_subtype = sub_type; // set sub_type at initialization, shoudln't be changed afterwards
}
// This function is a bit hairy, it will try to match the rerquired
// colormode with the features of the device:
// LST_NONE: LCM_RGB
// LST_SINGLE: LCM_RGB
// LST_COLDWARM: LCM_CT
// LST_RGB: LCM_RGB
// LST_RGBW: LCM_RGB, LCM_CT or LCM_BOTH
// LST_RGBCW: LCM_RGB, LCM_CT or LCM_BOTH
uint8_t setColorMode(uint8_t cm) {
uint8_t prev_cm = _color_mode;
if (cm < LCM_RGB) { cm = LCM_RGB; }
if (cm > LCM_BOTH) { cm = LCM_BOTH; }
uint8_t maxbri = (_briRGB >= _briCT) ? _briRGB : _briCT;
switch (_subtype) {
case LST_COLDWARM:
_color_mode = LCM_CT;
break;
case LST_NONE:
case LST_SINGLE:
case LST_RGB:
default:
_color_mode = LCM_RGB;
break;
case LST_RGBW:
case LST_RGBCW:
_color_mode = cm;
break;
}
if (LCM_RGB == _color_mode) {
_briCT = 0;
if (0 == _briRGB) { _briRGB = maxbri; }
}
if (LCM_CT == _color_mode) {
_briRGB = 0;
if (0 == _briCT) { _briCT = maxbri; }
}
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setColorMode prev_cm (%d) req_cm (%d) new_cm (%d)", prev_cm, cm, _color_mode);
#endif
return prev_cm;
}
inline uint8_t getColorMode() {
return _color_mode;
}
void addRGBMode() {
setColorMode(_color_mode | LCM_RGB);
}
void addCTMode() {
setColorMode(_color_mode | LCM_CT);
}
// Get RGB color, always at full brightness (ie. one of the components is 255)
void getRGB(uint8_t *r, uint8_t *g, uint8_t *b) {
if (r) { *r = _r; }
if (g) { *g = _g; }
if (b) { *b = _b; }
}
// get full brightness values for warm and cold channels.
// either w=c=0 (off) or w+c >= 255
void getCW(uint8_t *rc, uint8_t *rw) {
if (rc) { *rc = _wc; }
if (rw) { *rw = _ww; }
}
// Get the actual values for each channel, ie multiply with brightness
void getActualRGBCW(uint8_t *r, uint8_t *g, uint8_t *b, uint8_t *c, uint8_t *w) {
bool rgb_channels_on = _color_mode & LCM_RGB;
bool ct_channels_on = _color_mode & LCM_CT;
if (r) { *r = rgb_channels_on ? changeUIntScale(_r, 0, 255, 0, _briRGB) : 0; }
if (g) { *g = rgb_channels_on ? changeUIntScale(_g, 0, 255, 0, _briRGB) : 0; }
if (b) { *b = rgb_channels_on ? changeUIntScale(_b, 0, 255, 0, _briRGB) : 0; }
if (c) { *c = ct_channels_on ? changeUIntScale(_wc, 0, 255, 0, _briCT) : 0; }
if (w) { *w = ct_channels_on ? changeUIntScale(_ww, 0, 255, 0, _briCT) : 0; }
}
void getChannels(uint8_t *channels) {
getActualRGBCW(&channels[0], &channels[1], &channels[2], &channels[3], &channels[4]);
}
void getChannelsRaw(uint8_t *channels) {
channels[0] = _r;
channels[1] = _g;
channels[2] = _b;
channels[3] = _wc;
channels[4] = _ww;
}
void getHSB(uint16_t *hue, uint8_t *sat, uint8_t *bri) {
if (hue) { *hue = _hue; }
if (sat) { *sat = _sat; }
if (bri) { *bri = _briRGB; }
}
// getBri() is guaranteed to give the same result as setBri() - no rounding errors.
uint8_t getBri(void) {
// return the max of _briCT and _briRGB
return (_briRGB >= _briCT) ? _briRGB : _briCT;
}
// get the white Brightness
inline uint8_t getBriCT() {
return _briCT;
}
static inline uint8_t DimmerToBri(uint8_t dimmer) {
return changeUIntScale(dimmer, 0, 100, 0, 255); // 0..255
}
static uint8_t BriToDimmer(uint8_t bri) {
uint8_t dimmer = changeUIntScale(bri, 0, 255, 0, 100);
// if brightness is non zero, force dimmer to be non-zero too
if ((dimmer == 0) && (bri > 0)) { dimmer = 1; }
return dimmer;
}
uint8_t getDimmer(uint32_t mode = 0) {
uint8_t bri;
switch (mode) {
case 1:
bri = getBriRGB();
break;
case 2:
bri = getBriCT();
break;
default:
bri = getBri();
break;
}
return BriToDimmer(bri);
}
inline uint16_t getCT() const {
return _ct; // 153..500, or CT_MIN..CT_MAX
}
// get the CT value within the range into a 10 bits 0..1023 value
uint16_t getCT10bits() const {
return changeUIntScale(_ct, _ct_min_range, _ct_max_range, 0, 1023);
}
inline void setCTRange(uint16_t ct_min_range, uint16_t ct_max_range) {
_ct_min_range = ct_min_range;
_ct_max_range = ct_max_range;
}
inline void getCTRange(uint16_t *ct_min_range, uint16_t *ct_max_range) const {
if (ct_min_range) { *ct_min_range = _ct_min_range; }
if (ct_max_range) { *ct_max_range = _ct_max_range; }
}
// get current color in XY format
void getXY(float *x, float *y) {
RgbToXy(_r, _g, _b, x, y);
}
// setters -- do not use directly, use the light_controller instead
// sets both master Bri and whiteBri
void setBri(uint8_t bri) {
setBriRGB(_color_mode & LCM_RGB ? bri : 0);
setBriCT(_color_mode & LCM_CT ? bri : 0);
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setBri RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _briRGB);
#endif
}
// changes the RGB brightness alone
uint8_t setBriRGB(uint8_t bri_rgb) {
uint8_t prev_bri = _briRGB;
_briRGB = bri_rgb;
if (bri_rgb > 0) { addRGBMode(); }
#ifdef USE_PWM_DIMMER
if (PWM_DIMMER == my_module_type) PWMDimmerSetBrightnessLeds(-1);
#endif // USE_PWM_DIMMER
return prev_bri;
}
// changes the white brightness alone
uint8_t setBriCT(uint8_t bri_ct) {
uint8_t prev_bri = _briCT;
_briCT = bri_ct;
if (bri_ct > 0) { addCTMode(); }
#ifdef USE_PWM_DIMMER
if (PWM_DIMMER == my_module_type) PWMDimmerSetBrightnessLeds(-1);
#endif // USE_PWM_DIMMER
return prev_bri;
}
inline uint8_t getBriRGB() {
return _briRGB;
}
void setDimmer(uint8_t dimmer) {
setBri(DimmerToBri(dimmer));
}
void setCT(uint16_t ct) {
if (0 == ct) {
// disable ct mode
setColorMode(LCM_RGB); // try deactivating CT mode, setColorMode() will check which is legal
} else {
ct = (ct < CT_MIN ? CT_MIN : (ct > CT_MAX ? CT_MAX : ct));
_ww = changeUIntScale(ct, _ct_min_range, _ct_max_range, 0, 255);
_wc = 255 - _ww;
_ct = ct;
addCTMode();
}
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setCT RGB raw (%d %d %d) HS (%d %d) briRGB (%d) briCT (%d) CT (%d)", _r, _g, _b, _hue, _sat, _briRGB, _briCT, _ct);
#endif
}
// Manually set Cold/Warm channels.
// There are two modes:
// 1. (free_range == false, default)
// In this mode there is only one virtual white channel with color temperature
// As a side effect, WC+WW = 255. It means also that the sum of light power
// from white LEDs is always equal to briCT. It is not possible here
// to set both white LEDs at full power, hence protecting power supplies
// from overlaoding.
// 2. (free_range == true)
// In this mode, values of WC and WW are free -- both channels can be set
// at full power.
// In this mode, we always scale both channels so that one at least is 255.
//
// We automatically adjust briCT to have the right values of channels
void setCW(uint8_t c, uint8_t w, bool free_range = false) {
uint16_t max = (w > c) ? w : c; // 0..255
uint16_t sum = c + w;
if (sum <= 257) { free_range = false; } // if we don't allow free range or if sum is below 255 (with tolerance of 2)
if (0 == max) {
_briCT = 0; // brightness set to null
setColorMode(LCM_RGB); // try deactivating CT mode, setColorMode() will check which is legal
} else {
if (!free_range) {
// we need to normalize to sum = 255
_ww = changeUIntScale(w, 0, sum, 0, 255);
_wc = 255 - _ww;
} else { // we normalize to max = 255
_ww = changeUIntScale(w, 0, max, 0, 255);
_wc = changeUIntScale(c, 0, max, 0, 255);
}
_ct = changeUIntScale(w, 0, sum, CT_MIN, CT_MAX);
addCTMode(); // activate CT mode if needed
if (_color_mode & LCM_CT) { _briCT = free_range ? max : (sum > 255 ? 255 : sum); }
}
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setCW CW (%d %d) CT (%d) briCT (%d)", c, w, _ct, _briCT);
#endif
}
// sets RGB and returns the Brightness. Bri is updated unless keep_bri is true
uint8_t setRGB(uint8_t r, uint8_t g, uint8_t b, bool keep_bri = false) {
uint16_t hue;
uint8_t sat;
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setRGB RGB input (%d %d %d)", r, g, b);
#endif
uint32_t max = (r > g && r > b) ? r : (g > b) ? g : b; // 0..255
if (0 == max) {
r = g = b = 255;
setColorMode(LCM_CT); // try deactivating RGB, setColorMode() will check if this is legal
} else {
if (255 > max) {
// we need to normalize rgb
r = changeUIntScale(r, 0, max, 0, 255);
g = changeUIntScale(g, 0, max, 0, 255);
b = changeUIntScale(b, 0, max, 0, 255);
}
addRGBMode();
}
if (!keep_bri) {
_briRGB = (_color_mode & LCM_RGB) ? max : 0;
}
RgbToHsb(r, g, b, &hue, &sat, nullptr);
_r = r;
_g = g;
_b = b;
_hue = hue;
_sat = sat;
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setRGB RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _briRGB);
#endif
return max;
}
void setHS(uint16_t hue, uint8_t sat) {
uint8_t r, g, b;
HsToRgb(hue, sat, &r, &g, &b);
_r = r;
_g = g;
_b = b;
_hue = hue;
_sat = sat;
addRGBMode();
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setHS HS (%d %d) rgb (%d %d %d)", hue, sat, r, g, b);
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setHS RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _briRGB);
#endif
}
// set all 5 channels at once, don't modify the values in ANY way
// Channels are: R G B CW WW
void setChannelsRaw(uint8_t *channels) {
_r = channels[0];
_g = channels[1];
_b = channels[2];
_wc = channels[3];
_ww = channels[4];
}
// set all 5 channels at once.
