Tasmota/tasmota/tasmota_xdrv_driver/xdrv_27_esp32_shutter.ino

2411 lines
116 KiB
C++

/*
xdrv_27_esp32_shutter.ino - Shutter/Blind support for Tasmota
Copyright (C) 2023 Stefan Bode
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef ESP32
#ifdef USE_SHUTTER
/*********************************************************************************************\
* Shutter or Blind support using two consecutive relays
* Shutters for ESP32 with max eight shutters using more RAM and Settings from filesystem
\*********************************************************************************************/
#define XDRV_27 27
#ifndef SHUTTER_STEPPER
#define SHUTTER_STEPPER
#endif
#ifndef SHUTTER_RELAY_OPERATION_TIME
#define SHUTTER_RELAY_OPERATION_TIME 100 // wait for direction relay 0.1sec before power up main relay
#endif
#ifndef MOTOR_STOP_TIME
#define MOTOR_STOP_TIME 500 // wait 0.5 second after stop to do any other action. e.g. move in the opposite direction
#endif
//#define SHUTTER_UNITTEST
#define D_SHUTTER "SHUTTER"
// Allow up to 16 shutters on ESP32
#undef MAX_SHUTTERS_ESP32
#define MAX_SHUTTERS_ESP32 16
// Define Std Text Strings
#define D_ERROR_FILESYSTEM_NOT_READY "SHT: ERROR File system not enabled"
#define D_ERROR_FILE_NOT_FOUND "SHT: ERROR File system not ready or file not found"
const char HTTP_MSG_SLIDER_SHUTTER[] PROGMEM =
"<div><span class='p'>%s</span><span class='q'>%s</span></div>"
"<