// Channels are: R G B CW WW
// Brightness is automatically recalculated to adjust channels to the desired values
void setChannels(uint8_t *channels) {
setRGB(channels[0], channels[1], channels[2]);
setCW(channels[3], channels[4], true); // free range for WC and WW
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setChannels (%d %d %d %d %d)",
channels[0], channels[1], channels[2], channels[3], channels[4]);
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setChannels CT (%d) briRGB (%d) briCT (%d)", _ct, _briRGB, _briCT);
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setChannels Actuals (%d %d %d %d %d)",
_r, _g, _b, _wc, _ww);
#endif
}
// new version of RGB to HSB with only integer calculation
static void RgbToHsb(uint8_t r, uint8_t g, uint8_t b, uint16_t *r_hue, uint8_t *r_sat, uint8_t *r_bri);
static void HsToRgb(uint16_t hue, uint8_t sat, uint8_t *r_r, uint8_t *r_g, uint8_t *r_b);
static void RgbToXy(uint8_t i_r, uint8_t i_g, uint8_t i_b, float *r_x, float *r_y);
static void XyToRgb(float x, float y, uint8_t *rr, uint8_t *rg, uint8_t *rb);
};
/*********************************************************************************************\
* LightStateClass implementation
\*********************************************************************************************/
// new version with only integer computing
// brightness is not needed, it is controlled via Dimmer
void LightStateClass::RgbToHsb(uint8_t ir, uint8_t ig, uint8_t ib, uint16_t *r_hue, uint8_t *r_sat, uint8_t *r_bri) {
uint32_t r = ir;
uint32_t g = ig;
uint32_t b = ib;
uint32_t max = (r > g && r > b) ? r : (g > b) ? g : b; // 0..255
uint32_t min = (r < g && r < b) ? r : (g < b) ? g : b; // 0..255
uint32_t d = max - min; // 0..255
uint16_t hue = 0; // hue value in degrees ranges from 0 to 359
uint8_t sat = 0; // 0..255
uint8_t bri = max; // 0..255
if (d != 0) {
sat = changeUIntScale(d, 0, max, 0, 255);
if (r == max) {
hue = (g > b) ? changeUIntScale(g-b,0,d,0,60) : 360 - changeUIntScale(b-g,0,d,0,60);
} else if (g == max) {
hue = (b > r) ? 120 + changeUIntScale(b-r,0,d,0,60) : 120 - changeUIntScale(r-b,0,d,0,60);
} else {
hue = (r > g) ? 240 + changeUIntScale(r-g,0,d,0,60) : 240 - changeUIntScale(g-r,0,d,0,60);
}
hue = hue % 360; // 0..359
}
if (r_hue) *r_hue = hue;
if (r_sat) *r_sat = sat;
if (r_bri) *r_bri = bri;
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, "RgbToHsb rgb (%d %d %d) hsb (%d %d %d)", r, g, b, hue, sat, bri);
}
void LightStateClass::HsToRgb(uint16_t hue, uint8_t sat, uint8_t *r_r, uint8_t *r_g, uint8_t *r_b) {
uint32_t r = 255; // default to white
uint32_t g = 255;
uint32_t b = 255;
// we take brightness at 100%, brightness should be set separately
hue = hue % 360; // normalize to 0..359
if (sat > 0) {
uint32_t i = hue / 60; // quadrant 0..5
uint32_t f = hue % 60; // 0..59
uint32_t q = 255 - changeUIntScale(f, 0, 60, 0, sat); // 0..59
uint32_t p = 255 - sat;
uint32_t t = 255 - changeUIntScale(60 - f, 0, 60, 0, sat);
switch (i) {
case 0:
//r = 255;
g = t;
b = p;
break;
case 1:
r = q;
//g = 255;
b = p;
break;
case 2:
r = p;
//g = 255;
b = t;
break;
case 3:
r = p;
g = q;
//b = 255;
break;
case 4:
r = t;
g = p;
//b = 255;
break;
default:
//r = 255;
g = p;
b = q;
break;
}
}
if (r_r) *r_r = r;
if (r_g) *r_g = g;
if (r_b) *r_b = b;
}
#define POW FastPrecisePowf
//
// Matrix 3x3 multiplied to a 3 vector, result in a 3 vector
//
void mat3x3(const float *mat33, const float *vec3, float *res3) {
for (uint32_t i = 0; i < 3; i++) {
const float * v = vec3;
*res3 = 0.0f;
for (uint32_t j = 0; j < 3; j++) {
*res3 += *mat33++ * *v++;
}
res3++;
}
}
void LightStateClass::RgbToXy(uint8_t i_r, uint8_t i_g, uint8_t i_b, float *r_x, float *r_y) {
float x = 0.31271f; // default medium white
float y = 0.32902f;
if (i_r + i_b + i_g > 0) {
float rgb[3] = { (float)i_r, (float)i_g, (float)i_b };
// https://gist.github.com/popcorn245/30afa0f98eea1c2fd34d
// Gamma correction
for (uint32_t i = 0; i < 3; i++) {
rgb[i] = rgb[i] / 255.0f;
rgb[i] = (rgb[i] > 0.04045f) ? POW((rgb[i] + 0.055f) / (1.0f + 0.055f), 2.4f) : (rgb[i] / 12.92f);
}
// conversion to X, Y, Z
// Y is also the Luminance
float XYZ[3];
static const float XYZ_factors[] = { 0.649926f, 0.103455f, 0.197109f,
0.234327f, 0.743075f, 0.022598f,
0.000000f, 0.053077f, 1.035763f };
mat3x3(XYZ_factors, rgb, XYZ);
float XYZ_sum = XYZ[0] + XYZ[1] + XYZ[2];
x = XYZ[0] / XYZ_sum;
y = XYZ[1] / XYZ_sum;
// we keep the raw gamut, one nice thing could be to convert to a narrower gamut
}
if (r_x) *r_x = x;
if (r_y) *r_y = y;
}
void LightStateClass::XyToRgb(float x, float y, uint8_t *rr, uint8_t *rg, uint8_t *rb)
{
float XYZ[3], rgb[3];
x = (x > 0.99f ? 0.99f : (x < 0.01f ? 0.01f : x));
y = (y > 0.99f ? 0.99f : (y < 0.01f ? 0.01f : y));
float z = 1.0f - x - y;
XYZ[0] = x / y;
XYZ[1] = 1.0f;
XYZ[2] = z / y;
static const float rgb_factors[] = { 3.2406f, -1.5372f, -0.4986f,
-0.9689f, 1.8758f, 0.0415f,
0.0557f, -0.2040f, 1.0570f };
mat3x3(rgb_factors, XYZ, rgb);
float max = (rgb[0] > rgb[1] && rgb[0] > rgb[2]) ? rgb[0] : (rgb[1] > rgb[2]) ? rgb[1] : rgb[2];
for (uint32_t i = 0; i < 3; i++) {
rgb[i] = rgb[i] / max; // normalize to max == 1.0
rgb[i] = (rgb[i] <= 0.0031308f) ? 12.92f * rgb[i] : 1.055f * POW(rgb[i], (1.0f / 2.4f)) - 0.055f; // gamma
}
int32_t irgb[3];
for (uint32_t i = 0; i < 3; i++) {
irgb[i] = rgb[i] * 255.0f + 0.5f;
}
if (rr) { *rr = (irgb[0] > 255 ? 255: (irgb[0] < 0 ? 0 : irgb[0])); }
if (rg) { *rg = (irgb[1] > 255 ? 255: (irgb[1] < 0 ? 0 : irgb[1])); }
if (rb) { *rb = (irgb[2] > 255 ? 255: (irgb[2] < 0 ? 0 : irgb[2])); }
}
class LightControllerClass {
private:
LightStateClass *_state;
// are RGB and CT linked, i.e. if we set CT then RGB channels are off
bool _ct_rgb_linked = true;
bool _pwm_multi_channels = false; // treat each channel as independant dimmer
public:
LightControllerClass(LightStateClass& state) {
_state = &state;
}
void setSubType(uint8_t sub_type) {
_state->setSubType(sub_type);
}
inline bool setCTRGBLinked(bool ct_rgb_linked) {
bool prev = _ct_rgb_linked;
if (_pwm_multi_channels) {
_ct_rgb_linked = false; // force to false if _pwm_multi_channels is set
} else {
_ct_rgb_linked = ct_rgb_linked;
}
return prev;
}
void setAlexaCTRange(bool alexa_ct_range) {
// depending on SetOption82, full or limited CT range
if (alexa_ct_range) {
_state->setCTRange(CT_MIN_ALEXA, CT_MAX_ALEXA); // 200..380
} else {
_state->setCTRange(CT_MIN, CT_MAX); // 153..500
}
}
inline bool isCTRGBLinked() {
return _ct_rgb_linked;
}
inline bool setPWMMultiChannel(bool pwm_multi_channels) {
bool prev = _pwm_multi_channels;
_pwm_multi_channels = pwm_multi_channels;
if (pwm_multi_channels) setCTRGBLinked(false); // if pwm multi channel, then unlink RGB and CT
return prev;
}
inline bool isPWMMultiChannel(void) {
return _pwm_multi_channels;
}
#ifdef DEBUG_LIGHT
void debugLogs() {
uint8_t r,g,b,c,w;
_state->getActualRGBCW(&r,&g,&b,&c,&w);
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::debugLogs rgb (%d %d %d) cw (%d %d)",
r, g, b, c, w);
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::debugLogs lightCurrent (%d %d %d %d %d)",
Light.current_color[0], Light.current_color[1], Light.current_color[2],
Light.current_color[3], Light.current_color[4]);
}
#endif
void loadSettings() {
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::loadSettings Settings.light_color (%d %d %d %d %d - %d)",
Settings.light_color[0], Settings.light_color[1], Settings.light_color[2],
Settings.light_color[3], Settings.light_color[4], Settings.light_dimmer);
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::loadSettings light_type/sub (%d %d)",
light_type, Light.subtype);
#endif
if (_pwm_multi_channels) {
_state->setChannelsRaw(Settings.light_color);
} else {
// first try setting CW, if zero, it select RGB mode
_state->setCW(Settings.light_color[3], Settings.light_color[4], true);
_state->setRGB(Settings.light_color[0], Settings.light_color[1], Settings.light_color[2]);
// only if non-multi channel
// We apply dimmer in priority to RGB
uint8_t bri = _state->DimmerToBri(Settings.light_dimmer);
// The default values are #FFFFFFFFFF, in this case we avoid setting all channels
// at the same time, see #6534 and #8120
if ((DEFAULT_LIGHT_COMPONENT == Settings.light_color[0]) &&
(DEFAULT_LIGHT_COMPONENT == Settings.light_color[1]) &&
(DEFAULT_LIGHT_COMPONENT == Settings.light_color[2]) &&
(DEFAULT_LIGHT_COMPONENT == Settings.light_color[3]) &&
(DEFAULT_LIGHT_COMPONENT == Settings.light_color[4]) &&
(DEFAULT_LIGHT_DIMMER == Settings.light_dimmer) ) {
if ((LST_COLDWARM == Light.subtype) || (LST_RGBCW == Light.subtype)) {
_state->setCW(255, 0); // avoid having both white channels at 100%, zero second channel (#see 8120)
}
_state->setBriCT(bri);
_state->setBriRGB(bri);
_state->setColorMode(LCM_RGB);
}
if (Settings.light_color[0] + Settings.light_color[1] + Settings.light_color[2] > 0) {
_state->setBriRGB(bri);
} else {
_state->setBriCT(bri);
}
}
}
void changeCTB(uint16_t new_ct, uint8_t briCT) {
/* Color Temperature (https://developers.meethue.com/documentation/core-concepts)
*
* ct = 153 = 6500K = Cold = CCWW = FF00
* ct = 500 = 2000K = Warm = CCWW = 00FF
*/
// don't set CT if not supported
if ((LST_COLDWARM != Light.subtype) && (LST_RGBW > Light.subtype)) {
return;
}
_state->setCT(new_ct);
_state->setBriCT(briCT);
if (_ct_rgb_linked) { _state->setColorMode(LCM_CT); } // try to force CT
saveSettings();
calcLevels();
//debugLogs();
}
void changeDimmer(uint8_t dimmer, uint32_t mode = 0) {
uint8_t bri = changeUIntScale(dimmer, 0, 100, 0, 255);
switch (mode) {
case 1:
changeBriRGB(bri);
if (_ct_rgb_linked) { _state->setColorMode(LCM_RGB); } // try to force CT
break;
case 2:
changeBriCT(bri);
if (_ct_rgb_linked) { _state->setColorMode(LCM_CT); } // try to force CT
break;
default:
changeBri(bri);
break;
}
}
void changeBri(uint8_t bri) {
_state->setBri(bri);
saveSettings();
calcLevels();
}
void changeBriRGB(uint8_t bri) {
_state->setBriRGB(bri);
saveSettings();
calcLevels();
}
void changeBriCT(uint8_t bri) {
_state->setBriCT(bri);
saveSettings();
calcLevels();
}
void changeRGB(uint8_t r, uint8_t g, uint8_t b, bool keep_bri = false) {
_state->setRGB(r, g, b, keep_bri);
if (_ct_rgb_linked) { _state->setColorMode(LCM_RGB); } // try to force RGB
saveSettings();
calcLevels();
}
// calculate the levels for each channel
// if no parameter, results are stored in Light.current_color
void calcLevels(uint8_t *current_color = nullptr) {
uint8_t r,g,b,c,w,briRGB,briCT;
if (current_color == nullptr) { current_color = Light.current_color; }
if (_pwm_multi_channels) { // if PWM multi channel, no more transformation required
_state->getChannelsRaw(current_color);
return;
}
_state->getActualRGBCW(&r,&g,&b,&c,&w);
briRGB = _state->getBriRGB();
briCT = _state->getBriCT();
current_color[0] = current_color[1] = current_color[2] = 0;
current_color[3] = current_color[4] = 0;
switch (Light.subtype) {
case LST_NONE:
current_color[0] = 255;
break;
case LST_SINGLE:
current_color[0] = briRGB;
break;
case LST_COLDWARM:
current_color[0] = c;
current_color[1] = w;
break;
case LST_RGBW:
case LST_RGBCW:
if (LST_RGBCW == Light.subtype) {
current_color[3] = c;
current_color[4] = w;
} else {
current_color[3] = briCT;
}
// continue
case LST_RGB:
current_color[0] = r;
current_color[1] = g;
current_color[2] = b;
break;
}
}
void changeHSB(uint16_t hue, uint8_t sat, uint8_t briRGB) {
_state->setHS(hue, sat);
_state->setBriRGB(briRGB);
if (_ct_rgb_linked) { _state->setColorMode(LCM_RGB); } // try to force RGB
saveSettings();
calcLevels();
}
// save the current light state to Settings.
void saveSettings() {
if (Light.pwm_multi_channels) {
// simply save each channel
_state->getChannelsRaw(Settings.light_color);
Settings.light_dimmer = 100; // arbitrary value, unused in this mode
} else {
uint8_t cm = _state->getColorMode();
memset(&Settings.light_color[0], 0, sizeof(Settings.light_color)); // clear all channels
if (LCM_RGB & cm) { // can be either LCM_RGB or LCM_BOTH
_state->getRGB(&Settings.light_color[0], &Settings.light_color[1], &Settings.light_color[2]);
Settings.light_dimmer = _state->BriToDimmer(_state->getBriRGB());
// anyways we always store RGB with BrightnessRGB
if (LCM_BOTH == cm) {
// then store at actual brightness CW/WW if dual mode
_state->getActualRGBCW(nullptr, nullptr, nullptr, &Settings.light_color[3], &Settings.light_color[4]);
}
} else if (LCM_CT == cm) { // cm can only be LCM_CT
_state->getCW(&Settings.light_color[3], &Settings.light_color[4]);
Settings.light_dimmer = _state->BriToDimmer(_state->getBriCT());
}
}
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::saveSettings Settings.light_color (%d %d %d %d %d - %d)",
Settings.light_color[0], Settings.light_color[1], Settings.light_color[2],
Settings.light_color[3], Settings.light_color[4], Settings.light_dimmer);
#endif
}
// set all 5 channels at once.
// Channels are: R G B CW WW
// Brightness is automatically recalculated to adjust channels to the desired values
void changeChannels(uint8_t *channels) {
if (Light.pwm_multi_channels) {
_state->setChannelsRaw(channels);
} else if (LST_COLDWARM == Light.subtype) {
// remap channels 0-1 to 3-4 if cold/warm
uint8_t remapped_channels[5] = {0,0,0,channels[0],channels[1]};
_state->setChannels(remapped_channels);
} else {
_state->setChannels(channels);
}
saveSettings();
calcLevels();
}
};
// the singletons for light state and Light Controller
LightStateClass light_state = LightStateClass();
LightControllerClass light_controller = LightControllerClass(light_state);
/*********************************************************************************************\
* Change scales from 8 bits to 10 bits and vice versa
\*********************************************************************************************/
// 8 to 10 to 8 is garanteed to give the same result
uint16_t change8to10(uint8_t v) {
return changeUIntScale(v, 0, 255, 0, 1023);
}
// change from 10 bits to 8 bits, but any non-zero input will be non-zero
uint8_t change10to8(uint16_t v) {
return (0 == v) ? 0 : changeUIntScale(v, 4, 1023, 1, 255);
}
/*********************************************************************************************\
* Gamma correction
\*********************************************************************************************/
// Calculate the gamma corrected value for LEDS
uint16_t ledGamma_internal(uint16_t v, const struct gamma_table_t *gt_ptr) {
uint16_t from_src = 0;
uint16_t from_gamma = 0;
for (const gamma_table_t *gt = gt_ptr; ; gt++) {
uint16_t to_src = gt->to_src;
uint16_t to_gamma = gt->to_gamma;
if (v <= to_src) {
return changeUIntScale(v, from_src, to_src, from_gamma, to_gamma);
}
from_src = to_src;
from_gamma = to_gamma;
}
}
// Calculate the reverse gamma value for LEDS
uint16_t ledGammaReverse_internal(uint16_t vg, const struct gamma_table_t *gt_ptr) {
uint16_t from_src = 0;
uint16_t from_gamma = 0;
for (const gamma_table_t *gt = gt_ptr; ; gt++) {
uint16_t to_src = gt->to_src;
uint16_t to_gamma = gt->to_gamma;
if (vg <= to_gamma) {
return changeUIntScale(vg, from_gamma, to_gamma, from_src, to_src);
}
from_src = to_src;
from_gamma = to_gamma;
}
}
// 10 bits in, 10 bits out
uint16_t ledGamma10_10(uint16_t v) {
return ledGamma_internal(v, gamma_table);
}
// 10 bits resolution, 8 bits in
uint16_t ledGamma10(uint8_t v) {
return ledGamma10_10(change8to10(v));
}
// Legacy function
uint8_t ledGamma(uint8_t v) {
return change10to8(ledGamma10(v));
}
/********************************************************************************************/
void LightPwmOffset(uint32_t offset)
{
Light.pwm_offset = offset;
}
bool LightModuleInit(void)
{
light_type = LT_BASIC; // Use basic PWM control if SetOption15 = 0
if (Settings.flag.pwm_control) { // SetOption15 - Switch between commands PWM or COLOR/DIMMER/CT/CHANNEL
for (uint32_t i = 0; i < MAX_PWMS; i++) {
if (PinUsed(GPIO_PWM1, i)) { light_type++; } // Use Dimmer/Color control for all PWM as SetOption15 = 1
}
}
light_flg = 0;
if (XlgtCall(FUNC_MODULE_INIT)) {
// serviced
}
#ifdef ESP8266
else if (SONOFF_BN == my_module_type) { // PWM Single color led (White)
light_type = LT_PWM1;
}
else if (SONOFF_LED == my_module_type) { // PWM Dual color led (White warm and cold)
if (!my_module.io[4]) { // Fix Sonoff Led instabilities
pinMode(4, OUTPUT); // Stop floating outputs
digitalWrite(4, LOW);
}
if (!my_module.io[5]) {
pinMode(5, OUTPUT); // Stop floating outputs
digitalWrite(5, LOW);
}
if (!my_module.io[14]) {
pinMode(14, OUTPUT); // Stop floating outputs
digitalWrite(14, LOW);
}
light_type = LT_PWM2;
}
#endif // ESP8266
#ifdef USE_PWM_DIMMER
#ifdef USE_DEVICE_GROUPS
else if (PWM_DIMMER == my_module_type) {
light_type = Settings.pwm_dimmer_cfg.pwm_count + 1;
}
#endif // USE_DEVICE_GROUPS
#endif // USE_PWM_DIMMER
if (light_type > LT_BASIC) {
devices_present++;
}
// post-process for lights
uint32_t pwm_channels = (light_type & 7) > LST_MAX ? LST_MAX : (light_type & 7);
if (Settings.flag3.pwm_multi_channels) { // SetOption68 - Enable multi-channels PWM instead of Color PWM
if (0 == pwm_channels) { pwm_channels = 1; }
devices_present += pwm_channels - 1; // add the pwm channels controls at the end
} else if ((Settings.param[P_RGB_REMAP] & 128) && (LST_RGBW <= pwm_channels)) {
// if RGBW or RGBCW, and SetOption37 >= 128, we manage RGB and W separately, hence adding a device
devices_present++;
} else if ((Settings.flag4.virtual_ct) && (LST_RGBW == pwm_channels)) {
Light.virtual_ct = true; // enabled
light_type++; // create an additional virtual 5th channel
}
return (light_type > LT_BASIC);
}
// compute actual PWM min/max values from DimmerRange
// must be called when DimmerRange is changed or LedTable
void LightCalcPWMRange(void) {
uint16_t pwm_min, pwm_max;
pwm_min = change8to10(LightStateClass::DimmerToBri(Settings.dimmer_hw_min)); // default 0
pwm_max = change8to10(LightStateClass::DimmerToBri(Settings.dimmer_hw_max)); // default 100
if (Settings.light_correction) {
pwm_min = ledGamma10_10(pwm_min); // apply gamma correction
pwm_max = ledGamma10_10(pwm_max); // 0..1023
}
pwm_min = pwm_min > 0 ? changeUIntScale(pwm_min, 1, 1023, 1, Settings.pwm_range) : 0; // adapt range but keep zero and non-zero values
pwm_max = changeUIntScale(pwm_max, 1, 1023, 1, Settings.pwm_range); // pwm_max cannot be zero
Light.pwm_min = pwm_min;
Light.pwm_max = pwm_max;
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("LightCalcPWMRange %d %d - %d %d"), Settings.dimmer_hw_min, Settings.dimmer_hw_max, Light.pwm_min, Light.pwm_max);
}
void LightInit(void)
{
// move white blend mode from deprecated `RGBWWTable` to `SetOption105`
if (0 == Settings.rgbwwTable[4]) {
Settings.flag4.white_blend_mode = true;
Settings.rgbwwTable[4] = 255; // set RGBWWTable value to its default
}
Light.device = devices_present;
Light.subtype = (light_type & 7) > LST_MAX ? LST_MAX : (light_type & 7); // Always 0 - LST_MAX (5)
Light.pwm_multi_channels = Settings.flag3.pwm_multi_channels; // SetOption68 - Enable multi-channels PWM instead of Color PWM
if (LST_RGBW <= Light.subtype) {
// only change if RGBW or RGBCW
// do not allow independant RGB and WC colors
bool ct_rgb_linked = !(Settings.param[P_RGB_REMAP] & 128);
light_controller.setCTRGBLinked(ct_rgb_linked);
}
if ((LST_SINGLE <= Light.subtype) && Light.pwm_multi_channels) {
// we treat each PWM channel as an independant one, hence we switch to
light_controller.setPWMMultiChannel(true);
Light.device = devices_present - Light.subtype + 1; // adjust if we also have relays
} else if (!light_controller.isCTRGBLinked()) {
// if RGBW or RGBCW, and SetOption37 >= 128, we manage RGB and W separately
Light.device--; // we take the last two devices as lights
}
LightCalcPWMRange();
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightInit Light.pwm_multi_channels=%d Light.subtype=%d Light.device=%d devices_present=%d",
Light.pwm_multi_channels, Light.subtype, Light.device, devices_present);
#endif
light_controller.setSubType(Light.subtype);
light_controller.loadSettings();
light_controller.setAlexaCTRange(Settings.flag4.alexa_ct_range);
light_controller.calcLevels(); // calculate the initial values (#8058)
if (LST_SINGLE == Light.subtype) {
Settings.light_color[0] = 255; // One channel only supports Dimmer but needs max color
}
if (light_type < LT_PWM6) { // PWM
for (uint32_t i = 0; i < light_type; i++) {
Settings.pwm_value[i] = 0; // Disable direct PWM control
if (PinUsed(GPIO_PWM1, i)) {
#ifdef ESP8266
pinMode(Pin(GPIO_PWM1, i), OUTPUT);
#else // ESP32
analogAttach(Pin(GPIO_PWM1, i), i);
#endif
}
}
if (PinUsed(GPIO_ARIRFRCV)) {
if (PinUsed(GPIO_ARIRFSEL)) {
pinMode(Pin(GPIO_ARIRFSEL), OUTPUT);
digitalWrite(Pin(GPIO_ARIRFSEL), 1); // Turn off RF
}
}
}
uint32_t max_scheme = Light.max_scheme;
if (Light.subtype < LST_RGB) {
max_scheme = LS_POWER;
}
if ((LS_WAKEUP == Settings.light_scheme) || (Settings.light_scheme > max_scheme)) {
Settings.light_scheme = LS_POWER;
}
Light.power = 0;
Light.update = true;
Light.wakeup_active = 0;
if (0 == Settings.light_wakeup) {
Settings.light_wakeup = 60; // Fix divide by zero exception 0 in Animate
}
if (Settings.flag4.fade_at_startup) {
Light.fade_initialized = true; // consider fade intialized starting from black
}
LightUpdateColorMapping();
}
void LightUpdateColorMapping(void)
{
uint8_t param = Settings.param[P_RGB_REMAP] & 127;
if (param > 119){ param = 0; }
uint8_t tmp[] = {0,1,2,3,4};
Light.color_remap[0] = tmp[param / 24];
for (uint32_t i = param / 24; i<4; ++i){
tmp[i] = tmp[i+1];
}
param = param % 24;
Light.color_remap[1] = tmp[(param / 6)];
for (uint32_t i = param / 6; i<3; ++i){
tmp[i] = tmp[i+1];
}
param = param % 6;
Light.color_remap[2] = tmp[(param / 2)];
for (uint32_t i = param / 2; i<2; ++i){
tmp[i] = tmp[i+1];
}
param = param % 2;
Light.color_remap[3] = tmp[param];
Light.color_remap[4] = tmp[1-param];
Light.update = true;
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%d colors: %d %d %d %d %d") ,Settings.param[P_RGB_REMAP], Light.color_remap[0],Light.color_remap[1],Light.color_remap[2],Light.color_remap[3],Light.color_remap[4]);
}
uint8_t LightGetDimmer(uint8_t dimmer) {
return light_state.getDimmer(dimmer);
}
void LightSetDimmer(uint8_t dimmer) {
light_controller.changeDimmer(dimmer);
}
void LightGetHSB(uint16_t *hue, uint8_t *sat, uint8_t *bri) {
light_state.getHSB(hue, sat, bri);
}
void LightGetXY(float *X, float *Y) {
light_state.getXY(X, Y);
}
void LightHsToRgb(uint16_t hue, uint8_t sat, uint8_t *r_r, uint8_t *r_g, uint8_t *r_b) {
light_state.HsToRgb(hue, sat, r_r, r_g, r_b);
}
// If SetOption68 is set, get the brightness for a specific device
uint8_t LightGetBri(uint8_t device) {
uint8_t bri = 254; // default value if relay
if (Light.pwm_multi_channels) {
if ((device >= Light.device) && (device < Light.device + LST_MAX) && (device <= devices_present)) {
bri = Light.current_color[device - Light.device];
}
} else if (light_controller.isCTRGBLinked()) { // standard behavior
if (device == Light.device) {
bri = light_state.getBri();
}
} else { // unlinked
if (device == Light.device) {
bri = light_state.getBriRGB();
} else if (device == Light.device + 1) {
bri = light_state.getBriCT();
}
}
return bri;
}
// If SetOption68 is set, set the brightness for a specific device
void LightSetBri(uint8_t device, uint8_t bri) {
if (Light.pwm_multi_channels) {
if ((device >= Light.device) && (device < Light.device + LST_MAX) && (device <= devices_present)) {
Light.current_color[device - Light.device] = bri;
light_controller.changeChannels(Light.current_color);
}
} else if (light_controller.isCTRGBLinked()) { // standard
if (device == Light.device) {
light_controller.changeBri(bri);
}
} else { // unlinked
if (device == Light.device) {
light_controller.changeBriRGB(bri);
} else if (device == Light.device + 1) {
light_controller.changeBriCT(bri);
}
}
}
void LightColorOffset(int32_t offset) {
uint16_t hue;
uint8_t sat;
light_state.getHSB(&hue, &sat, nullptr); // Allow user control over Saturation
hue += offset;
if (hue < 0) { hue += 359; }
if (hue > 359) { hue -= 359; }
if (!Light.pwm_multi_channels) {
light_state.setHS(hue, sat);
} else {
light_state.setHS(hue, 255);
light_state.setBri(255); // If multi-channel, force bri to max, it will be later dimmed to correct value
}
light_controller.calcLevels(Light.new_color);
}
bool LightColorTempOffset(int32_t offset) {
int32_t ct = LightGetColorTemp();
if (0 == ct) { return false; } // CT not supported
ct += offset;
if (ct < CT_MIN) { ct = CT_MIN; }
else if (ct > CT_MAX) { ct = CT_MAX; }
LightSetColorTemp(ct);
return true;
}
void LightSetColorTemp(uint16_t ct)
{
/* Color Temperature (https://developers.meethue.com/documentation/core-concepts)
*
* ct = 153 mirek = 6500K = Cold = CCWW = FF00
* ct = 500 mirek = 2000K = Warm = CCWW = 00FF
*/
// don't set CT if not supported
if ((LST_COLDWARM != Light.subtype) && (LST_RGBCW != Light.subtype)) {
return;
}
light_controller.changeCTB(ct, light_state.getBriCT());
}
uint16_t LightGetColorTemp(void)
{
// don't calculate CT for unsupported devices
if ((LST_COLDWARM != Light.subtype) && (LST_RGBCW != Light.subtype)) {
return 0;
}
return (light_state.getColorMode() & LCM_CT) ? light_state.getCT() : 0;
}
void LightSetSignal(uint16_t lo, uint16_t hi, uint16_t value)
{
/* lo - below lo is green
hi - above hi is red
*/
if (Settings.flag.light_signal) { // SetOption18 - Pair light signal with CO2 sensor
uint16_t signal = changeUIntScale(value, lo, hi, 0, 255); // 0..255
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "Light signal %d"), signal);
light_controller.changeRGB(signal, 255 - signal, 0, true); // keep bri
Settings.light_scheme = 0;
if (0 == light_state.getBri()) {
light_controller.changeBri(50);
}
}
}
// convert channels to string, use Option 17 to foce decimal, unless force_hex
char* LightGetColor(char* scolor, boolean force_hex = false)
{
if ((0 == Settings.light_scheme) || (!Light.pwm_multi_channels)) {
light_controller.calcLevels(); // recalculate levels only if Scheme 0, otherwise we mess up levels
}
scolor[0] = '\0';
for (uint32_t i = 0; i < Light.subtype; i++) {
if (!force_hex && Settings.flag.decimal_text) { // SetOption17 - Switch between decimal or hexadecimal output
snprintf_P(scolor, LIGHT_COLOR_SIZE, PSTR("%s%s%d"), scolor, (i > 0) ? "," : "", Light.current_color[i]);
} else {
snprintf_P(scolor, LIGHT_COLOR_SIZE, PSTR("%s%02X"), scolor, Light.current_color[i]);
}
}
return scolor;
}
void LightPowerOn(void)
{
if (light_state.getBri() && !(Light.power)) {
ExecuteCommandPower(Light.device, POWER_ON, SRC_LIGHT);
}
}
void ResponseLightState(uint8_t append)
{
char scolor[LIGHT_COLOR_SIZE];
char scommand[33];
bool unlinked = !light_controller.isCTRGBLinked() && (Light.subtype >= LST_RGBW); // there are 2 power and dimmers for RGB and White
if (append) {
ResponseAppend_P(PSTR(","));
} else {
Response_P(PSTR("{"));
}
if (!Light.pwm_multi_channels) {
if (unlinked) {
// RGB and W are unlinked, we display the second Power/Dimmer
ResponseAppend_P(PSTR("\"" D_RSLT_POWER "%d\":\"%s\",\"" D_CMND_DIMMER "1\":%d"
",\"" D_RSLT_POWER "%d\":\"%s\",\"" D_CMND_DIMMER "2\":%d"),
Light.device, GetStateText(Light.power & 1), light_state.getDimmer(1),
Light.device + 1, GetStateText(Light.power & 2 ? 1 : 0), light_state.getDimmer(2));
} else {
GetPowerDevice(scommand, Light.device, sizeof(scommand), Settings.flag.device_index_enable); // SetOption26 - Switch between POWER or POWER1
ResponseAppend_P(PSTR("\"%s\":\"%s\",\"" D_CMND_DIMMER "\":%d"), scommand, GetStateText(Light.power & 1),
light_state.getDimmer());
}
if (Light.subtype > LST_SINGLE) {
ResponseAppend_P(PSTR(",\"" D_CMND_COLOR "\":\"%s\""), LightGetColor(scolor));
if (LST_RGB <= Light.subtype) {
uint16_t hue;
uint8_t sat, bri;
light_state.getHSB(&hue, &sat, &bri);
sat = changeUIntScale(sat, 0, 255, 0, 100);
bri = changeUIntScale(bri, 0, 255, 0, 100);
ResponseAppend_P(PSTR(",\"" D_CMND_HSBCOLOR "\":\"%d,%d,%d\""), hue,sat,bri);
}
// Add White level
if ((LST_COLDWARM == Light.subtype) || (LST_RGBW <= Light.subtype)) {
ResponseAppend_P(PSTR(",\"" D_CMND_WHITE "\":%d"), light_state.getDimmer(2));
}
// Add CT
if ((LST_COLDWARM == Light.subtype) || (LST_RGBCW == Light.subtype)) {
ResponseAppend_P(PSTR(",\"" D_CMND_COLORTEMPERATURE "\":%d"), light_state.getCT());
}
// Add status for each channel
ResponseAppend_P(PSTR(",\"" D_CMND_CHANNEL "\":[" ));
for (uint32_t i = 0; i < Light.subtype; i++) {
uint8_t channel_raw = Light.current_color[i];
uint8_t channel = changeUIntScale(channel_raw,0,255,0,100);
// if non null, force to be at least 1
if ((0 == channel) && (channel_raw > 0)) { channel = 1; }
ResponseAppend_P(PSTR("%s%d" ), (i > 0 ? "," : ""), channel);
}
ResponseAppend_P(PSTR("]"));
}
if (append) {
if (Light.subtype >= LST_RGB) {
ResponseAppend_P(PSTR(",\"" D_CMND_SCHEME "\":%d"), Settings.light_scheme);
}
if (Light.max_scheme > LS_MAX) {
ResponseAppend_P(PSTR(",\"" D_CMND_WIDTH "\":%d"), Settings.light_width);
}
ResponseAppend_P(PSTR(",\"" D_CMND_FADE "\":\"%s\",\"" D_CMND_SPEED "\":%d,\"" D_CMND_LEDTABLE "\":\"%s\""),
GetStateText(Settings.light_fade), Settings.light_speed, GetStateText(Settings.light_correction));
}
} else { // Light.pwm_multi_channels
for (uint32_t i = 0; i < Light.subtype; i++) {
GetPowerDevice(scommand, Light.device + i, sizeof(scommand), 1);
uint32_t light_power_masked = Light.power & (1 << i); // the Light.power value for this device
light_power_masked = light_power_masked ? 1 : 0; // convert to on/off
ResponseAppend_P(PSTR("\"%s\":\"%s\",\"" D_CMND_CHANNEL "%d\":%d,"), scommand, GetStateText(light_power_masked), Light.device + i,
changeUIntScale(Light.current_color[i], 0, 255, 0, 100));
}
ResponseAppend_P(PSTR("\"" D_CMND_COLOR "\":\"%s\""), LightGetColor(scolor));
} // Light.pwm_multi_channels
if (!append) {
ResponseJsonEnd();
}
}
void LightPreparePower(power_t channels = 0xFFFFFFFF) { // 1 = only RGB, 2 = only CT, 3 = both RGB and CT
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG, "LightPreparePower power=%d Light.power=%d", TasmotaGlobal.power, Light.power);
#endif
// If multi-channels, then we only switch off channels with a value of zero
if (Light.pwm_multi_channels) {
for (uint32_t i = 0; i < Light.subtype; i++) {
if (bitRead(channels, i)) {
// if channel is non-null, channel is supposed to be on, but it is off, do Power On
if ((Light.current_color[i]) && (!bitRead(Light.power, i))) {
if (!Settings.flag.not_power_linked) { // SetOption20 - Control power in relation to Dimmer/Color/Ct changes
ExecuteCommandPower(Light.device + i, POWER_ON_NO_STATE, SRC_LIGHT);
}
} else {
// if channel is zero and channel is on, set it off
if ((0 == Light.current_color[i]) && bitRead(Light.power, i)) {
ExecuteCommandPower(Light.device + i, POWER_OFF_NO_STATE, SRC_LIGHT);
}
}
#ifdef USE_DOMOTICZ
DomoticzUpdatePowerState(Light.device + i);
#endif // USE_DOMOTICZ
}
}
} else {
if (light_controller.isCTRGBLinked()) { // linked, standard
if (light_state.getBri() && !(Light.power)) {
if (!Settings.flag.not_power_linked) { // SetOption20 - Control power in relation to Dimmer/Color/Ct changes
ExecuteCommandPower(Light.device, POWER_ON_NO_STATE, SRC_LIGHT);
}
} else if (!light_state.getBri() && Light.power) {
ExecuteCommandPower(Light.device, POWER_OFF_NO_STATE, SRC_LIGHT);
}
} else {
// RGB
if (channels & 1) {
if (light_state.getBriRGB() && !(Light.power & 1)) {
if (!Settings.flag.not_power_linked) { // SetOption20 - Control power in relation to Dimmer/Color/Ct changes
ExecuteCommandPower(Light.device, POWER_ON_NO_STATE, SRC_LIGHT);
}
} else if (!light_state.getBriRGB() && (Light.power & 1)) {
ExecuteCommandPower(Light.device, POWER_OFF_NO_STATE, SRC_LIGHT);
}
}
// White CT
if (channels & 2) {
if (light_state.getBriCT() && !(Light.power & 2)) {
if (!Settings.flag.not_power_linked) { // SetOption20 - Control power in relation to Dimmer/Color/Ct changes
ExecuteCommandPower(Light.device + 1, POWER_ON_NO_STATE, SRC_LIGHT);
}
} else if (!light_state.getBriCT() && (Light.power & 2)) {
ExecuteCommandPower(Light.device + 1, POWER_OFF_NO_STATE, SRC_LIGHT);
}
}
}
#ifdef USE_DOMOTICZ
DomoticzUpdatePowerState(Light.device);
#endif // USE_DOMOTICZ
}
if (Settings.flag3.hass_tele_on_power) { // SetOption59 - Send tele/%topic%/STATE in addition to stat/%topic%/RESULT
MqttPublishTeleState();
}
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG, "LightPreparePower End power=%d Light.power=%d", TasmotaGlobal.power, Light.power);
#endif
Light.power = TasmotaGlobal.power >> (Light.device - 1); // reset next state, works also with unlinked RGB/CT
ResponseLightState(0);
}
#ifdef USE_LIGHT_PALETTE
void LightSetPaletteEntry(void)
{
uint8_t bri = light_state.getBri();
uint8_t * palette_entry = &Light.palette[Light.wheel * LST_MAX];
for (int i = 0; i < LST_MAX; i++) {
Light.new_color[i] = changeUIntScale(palette_entry[i], 0, 255, 0, bri);
}
light_state.setChannelsRaw(Light.new_color);
if (!Light.pwm_multi_channels) {
light_state.setCW(Light.new_color[3], Light.new_color[4], true);
if (Light.new_color[0] || Light.new_color[1] || Light.new_color[2]) light_state.addRGBMode();
}
}
#endif // USE_LIGHT_PALETTE
void LightCycleColor(int8_t direction)
{
// if (Light.strip_timer_counter % (Settings.light_speed * 2)) { return; } // Speed 1: 24sec, 2: 48sec, 3: 72sec, etc
if (Settings.light_speed > 3) {
if (Light.strip_timer_counter % (Settings.light_speed - 2)) { return; } // Speed 4: 24sec, 5: 36sec, 6: 48sec, etc
}
#ifdef USE_LIGHT_PALETTE
if (Light.palette_count) {
if (!Light.fade_running) {
if (0 == direction) {
Light.wheel = random(Light.palette_count);
}
else {
Light.wheel += direction;
if (Light.wheel >= Light.palette_count) {
Light.wheel = 0;
if (direction < 0) Light.wheel = Light.palette_count - 1;
}
}
LightSetPaletteEntry();
}
return;
}
#endif // USE_LIGHT_PALETTE
if (0 == direction) {
if (Light.random == Light.wheel) {
Light.random = random(255);
uint8_t my_dir = (Light.random < Light.wheel -128) ? 1 :
(Light.random < Light.wheel ) ? 0 :
(Light.random > Light.wheel +128) ? 0 : 1; // Increment or Decrement and roll-over
Light.random = (Light.random & 0xFE) | my_dir;
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("LGT: random %d"), Light.random);
}
// direction = (Light.random < Light.wheel) ? -1 : 1;
direction = (Light.random &0x01) ? 1 : -1;
}
// if (Settings.light_speed < 3) { direction <<= (3 - Settings.light_speed); } // Speed 1: 12/4=3sec, 2: 12/2=6sec, 3: 12sec
if (Settings.light_speed < 3) { direction *= (4 - Settings.light_speed); } // Speed 1: 12/3=4sec, 2: 12/2=6sec, 3: 12sec
Light.wheel += direction;
uint16_t hue = changeUIntScale(Light.wheel, 0, 255, 0, 359); // Scale to hue to keep amount of steps low (max 255 instead of 359)
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("LGT: random %d, wheel %d, hue %d"), Light.random, Light.wheel, hue);
if (!Light.pwm_multi_channels) {
uint8_t sat;
light_state.getHSB(nullptr, &sat, nullptr); // Allow user control over Saturation
light_state.setHS(hue, sat);
} else {
light_state.setHS(hue, 255);
light_state.setBri(255); // If multi-channel, force bri to max, it will be later dimmed to correct value
}
light_controller.calcLevels(Light.new_color);
}
void LightSetPower(void)
{
// Light.power = XdrvMailbox.index;
Light.old_power = Light.power;
//Light.power = bitRead(XdrvMailbox.index, Light.device -1);
uint32_t mask = 1; // default mask
if (Light.pwm_multi_channels) {
mask = (1 << Light.subtype) - 1; // wider mask
} else if (!light_controller.isCTRGBLinked()) {
mask = 3; // we got 2 devices, for RGB and White
}
uint32_t shift = Light.device - 1;
// If PWM multi_channels
// Ex: 3 Relays and 4 PWM - devices_present = 7, Light.device = 4, Light.subtype = 4
// Result: mask = 0b00001111 = 0x0F, shift = 3.
// Power bits we consider are: 0b01111000 = 0x78
// If regular situation: devices_present == Light.subtype
Light.power = (XdrvMailbox.index & (mask << shift)) >> shift;
if (Light.wakeup_active) {
Light.wakeup_active--;
}
#ifdef DEBUG_LIGHT
AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightSetPower XdrvMailbox.index=%d Light.old_power=%d Light.power=%d mask=%d shift=%d",
XdrvMailbox.index, Light.old_power, Light.power, mask, shift);
#endif
if (Light.power != Light.old_power) {
Light.update = true;
}
LightAnimate();
}
// On entry Light.new_color[5] contains the color to be displayed
// and Light.last_color[5] the color currently displayed
// Light.power tells which lights or channels (SetOption68) are on/off
void LightAnimate(void)
{
uint16_t light_still_on = 0;
bool power_off = false;
// make sure we update CT range in case SetOption82 was changed
light_controller.setAlexaCTRange(Settings.flag4.alexa_ct_range);
Light.strip_timer_counter++;
// set sleep parameter: either settings,
// or set a maximum of PWM_MAX_SLEEP if light is on or Fade is running
if (Light.power || Light.fade_running) {
if (Settings.sleep > PWM_MAX_SLEEP) {
TasmotaGlobal.sleep = PWM_MAX_SLEEP; // set a maxumum value of 10 milliseconds to ensure that animations are smooth
} else {
TasmotaGlobal.sleep = Settings.sleep; // or keep the current sleep if it's lower than 50
}
} else {
TasmotaGlobal.sleep = Settings.sleep;
}
if (!Light.power) { // All channels powered off
Light.strip_timer_counter = 0;
if (Settings.light_scheme >= LS_MAX) {
power_off = true;
}
} else {
switch (Settings.light_scheme) {
case LS_POWER:
light_controller.calcLevels(Light.new_color);
break;
case LS_WAKEUP:
{
if (2 == Light.wakeup_active) {
Light.wakeup_active = 1;
for (uint32_t i = 0; i < Light.subtype; i++) {
Light.new_color[i] = 0;
}
Light.wakeup_start_time = millis();
}
// which step are we in a range 0..1023
uint32_t step_10 = ((millis() - Light.wakeup_start_time) * 1023) / (Settings.light_wakeup * 1000);
if (step_10 > 1023) { step_10 = 1023; } // sanity check
uint8_t wakeup_bri = changeUIntScale(step_10, 0, 1023, 0, LightStateClass::DimmerToBri(Settings.light_dimmer));
if (wakeup_bri != light_state.getBri()) {
light_state.setBri(wakeup_bri);
light_controller.calcLevels();
for (uint32_t i = 0; i < Light.subtype; i++) {
Light.new_color[i] = Light.current_color[i];
}
}
if (1023 == step_10) {
Response_P(PSTR("{\"" D_CMND_WAKEUP "\":\"" D_JSON_DONE "\""));
ResponseLightState(1);
ResponseJsonEnd();
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_CMND_WAKEUP));
Light.wakeup_active = 0;
Settings.light_scheme = LS_POWER;
}
}
break;
case LS_CYCLEUP:
case LS_CYCLEDN:
case LS_RANDOM:
if (LS_CYCLEUP == Settings.light_scheme) {
LightCycleColor(1);
} else if (LS_CYCLEDN == Settings.light_scheme) {
LightCycleColor(-1);
} else {
LightCycleColor(0);
}
if (Light.pwm_multi_channels) { // See #8058
Light.new_color[0] = changeUIntScale(Light.new_color[0], 0, 255, 0, Settings.light_color[0]);
Light.new_color[1] = changeUIntScale(Light.new_color[1], 0, 255, 0, Settings.light_color[1]);
Light.new_color[2] = changeUIntScale(Light.new_color[2], 0, 255, 0, Settings.light_color[2]);
}
break;
default:
XlgtCall(FUNC_SET_SCHEME);
}
#ifdef USE_DEVICE_GROUPS
if (Settings.light_scheme != Light.last_scheme) {
Light.last_scheme = Settings.light_scheme;
SendLocalDeviceGroupMessage(DGR_MSGTYP_UPDATE, DGR_ITEM_LIGHT_SCHEME, Settings.light_scheme);
Light.devgrp_no_channels_out = false;
}
#endif // USE_DEVICE_GROUPS
}
if ((Settings.light_scheme < LS_MAX) || power_off) { // exclude WS281X Neopixel schemes
// Apply power modifiers to Light.new_color
LightApplyPower(Light.new_color, Light.power);
// AddLog_P2(LOG_LEVEL_INFO, PSTR("last_color (%02X%02X%02X%02X%02X) new_color (%02X%02X%02X%02X%02X) power %d"),
// Light.last_color[0], Light.last_color[1], Light.last_color[2], Light.last_color[3], Light.last_color[4],
// Light.new_color[0], Light.new_color[1], Light.new_color[2], Light.new_color[3], Light.new_color[4],
// Light.power
// );
if (memcmp(Light.last_color, Light.new_color, Light.subtype)) {
Light.update = true;
}
if (Light.update) {
#ifdef USE_DEVICE_GROUPS
if (Light.power) LightSendDeviceGroupStatus(false);
#endif // USE_DEVICE_GROUPS
uint16_t cur_col_10[LST_MAX]; // 10 bits resolution
Light.update = false;
bool rgbwwtable_applied = false; // did we already applied RGBWWTable (ex: in white_blend_mode or virtual_ct)
// first set 8 and 10 bits channels
for (uint32_t i = 0; i < LST_MAX; i++) {
Light.last_color[i] = Light.new_color[i];
// Extend from 8 to 10 bits if no correction (in case no gamma correction is required)
cur_col_10[i] = change8to10(Light.new_color[i]);
}
if (Light.pwm_multi_channels) {
calcGammaMultiChannels(cur_col_10);
} else {
calcGammaBulbs(cur_col_10);
// Now see if we need to mix RGB and True White
// Valid only for LST_RGBW, LST_RGBCW, rgbwwTable[4] is zero, and white is zero (see doc)
if ((LST_RGBW <= Light.subtype) && (Settings.flag4.white_blend_mode) && (0 == cur_col_10[3]+cur_col_10[4])) {
uint32_t min_rgb_10 = min3(cur_col_10[0], cur_col_10[1], cur_col_10[2]);
for (uint32_t i=0; i<3; i++) {
// substract white and adjust according to rgbwwTable
uint32_t adjust10 = change8to10(Settings.rgbwwTable[i]);
cur_col_10[i] = changeUIntScale(cur_col_10[i] - min_rgb_10, 0, 1023, 0, adjust10);
}
// compute the adjusted white levels for 10 and 8 bits
uint32_t adjust_w_10 = changeUIntScale(Settings.rgbwwTable[3], 0, 255, 0, 1023);
uint32_t white_10 = changeUIntScale(min_rgb_10, 0, 1023, 0, adjust_w_10); // set white power down corrected with rgbwwTable[3]
if (LST_RGBW == Light.subtype) {
// we simply set the white channel
cur_col_10[3] = white_10;
} else { // LST_RGBCW
// we distribute white between cold and warm according to CT value
uint32_t ct = light_state.getCT10bits();
cur_col_10[4] = changeUIntScale(ct, 0, 1023, 0, white_10);
cur_col_10[3] = white_10 - cur_col_10[4];
}
rgbwwtable_applied = true;
} else if ((Light.virtual_ct) && (0 == cur_col_10[0]+cur_col_10[1]+cur_col_10[2])) {
// virtual_ct is on and we don't have any RGB set
uint16_t sw_white = Settings.flag4.virtual_ct_cw ? cur_col_10[4] : cur_col_10[3]; // white power for virtual RGB
uint16_t hw_white = Settings.flag4.virtual_ct_cw ? cur_col_10[3] : cur_col_10[4]; // white for hardware LED
uint32_t adjust_sw = change8to10(Settings.flag4.virtual_ct_cw ? Settings.rgbwwTable[4] : Settings.rgbwwTable[3]);
uint32_t adjust_hw = change8to10(Settings.flag4.virtual_ct_cw ? Settings.rgbwwTable[3] : Settings.rgbwwTable[4]);
// set the target channels. Note: Gamma correction was arleady applied
cur_col_10[3] = changeUIntScale(hw_white, 0, 1023, 0, adjust_hw);
cur_col_10[4] = 0; // we don't actually have a 5the channel
sw_white = changeUIntScale(sw_white, 0, 1023, 0, adjust_sw); // pre-adjust virtual channel
for (uint32_t i=0; i<3; i++) {
uint32_t adjust = change8to10(Settings.rgbwwTable[i]);
cur_col_10[i] = changeUIntScale(sw_white, 0, 1023, 0, adjust);
}
rgbwwtable_applied = true;
}
}
// Apply RGBWWTable only if not Settings.flag4.white_blend_mode
if (!rgbwwtable_applied) {
for (uint32_t i = 0; i<Light.subtype; i++) {
uint32_t adjust = change8to10(Settings.rgbwwTable[i]);
cur_col_10[i] = changeUIntScale(cur_col_10[i], 0, 1023, 0, adjust);
}
}
// final adjusments for PMW ranges, post-gamma correction
for (uint32_t i = 0; i < LST_MAX; i++) {
// scale from 0..1023 to 0..pwm_range, but keep any non-zero value to at least 1
cur_col_10[i] = (cur_col_10[i] > 0) ? changeUIntScale(cur_col_10[i], 1, 1023, 1, Settings.pwm_range) : 0;
}
// apply port remapping on both 8 bits and 10 bits versions
uint16_t orig_col_10bits[LST_MAX];
memcpy(orig_col_10bits, cur_col_10, sizeof(orig_col_10bits));
for (uint32_t i = 0; i < LST_MAX; i++) {
cur_col_10[i] = orig_col_10bits[Light.color_remap[i]];
}
if (!Settings.light_fade || skip_light_fade || power_off || (!Light.fade_initialized)) { // no fade
// record the current value for a future Fade
memcpy(Light.fade_start_10, cur_col_10, sizeof(Light.fade_start_10));
// push the final values at 8 and 10 bits resolution to the PWMs
LightSetOutputs(cur_col_10);
Light.fade_initialized = true; // it is now ok to fade
} else { // fade on
if (Light.fade_running) {
// if fade is running, we take the curring value as the start for the next fade
memcpy(Light.fade_start_10, Light.fade_cur_10, sizeof(Light.fade_start_10));
}
memcpy(Light.fade_end_10, cur_col_10, sizeof(Light.fade_start_10));
Light.fade_running = true;
Light.fade_duration = 0; // set the value to zero to force a recompute
Light.fade_start = 0;
// Fade will applied immediately below
}
}
if (Light.fade_running) {
if (LightApplyFade()) {
// AddLog_P2(LOG_LEVEL_INFO, PSTR("LightApplyFade %d %d %d %d %d"),
// Light.fade_cur_10[0], Light.fade_cur_10[1], Light.fade_cur_10[2], Light.fade_cur_10[3], Light.fade_cur_10[4]);
LightSetOutputs(Light.fade_cur_10);
}
}
#ifdef USE_PWM_DIMMER
// If the power is off and the fade is done, turn the relay off.
if (PWM_DIMMER == my_module_type && !Light.power && !Light.fade_running) PWMDimmerSetPower();
#endif // USE_PWM_DIMMER
}
}
bool isChannelGammaCorrected(uint32_t channel) {
if (!Settings.light_correction) { return false; } // Gamma correction not activated
if (channel >= Light.subtype) { return false; } // Out of range
#ifdef ESP8266
if ((PHILIPS == my_module_type) || (Settings.flag4.pwm_ct_mode)) {
if ((LST_COLDWARM == Light.subtype) && (1 == channel)) { return false; } // PMW reserved for CT
if ((LST_RGBCW == Light.subtype) && (4 == channel)) { return false; } // PMW reserved for CT
}
#endif // ESP8266
return true;
}
// is the channel a regular PWM or ColorTemp control
bool isChannelCT(uint32_t channel) {
#ifdef ESP8266
if ((PHILIPS == my_module_type) || (Settings.flag4.pwm_ct_mode)) {
if ((LST_COLDWARM == Light.subtype) && (1 == channel)) { return true; } // PMW reserved for CT
if ((LST_RGBCW == Light.subtype) && (4 == channel)) { return true; } // PMW reserved for CT
}
#endif // ESP8266
return false;
}
// Calculate the Gamma correction, if any, for fading, using the fast Gamma curve (10 bits in+out)
uint16_t fadeGamma(uint32_t channel, uint16_t v) {
if (isChannelGammaCorrected(channel)) {
return ledGamma_internal(v, gamma_table_fast);
} else {
return v;
}
}
uint16_t fadeGammaReverse(uint32_t channel, uint16_t vg) {
if (isChannelGammaCorrected(channel)) {
return ledGammaReverse_internal(vg, gamma_table_fast);
} else {
return vg;
}
}
bool LightApplyFade(void) { // did the value chanegd and needs to be applied
static uint32_t last_millis = 0;
uint32_t now = millis();
if ((now - last_millis) <= 5) {
return false; // the value was not changed in the last 5 milliseconds, ignore
}
last_millis = now;
// Check if we need to calculate the duration
if (0 == Light.fade_duration) {
Light.fade_start = now;
// compute the distance between start and and color (max of distance for each channel)
uint32_t distance = 0;
for (uint32_t i = 0; i < Light.subtype; i++) {
int32_t channel_distance = fadeGammaReverse(i, Light.fade_end_10[i]) - fadeGammaReverse(i, Light.fade_start_10[i]);
if (channel_distance < 0) { channel_distance = - channel_distance; }
if (channel_distance > distance) { distance = channel_distance; }
}
if (distance > 0) {
// compute the duration of the animation
// Note: Settings.light_speed is the number of half-seconds for a 100% fade,
// i.e. light_speed=1 means 1024 steps in 500ms
Light.fade_duration = (distance * Settings.light_speed * 500) / 1023;
if (Settings.save_data) {
// Also postpone the save_data for the duration of the Fade (in seconds)
uint32_t delay_seconds = 1 + (Light.fade_duration + 999) / 1000; // add one more second
// AddLog_P2(LOG_LEVEL_INFO, PSTR("delay_seconds %d, save_data_counter %d"), delay_seconds, TasmotaGlobal.save_data_counter);
if (TasmotaGlobal.save_data_counter < delay_seconds) {
TasmotaGlobal.save_data_counter = delay_seconds; // pospone
}
}
} else {
// no fade needed, we keep the duration at zero, it will fallback directly to end of fade
Light.fade_running = false;
}
}
uint16_t fade_current = now - Light.fade_start; // number of milliseconds since start of fade
if (fade_current <= Light.fade_duration) { // fade not finished
//Serial.printf("Fade: %d / %d - ", fade_current, Light.fade_duration);
for (uint32_t i = 0; i < Light.subtype; i++) {
Light.fade_cur_10[i] = fadeGamma(i,
changeUIntScale(fadeGammaReverse(i, fade_current),
0, Light.fade_duration,
fadeGammaReverse(i, Light.fade_start_10[i]),
fadeGammaReverse(i, Light.fade_end_10[i])));
// Light.fade_cur_10[i] = changeUIntScale(fade_current,
// 0, Light.fade_duration,
// Light.fade_start_10[i], Light.fade_end_10[i]);
}
} else {
// stop fade
//AddLop_P2(LOG_LEVEL_DEBUG, PSTR("Stop fade"));
Light.fade_running = false;
Light.fade_start = 0;
Light.fade_duration = 0;
// set light to target value
memcpy(Light.fade_cur_10, Light.fade_end_10, sizeof(Light.fade_end_10));
// record the last value for next start
memcpy(Light.fade_start_10, Light.fade_end_10, sizeof(Light.fade_start_10));
}
return true;
}
// On entry we take the 5 channels 8 bits entry, and we apply Power modifiers
// I.e. shut down channels that are powered down
void LightApplyPower(uint8_t new_color[LST_MAX], power_t power) {
// If SetOption68, multi_channels
if (Light.pwm_multi_channels) {
// if multi-channels, specifically apply the Light.power bits
for (uint32_t i = 0; i < LST_MAX; i++) {
if (0 == bitRead(power,i)) { // if power down bit is zero
new_color[i] = 0; // shut down this channel
}
}
// #ifdef DEBUG_LIGHT
// AddLog_P2(LOG_LEVEL_DEBUG_MORE, "Animate>> Light.power=%d Light.new_color=[%d,%d,%d,%d,%d]",
// Light.power, Light.new_color[0], Light.new_color[1], Light.new_color[2],
// Light.new_color[3], Light.new_color[4]);
// #endif
} else {
if (!light_controller.isCTRGBLinked()) {
// we have 2 power bits for RGB and White
if (0 == (power & 1)) {
new_color[0] = new_color[1] = new_color[2] = 0;
}
if (0 == (power & 2)) {
new_color[3] = new_color[4] = 0;
}
} else if (!power) {
for (uint32_t i = 0; i < LST_MAX; i++) {
new_color[i] = 0;
}
}
}
}
void LightSetOutputs(const uint16_t *cur_col_10) {
// now apply the actual PWM values, adjusted and remapped 10-bits range
if (light_type < LT_PWM6) { // only for direct PWM lights, not for Tuya, Armtronix...
for (uint32_t i = 0; i < (Light.subtype - Light.pwm_offset); i++) {
if (PinUsed(GPIO_PWM1, i)) {
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION "Cur_Col%d 10 bits %d"), i, cur_col_10[i]);
uint16_t cur_col = cur_col_10[i + Light.pwm_offset];
if (!isChannelCT(i)) { // if CT don't use pwm_min and pwm_max
cur_col = cur_col > 0 ? changeUIntScale(cur_col, 0, Settings.pwm_range, Light.pwm_min, Light.pwm_max) : 0; // shrink to the range of pwm_min..pwm_max
}
if (!Settings.flag4.zerocross_dimmer) {
analogWrite(Pin(GPIO_PWM1, i), bitRead(pwm_inverted, i) ? Settings.pwm_range - cur_col : cur_col);
}
}
}
}
// char msg[24];
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("LGT: Channels %s"), ToHex_P((const unsigned char *)cur_col_10, 10, msg, sizeof(msg)));
uint8_t cur_col[LST_MAX];
for (uint32_t i = 0; i < LST_MAX; i++) {
cur_col[i] = change10to8(cur_col_10[i]);
}
// Some devices need scaled RGB like Sonoff L1
// TODO, should be probably moved to the Sonoff L1 support code
uint8_t scale_col[3];
uint32_t max = (cur_col[0] > cur_col[1] && cur_col[0] > cur_col[2]) ? cur_col[0] : (cur_col[1] > cur_col[2]) ? cur_col[1] : cur_col[2]; // 0..255
for (uint32_t i = 0; i < 3; i++) {
scale_col[i] = (0 == max) ? 255 : (255 > max) ? changeUIntScale(cur_col[i], 0, max, 0, 255) : cur_col[i];
}
char *tmp_data = XdrvMailbox.data;
char *tmp_topic = XdrvMailbox.topic;
XdrvMailbox.data = (char*)cur_col;
XdrvMailbox.topic = (char*)scale_col;
if (XlgtCall(FUNC_SET_CHANNELS)) { /* Serviced */ }
else if (XdrvCall(FUNC_SET_CHANNELS)) { /* Serviced */ }
XdrvMailbox.data = tmp_data;
XdrvMailbox.topic = tmp_topic;
}
// Just apply basic Gamma to each channel
void calcGammaMultiChannels(uint16_t cur_col_10[5]) {
// Apply gamma correction for 8 and 10 bits resolutions, if needed
if (Settings.light_correction) {
for (uint32_t i = 0; i < LST_MAX; i++) {
cur_col_10[i] = ledGamma10_10(cur_col_10[i]);
}
}
}
void calcGammaBulbs(uint16_t cur_col_10[5]) {
// Apply gamma correction for 8 and 10 bits resolutions, if needed
// First apply combined correction to the overall white power
if ((LST_COLDWARM == Light.subtype) || (LST_RGBCW == Light.subtype)) {
// channels for white are always the last two channels
uint32_t cw1 = Light.subtype - 1; // address for the ColorTone PWM
uint32_t cw0 = Light.subtype - 2; // address for the White Brightness PWM
uint16_t white_bri10 = cur_col_10[cw0] + cur_col_10[cw1]; // cumulated brightness
uint16_t white_bri10_1023 = (white_bri10 > 1023) ? 1023 : white_bri10; // max 1023
#ifdef ESP8266
if ((PHILIPS == my_module_type) || (Settings.flag4.pwm_ct_mode)) { // channel 1 is the color tone, mapped to cold channel (0..255)
// Xiaomi Philips bulbs follow a different scheme:
cur_col_10[cw1] = light_state.getCT10bits();
// channel 0=intensity, channel1=temperature
if (Settings.light_correction) { // gamma correction
cur_col_10[cw0] = ledGamma10_10(white_bri10_1023); // 10 bits gamma correction
} else {
cur_col_10[cw0] = white_bri10_1023; // no gamma, extend to 10 bits
}
} else
#endif // ESP8266
if (Settings.light_correction) {
// if sum of both channels is > 255, then channels are probably uncorrelated
if (white_bri10 <= 1031) { // take a margin of 8 above 1023 to account for rounding errors
// we calculate the gamma corrected sum of CW + WW
uint16_t white_bri_gamma10 = ledGamma10_10(white_bri10_1023);
// then we split the total energy among the cold and warm leds
cur_col_10[cw0] = changeUIntScale(cur_col_10[cw0], 0, white_bri10_1023, 0, white_bri_gamma10);
cur_col_10[cw1] = changeUIntScale(cur_col_10[cw1], 0, white_bri10_1023, 0, white_bri_gamma10);
} else {
cur_col_10[cw0] = ledGamma10_10(cur_col_10[cw0]);
cur_col_10[cw1] = ledGamma10_10(cur_col_10[cw1]);
}
}
}
if (Settings.light_correction) {
// then apply gamma correction to RGB channels
if (LST_RGB <= Light.subtype) {
for (uint32_t i = 0; i < 3; i++) {
cur_col_10[i] = ledGamma10_10(cur_col_10[i]);
}
}
// If RGBW or Single channel, also adjust White channel
if ((LST_SINGLE == Light.subtype) || (LST_RGBW == Light.subtype)) {
cur_col_10[Light.subtype - 1] = ledGamma10_10(cur_col_10[Light.subtype - 1]);
}
}
}
#ifdef USE_DEVICE_GROUPS
void LightSendDeviceGroupStatus(bool status)
{
static uint8_t last_bri;
uint8_t bri = light_state.getBri();
bool send_bri_update = (status || bri != last_bri);
if (Light.subtype > LST_SINGLE && !Light.devgrp_no_channels_out) {
static uint8_t channels[LST_MAX + 1] = { 0, 0, 0, 0, 0, 0 };
if (status) {
light_state.getChannels(channels);
}
else {
memcpy(channels, Light.new_color, LST_MAX);
channels[LST_MAX]++;
}
SendLocalDeviceGroupMessage((send_bri_update ? DGR_MSGTYP_PARTIAL_UPDATE : DGR_MSGTYP_UPDATE), DGR_ITEM_LIGHT_CHANNELS, channels);
}
if (send_bri_update) {
last_bri = bri;
SendLocalDeviceGroupMessage(DGR_MSGTYP_UPDATE, DGR_ITEM_LIGHT_BRI, light_state.getBri());
}
}
void LightHandleDevGroupItem(void)
{
static bool send_state = false;
static bool restore_power = false;
#ifdef USE_PWM_DIMMER_REMOTE
if (!(XdrvMailbox.index & DGR_FLAG_LOCAL)) return;
#endif // USE_PWM_DIMMER_REMOTE
bool more_to_come;
uint32_t value = XdrvMailbox.payload;
switch (XdrvMailbox.command_code) {
case DGR_ITEM_EOL:
more_to_come = (XdrvMailbox.index & DGR_FLAG_MORE_TO_COME);
if (restore_power && !more_to_come) {
restore_power = false;
Light.power = Light.old_power;
}
LightAnimate();
if (send_state && !more_to_come) {
light_controller.saveSettings();
if (Settings.flag3.hass_tele_on_power) { // SetOption59 - Send tele/%topic%/STATE in addition to stat/%topic%/RESULT
MqttPublishTeleState();
}
send_state = false;
}
break;
case DGR_ITEM_LIGHT_BRI:
if (light_state.getBri() != value) {
light_state.setBri(value);
send_state = true;
}
break;
case DGR_ITEM_LIGHT_SCHEME:
if (Settings.light_scheme != value) {
Light.last_scheme = Settings.light_scheme = value;
Light.devgrp_no_channels_out = (value != 0);
send_state = true;
}
break;
case DGR_ITEM_LIGHT_CHANNELS:
#ifdef USE_DGR_LIGHT_SEQUENCE
{
static uint8_t last_sequence = 0;
// If a sequence offset is set, set the channels to the ones we received <SequenceOffset>
// changes ago.
if (Light.sequence_offset) {
light_controller.changeChannels(Light.channels_fifo);
// Shift the fifo down and load the newly received channels at the end for this update and
// any updates we missed.
int last_entry = (Light.sequence_offset - 1) * LST_MAX;
for (uint8_t sequence = (uint8_t)XdrvMailbox.data[LST_MAX]; (uint8_t)(sequence - last_sequence) > 0; last_sequence++) {
memmove(Light.channels_fifo, &Light.channels_fifo[LST_MAX], last_entry);
memcpy(&Light.channels_fifo[last_entry], XdrvMailbox.data, LST_MAX);
}
}
else {
#endif // USE_DGR_LIGHT_SEQUENCE
light_controller.changeChannels((uint8_t *)XdrvMailbox.data);
#ifdef USE_DGR_LIGHT_SEQUENCE
}
}
#endif // USE_DGR_LIGHT_SEQUENCE
send_state = true;
break;
case DGR_ITEM_LIGHT_FIXED_COLOR:
if (Light.subtype >= LST_COLDWARM) {
send_state = true;
#ifdef USE_LIGHT_PALETTE
if (Light.palette_count) {
Light.wheel = value % Light.palette_count;
LightSetPaletteEntry();
break;
}
#endif // !USE_LIGHT_PALETTE
if (Light.subtype <= LST_COLDWARM) {
value = value % (MAX_FIXED_COLD_WARM - 1) + 201;
}
else {
uint32_t max = MAX_FIXED_COLOR;
if (Light.subtype >= LST_RGB) {
max++;
if (Light.subtype >= LST_RGBCW) max += (MAX_FIXED_COLD_WARM - 2);
}
value = value % max + 1;
if (value > MAX_FIXED_COLOR) value += 200 - MAX_FIXED_COLOR;
}
Light.fixed_color_index = value;
bool save_decimal_text = Settings.flag.decimal_text;
char str[16];
LightColorEntry(str, sprintf_P(str, PSTR("%u"), value));
Settings.flag.decimal_text = save_decimal_text;
uint32_t old_bri = light_state.getBri();
light_controller.changeChannels(Light.entry_color);
light_controller.changeBri(old_bri);
Settings.light_scheme = 0;
Light.devgrp_no_channels_out = false;
if (!restore_power && !Light.power) {
Light.old_power = Light.power;
Light.power = 0xff;
restore_power = true;
}
}
break;
case DGR_ITEM_LIGHT_FADE:
if (Settings.light_fade != value) {
Settings.light_fade = value;
send_state = true;
}
break;
case DGR_ITEM_LIGHT_SPEED:
if (Settings.light_speed != value && value > 0 && value <= 40) {
Settings.light_speed = value;
send_state = true;
}
break;
case DGR_ITEM_STATUS:
SendLocalDeviceGroupMessage(DGR_MSGTYP_PARTIAL_UPDATE, DGR_ITEM_LIGHT_FADE, Settings.light_fade,
DGR_ITEM_LIGHT_SPEED, Settings.light_speed, DGR_ITEM_LIGHT_SCHEME, Settings.light_scheme);
LightSendDeviceGroupStatus(true);
break;
}
}
#endif // USE_DEVICE_GROUPS
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
bool LightColorEntry(char *buffer, uint32_t buffer_length)
{
char scolor[10];
char *p;
char *str;
uint32_t entry_type = 0; // Invalid
uint8_t value = Light.fixed_color_index;
#ifdef USE_LIGHT_PALETTE
if (Light.palette_count) value = Light.wheel;
#endif // USE_LIGHT_PALETTE
if (buffer[0] == '#') { // Optional hexadecimal entry
buffer++;
buffer_length--;
}
if (Light.subtype >= LST_RGB) {
char option = (1 == buffer_length) ? buffer[0] : '\0';
if ('+' == option) {
#ifdef USE_LIGHT_PALETTE
if (Light.palette_count || Light.fixed_color_index < MAX_FIXED_COLOR) {
#else // USE_LIGHT_PALETTE
if (Light.fixed_color_index < MAX_FIXED_COLOR) {
#endif // !USE_LIGHT_PALETTE
value++;
}
}
else if ('-' == option) {
#ifdef USE_LIGHT_PALETTE
if (Light.palette_count || Light.fixed_color_index > 1) {
#else // USE_LIGHT_PALETTE
if (Light.fixed_color_index > 1) {
#endif // !USE_LIGHT_PALETTE
value--;
}
} else {
value = atoi(buffer);
}
#ifdef USE_LIGHT_PALETTE
if (Light.palette_count) value = value % Light.palette_count;
#endif // USE_LIGHT_PALETTE
}
memset(&Light.entry_color, 0x00, sizeof(Light.entry_color));
// erase all channels except if the last character is '=', #6799
while ((buffer_length > 0) && ('=' == buffer[buffer_length - 1])) {
buffer_length--; // remove all trailing '='
memcpy(&Light.entry_color, &Light.current_color, sizeof(Light.entry_color));
}
if (strstr(buffer, ",") != nullptr) { // Decimal entry
int8_t i = 0;
for (str = strtok_r(buffer, ",", &p); str && i < 6; str = strtok_r(nullptr, ",", &p)) {
if (i < LST_MAX) {
Light.entry_color[i++] = atoi(str);
}
}
entry_type = 2; // Decimal
}
else if (((2 * Light.subtype) == buffer_length) || (buffer_length > 3)) { // Hexadecimal entry
for (uint32_t i = 0; i < tmin((uint)(buffer_length / 2), sizeof(Light.entry_color)); i++) {
strlcpy(scolor, buffer + (i *2), 3);
Light.entry_color[i] = (uint8_t)strtol(scolor, &p, 16);
}
entry_type = 1; // Hexadecimal
}
#ifdef USE_LIGHT_PALETTE
else if (Light.palette_count) {
value--;
Light.wheel = value;
memcpy_P(&Light.entry_color, &Light.palette[value * LST_MAX], LST_MAX);
entry_type = 1; // Hexadecimal
}
#endif // USE_LIGHT_PALETTE
else if ((Light.subtype >= LST_RGB) && (value > 0) && (value <= MAX_FIXED_COLOR)) {
Light.fixed_color_index = value;
memcpy_P(&Light.entry_color, &kFixedColor[value -1], 3);
entry_type = 1; // Hexadecimal
}
else if ((value > 199) && (value <= 199 + MAX_FIXED_COLD_WARM)) {
if (LST_RGBW == Light.subtype) {
memcpy_P(&Light.entry_color[3], &kFixedWhite[value -200], 1);
entry_type = 1; // Hexadecimal
}
else if (LST_COLDWARM == Light.subtype) {
memcpy_P(&Light.entry_color, &kFixedColdWarm[value -200], 2);
entry_type = 1; // Hexadecimal
}
else if (LST_RGBCW == Light.subtype) {
memcpy_P(&Light.entry_color[3], &kFixedColdWarm[value -200], 2);
entry_type = 1; // Hexadecimal
}
}
if (entry_type) {
Settings.flag.decimal_text = entry_type -1; // SetOption17 - Switch between decimal or hexadecimal output
}
return (entry_type);
}
/********************************************************************************************/
void CmndSupportColor(void)
{
bool valid_entry = false;
bool coldim = false;
if (XdrvMailbox.data_len > 0) {
valid_entry = LightColorEntry(XdrvMailbox.data, XdrvMailbox.data_len);
if (valid_entry) {
if (XdrvMailbox.index <= 2) { // Color(1), 2
#ifdef USE_LIGHT_PALETTE
if (Light.palette_count && XdrvMailbox.index == 2) {
LightSetPaletteEntry();
}
else {
#endif // USE_LIGHT_PALETTE
uint32_t old_bri = light_state.getBri();
// change all channels to specified values
light_controller.changeChannels(Light.entry_color);
if (2 == XdrvMailbox.index) {
// If Color2, set back old brightness
light_controller.changeBri(old_bri);
}
#ifdef USE_LIGHT_PALETTE
}
#endif // USE_LIGHT_PALETTE
Settings.light_scheme = 0;
coldim = true;
} else { // Color3, 4, 5 and 6
for (uint32_t i = 0; i < LST_RGB; i++) {
Settings.ws_color[XdrvMailbox.index -3][i] = Light.entry_color[i];
}
}
}
}
char scolor[LIGHT_COLOR_SIZE];
if (!valid_entry && (XdrvMailbox.index <= 2)) {
ResponseCmndChar(LightGetColor(scolor));
}
if (XdrvMailbox.index >= 3) {
scolor[0] = '\0';
for (uint32_t i = 0; i < LST_RGB; i++) {
if (Settings.flag.decimal_text) { // SetOption17 - Switch between decimal or hexadecimal output
snprintf_P(scolor, sizeof(scolor), PSTR("%s%s%d"), scolor, (i > 0) ? "," : "", Settings.ws_color[XdrvMailbox.index -3][i]);
} else {
snprintf_P(scolor, sizeof(scolor), PSTR("%s%02X"), scolor, Settings.ws_color[XdrvMailbox.index -3][i]);
}
}
ResponseCmndIdxChar(scolor);
}
if (coldim) {
LightPreparePower(); // no parameter, recalculate Power for all channels
}
}
void CmndColor(void)
{
// Color - Show current RGBWW color state
// Color1 - Change color to RGBWW
// Color2 - Change color to RGBWW but retain brightness (=dimmer)
// Color3 - Change color to RGB of WS2812 Clock Second
// Color4 - Change color to RGB of WS2812 Clock Minute
// Color5 - Change color to RGB of WS2812 Clock Hour
// Color6 - Change color to RGB of WS2812 Clock Marker
if ((Light.subtype > LST_SINGLE) && (XdrvMailbox.index > 0) && (XdrvMailbox.index <= 6)) {
CmndSupportColor();
}
}
void CmndWhite(void)
{
// White - Show current White (=Dimmer2) state
// White 0..100 - Set White colors dimmer state
if (Light.pwm_multi_channels) { return; }
if ( ((Light.subtype >= LST_RGBW) || (LST_COLDWARM == Light.subtype)) && (XdrvMailbox.index == 1)) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) {
light_controller.changeDimmer(XdrvMailbox.payload, 2);
LightPreparePower(2);
} else {
ResponseCmndNumber(light_state.getDimmer(2));
}
}
}
void CmndChannel(void)
{
// Channel<x> - Show current Channel state
// Channel<x> 0..100 - Set Channel dimmer state
// Channel<x> + - Incerement Channel in steps of 10
// Channel<x> - - Decrement Channel in steps of 10
if ((XdrvMailbox.index >= Light.device) && (XdrvMailbox.index < Light.device + Light.subtype )) {
uint32_t light_index = XdrvMailbox.index - Light.device;
power_t coldim = 0; // bit flag to update
// Handle +/- special command
if (1 == XdrvMailbox.data_len) {
uint8_t channel = changeUIntScale(Light.current_color[light_index],0,255,0,100);
if ('+' == XdrvMailbox.data[0]) {
XdrvMailbox.payload = (channel > 89) ? 100 : channel + 10;
} else if ('-' == XdrvMailbox.data[0]) {
XdrvMailbox.payload = (channel < 11) ? 1 : channel - 10;
}
}
// Set "Channel" directly - this allows Color and Direct PWM control to coexist
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) {
Light.current_color[light_index] = changeUIntScale(XdrvMailbox.payload,0,100,0,255);
if (Light.pwm_multi_channels) {
coldim = 1 << light_index; // change the specified channel
} else {
if (light_controller.isCTRGBLinked()) {
// if we change channels 1,2,3 then turn off CT mode (unless non-linked)
if ((light_index < 3) && (light_controller.isCTRGBLinked())) {
Light.current_color[3] = Light.current_color[4] = 0;
} else {
Light.current_color[0] = Light.current_color[1] = Light.current_color[2] = 0;
}
coldim = 1;
} else {
if (light_index < 3) { coldim = 1; } // RGB
else { coldim = 2; } // CT
}
}
light_controller.changeChannels(Light.current_color);
}
ResponseCmndIdxNumber(changeUIntScale(Light.current_color[light_index],0,255,0,100));
if (coldim) {
LightPreparePower(coldim);
}
}
}
void CmndHsbColor(void)
{
// HsbColor - Show current HSB
// HsbColor 360,100,100 - Set Hue, Saturation and Brighthness
// HsbColor 360,100 - Set Hue and Saturation
// HsbColor 360 - Set Hue
// HsbColor1 360 - Set Hue
// HsbColor2 100 - Set Saturation
// HsbColor3 100 - Set Brightness
if (Light.subtype >= LST_RGB) {
if (XdrvMailbox.data_len > 0) {
uint16_t c_hue;
uint8_t c_sat;
light_state.getHSB(&c_hue, &c_sat, nullptr);
uint32_t HSB[3];
HSB[0] = c_hue;
HSB[1] = c_sat;
HSB[2] = light_state.getBriRGB();
if ((2 == XdrvMailbox.index) || (3 == XdrvMailbox.index)) {
if ((uint32_t)XdrvMailbox.payload > 100) { XdrvMailbox.payload = 100; }
HSB[XdrvMailbox.index-1] = changeUIntScale(XdrvMailbox.payload, 0, 100, 0, 255);
} else {
uint32_t paramcount = ParseParameters(3, HSB);
if (HSB[0] > 360) { HSB[0] = 360; }
for (uint32_t i = 1; i < paramcount; i++) {
if (HSB[i] > 100) { HSB[i] == 100; }
HSB[i] = changeUIntScale(HSB[i], 0, 100, 0, 255); // change sat and bri to 0..255
}
}
light_controller.changeHSB(HSB[0], HSB[1], HSB[2]);
LightPreparePower(1);
} else {
ResponseLightState(0);
}
}
}
void CmndScheme(void)
{
// Scheme 0..12 - Select one of schemes 0 to 12
// Scheme 2 - Select scheme 2
// Scheme 2,0 - Select scheme 2 with color wheel set to 0 (HSB Red)
// Scheme + - Select next scheme
// Scheme - - Select previous scheme
if (Light.subtype >= LST_RGB) {
uint32_t max_scheme = Light.max_scheme;
if (1 == XdrvMailbox.data_len) {
if (('+' == XdrvMailbox.data[0]) && (Settings.light_scheme < max_scheme)) {
XdrvMailbox.payload = Settings.light_scheme + ((0 == Settings.light_scheme) ? 2 : 1); // Skip wakeup
}
else if (('-' == XdrvMailbox.data[0]) && (Settings.light_scheme > 0)) {
XdrvMailbox.payload = Settings.light_scheme - ((2 == Settings.light_scheme) ? 2 : 1); // Skip wakeup
}
}
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= max_scheme)) {
uint32_t parm[2];
if (ParseParameters(2, parm) > 1) {
Light.wheel = parm[1];
#ifdef USE_LIGHT_PALETTE
Light.wheel--;
#endif // USE_LIGHT_PALETTE
}
Settings.light_scheme = XdrvMailbox.payload;
if (LS_WAKEUP == Settings.light_scheme) {
Light.wakeup_active = 3;
}
LightPowerOn();
Light.strip_timer_counter = 0;
// Publish state message for Hass
if (Settings.flag3.hass_tele_on_power) { // SetOption59 - Send tele/%topic%/STATE in addition to stat/%topic%/RESULT
MqttPublishTeleState();
}
}
ResponseCmndNumber(Settings.light_scheme);
}
}
void CmndWakeup(void)
{
// Wakeup - Start wakeup light
// Wakeup 0..100 - Start wakeup light to dimmer value 0..100
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) {
light_controller.changeDimmer(XdrvMailbox.payload);
}
Light.wakeup_active = 3;
Settings.light_scheme = LS_WAKEUP;
LightPowerOn();
ResponseCmndChar(D_JSON_STARTED);
}
void CmndColorTemperature(void)
{
// CT - Show current color temperature
// CT 153..500 - Set color temperature
// CT + - Incerement color temperature in steps of 34
// CT - - Decrement color temperature in steps of 34
if (Light.pwm_multi_channels) { return; }
if ((LST_COLDWARM == Light.subtype) || (LST_RGBCW == Light.subtype)) { // ColorTemp
uint32_t ct = light_state.getCT();
if (1 == XdrvMailbox.data_len) {
if ('+' == XdrvMailbox.data[0]) {
XdrvMailbox.payload = (ct > (CT_MAX-34)) ? CT_MAX : ct + 34;
}
else if ('-' == XdrvMailbox.data[0]) {
XdrvMailbox.payload = (ct < (CT_MIN+34)) ? CT_MIN : ct - 34;
}
}
if ((XdrvMailbox.payload >= CT_MIN) && (XdrvMailbox.payload <= CT_MAX)) { // https://developers.meethue.com/documentation/core-concepts
light_controller.changeCTB(XdrvMailbox.payload, light_state.getBriCT());
LightPreparePower(2);
} else {
ResponseCmndNumber(ct);
}
}
}
void LightDimmerOffset(uint32_t index, int32_t offset) {
int32_t dimmer = light_state.getDimmer(index) + offset;
if (dimmer < 1) { dimmer = Settings.flag3.slider_dimmer_stay_on; } // SetOption77 - Do not power off if slider moved to far left
if (dimmer > 100) { dimmer = 100; }
XdrvMailbox.index = index;
XdrvMailbox.payload = dimmer;
CmndDimmer();
}
void CmndDimmer(void)
{
// Dimmer - Show current Dimmer state
// Dimmer0 0..100 - Change both RGB and W(W) Dimmers
// Dimmer1 0..100 - Change RGB Dimmer
// Dimmer2 0..100 - Change W(W) Dimmer
// Dimmer3 0..100 - Change both RGB and W(W) Dimmers with no fading
// Dimmer<x> + - Incerement Dimmer in steps of 10
// Dimmer<x> - - Decrement Dimmer in steps of 10
uint32_t dimmer;
if (XdrvMailbox.index == 3) {
skip_light_fade = true;
XdrvMailbox.index = 0;
}
else if (XdrvMailbox.index > 2) {
XdrvMailbox.index = 1;
}
if ((light_controller.isCTRGBLinked()) || (0 == XdrvMailbox.index)) {
dimmer = light_state.getDimmer();
} else {
dimmer = light_state.getDimmer(XdrvMailbox.index);
}
// Handle +/- special command
if (1 == XdrvMailbox.data_len) {
if ('+' == XdrvMailbox.data[0]) {
XdrvMailbox.payload = (dimmer > 89) ? 100 : dimmer + 10;
} else if ('-' == XdrvMailbox.data[0]) {
XdrvMailbox.payload = (dimmer < 11) ? 1 : dimmer - 10;
}
}
// If value is ok, change it, otherwise report old value
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) {
if (light_controller.isCTRGBLinked()) {
// normal state, linked RGB and CW
light_controller.changeDimmer(XdrvMailbox.payload);
LightPreparePower();
} else {
if (0 != XdrvMailbox.index) {
light_controller.changeDimmer(XdrvMailbox.payload, XdrvMailbox.index);
LightPreparePower(1 << (XdrvMailbox.index - 1)); // recalculate only the target dimmer
} else {
// change both dimmers
light_controller.changeDimmer(XdrvMailbox.payload, 1);
light_controller.changeDimmer(XdrvMailbox.payload, 2);
LightPreparePower();
}
}
#if defined(USE_PWM_DIMMER) && defined(USE_DEVICE_GROUPS)
uint8_t bri = light_state.getBri();
if (bri != Settings.bri_power_on) {
Settings.bri_power_on = bri;
SendLocalDeviceGroupMessage(DGR_MSGTYP_PARTIAL_UPDATE, DGR_ITEM_BRI_POWER_ON, Settings.bri_power_on);
}
#endif // USE_PWM_DIMMER && USE_DEVICE_GROUPS
Light.update = true;
if (skip_light_fade) LightAnimate();
} else {
ResponseCmndNumber(dimmer);
}
skip_light_fade = false;
}
void CmndDimmerRange(void)
{
// DimmerRange - Show current dimmer range as used by Tuya and PS16DZ Dimmers
// DimmerRange 0,100 - Set dimmer hardware range from 0 to 100 and restart
if (XdrvMailbox.data_len > 0) {
uint32_t parm[2];
parm[0] = Settings.dimmer_hw_min;
parm[1] = Settings.dimmer_hw_max;
ParseParameters(2, parm);
if (parm[0] < parm[1]) {
Settings.dimmer_hw_min = parm[0];
Settings.dimmer_hw_max = parm[1];
} else {
Settings.dimmer_hw_min = parm[1];
Settings.dimmer_hw_max = parm[0];
}
LightCalcPWMRange();
Light.update = true;
}
Response_P(PSTR("{\"" D_CMND_DIMMER_RANGE "\":{\"Min\":%d,\"Max\":%d}}"), Settings.dimmer_hw_min, Settings.dimmer_hw_max);
}
void CmndLedTable(void)
{
// LedTable - Show current LedTable state
// LedTable 0 - Turn LedTable Off
// LedTable On - Turn LedTable On
// LedTable Toggle - Toggle LedTable state
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 2)) {
switch (XdrvMailbox.payload) {
case 0: // Off
case 1: // On
Settings.light_correction = XdrvMailbox.payload;
break;
case 2: // Toggle
Settings.light_correction ^= 1;
break;
}
LightCalcPWMRange();
Light.update = true;
}
ResponseCmndStateText(Settings.light_correction);
}
void CmndRgbwwTable(void)
{
// RgbWwTable - Show current RGBWW State
// RgbWwTable 255,255,255,255,255 - Set RGBWW state to maximum
if ((XdrvMailbox.data_len > 0)) {
uint32_t parm[LST_RGBCW -1];
uint32_t parmcount = ParseParameters(LST_RGBCW, parm);
for (uint32_t i = 0; i < parmcount; i++) {
Settings.rgbwwTable[i] = parm[i];
}
Light.update = true;
}
char scolor[LIGHT_COLOR_SIZE];
scolor[0] = '\0';
for (uint32_t i = 0; i < LST_RGBCW; i++) {
snprintf_P(scolor, sizeof(scolor), PSTR("%s%s%d"), scolor, (i > 0) ? "," : "", Settings.rgbwwTable[i]);
}
ResponseCmndChar(scolor);
}
void CmndFade(void)
{
// Fade - Show current Fade state
// Fade 0 - Turn Fade Off
// Fade On - Turn Fade On
// Fade Toggle - Toggle Fade state
switch (XdrvMailbox.payload) {
case 0: // Off
case 1: // On
Settings.light_fade = XdrvMailbox.payload;
break;
case 2: // Toggle
Settings.light_fade ^= 1;
break;
}
#ifdef USE_DEVICE_GROUPS
if (XdrvMailbox.payload >= 0 && XdrvMailbox.payload <= 2) SendLocalDeviceGroupMessage(DGR_MSGTYP_UPDATE, DGR_ITEM_LIGHT_FADE, Settings.light_fade);
#endif // USE_DEVICE_GROUPS
#ifdef USE_LIGHT
if (!Settings.light_fade) { Light.fade_running = false; }
#endif // USE_LIGHT
ResponseCmndStateText(Settings.light_fade);
}
void CmndSpeed(void)
{
// Speed 1 - Fast
// Speed 40 - Very slow
// Speed + - Increment Speed
// Speed - - Decrement Speed
if (1 == XdrvMailbox.data_len) {
if (('+' == XdrvMailbox.data[0]) && (Settings.light_speed > 1)) {
XdrvMailbox.payload = Settings.light_speed - 1;
}
else if (('-' == XdrvMailbox.data[0]) && (Settings.light_speed < 40)) {
XdrvMailbox.payload = Settings.light_speed + 1;
}
}
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= 40)) {
Settings.light_speed = XdrvMailbox.payload;
#ifdef USE_DEVICE_GROUPS
SendLocalDeviceGroupMessage(DGR_MSGTYP_UPDATE, DGR_ITEM_LIGHT_SPEED, Settings.light_speed);
#endif // USE_DEVICE_GROUPS
}
ResponseCmndNumber(Settings.light_speed);
}
void CmndWakeupDuration(void)
{
// WakeUpDuration - Show current Wake Up duration in seconds
// WakeUpDuration 60 - Set Wake Up duration to 60 seconds
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload < 3001)) {
Settings.light_wakeup = XdrvMailbox.payload;
Light.wakeup_active = 0;
}
ResponseCmndNumber(Settings.light_wakeup);
}
#ifdef USE_LIGHT_PALETTE
void CmndPalette(void)
{
uint8_t * palette_entry;
char * p;
// Palette Color[ ...]
if (XdrvMailbox.data_len) {
Light.wheel = 0;
Light.palette_count = 0;
if (Light.palette) {
free(Light.palette);
Light.palette = nullptr;
}
if (XdrvMailbox.data_len > 1 || XdrvMailbox.data[0] != '0') {
uint8_t palette_count = 0;
char * color = XdrvMailbox.data;
if (!(Light.palette = (uint8_t *)malloc(255 * Light.subtype))) return;
palette_entry = Light.palette;
for (;;) {
p = strchr(color, ' ');
if (p) *p = 0;
color = Trim(color);
if (*color && LightColorEntry(color, strlen(color))) {
memcpy(palette_entry, Light.entry_color, Light.subtype);
palette_entry += Light.subtype;
palette_count++;
}
if (!p) break;
color = p + 1;
}
if (!(Light.palette = (uint8_t *)realloc(Light.palette, palette_count * Light.subtype))) return;
Light.palette_count = palette_count;
}
}
char palette_str[5 * Light.subtype * Light.palette_count + 3];
p = palette_str;
*p++ = '[';
if (Light.palette_count) {
palette_entry = Light.palette;
for (int entry = 0; entry < Light.palette_count; entry++) {
if (Settings.flag.decimal_text) { // SetOption17 - Switch between decimal or hexadecimal output
*p++ = '"';
for (uint32_t i = 0; i < Light.subtype; i++) {
p += sprintf_P(p, PSTR("%d,"), *palette_entry++);
}
*(p - 1) = '"';
}
else {
for (uint32_t i = 0; i < Light.subtype; i++) {
p += sprintf_P(p, PSTR("%02X"), *palette_entry++);
}
}
*p++ = ',';
}
p--;
}
*p++ = ']';
*p = 0;
ResponseCmndChar(palette_str);
}
#endif // USE_LIGHT_PALETTE
#ifdef USE_DGR_LIGHT_SEQUENCE
void CmndSequenceOffset(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 255)) {
if (XdrvMailbox.payload != Light.sequence_offset) {
if (Light.sequence_offset) free(Light.channels_fifo);
Light.sequence_offset = XdrvMailbox.payload;
if (Light.sequence_offset) Light.channels_fifo = (uint8_t *)calloc(Light.sequence_offset, LST_MAX);
}
}
ResponseCmndNumber(Light.sequence_offset);
}
#endif // USE_DGR_LIGHT_SEQUENCE
void CmndUndocA(void)
{
// Theos legacy status
char scolor[LIGHT_COLOR_SIZE];
LightGetColor(scolor, true); // force hex whatever Option 17
scolor[6] = '\0'; // RGB only
Response_P(PSTR("%s,%d,%d,%d,%d,%d"), scolor, Settings.light_fade, Settings.light_correction, Settings.light_scheme, Settings.light_speed, Settings.light_width);
MqttPublishPrefixTopic_P(STAT, XdrvMailbox.topic);
mqtt_data[0] = '\0';
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv04(uint8_t function)
{
bool result = false;
if (FUNC_MODULE_INIT == function) {
return LightModuleInit();
}
else if (light_type) {
switch (function) {
case FUNC_SERIAL:
result = XlgtCall(FUNC_SERIAL);
break;
case FUNC_LOOP:
if (Light.fade_running) {
if (LightApplyFade()) {
LightSetOutputs(Light.fade_cur_10);
}
}
break;
case FUNC_EVERY_50_MSECOND:
LightAnimate();
break;
#ifdef USE_DEVICE_GROUPS
case FUNC_DEVICE_GROUP_ITEM:
LightHandleDevGroupItem();
break;
#endif // USE_DEVICE_GROUPS
case FUNC_SET_POWER:
LightSetPower();
break;
case FUNC_COMMAND:
result = DecodeCommand(kLightCommands, LightCommand);
if (!result) {
result = XlgtCall(FUNC_COMMAND);
}
break;
case FUNC_PRE_INIT:
LightInit();
break;
}
}
return result;
}
#endif // USE_LIGHT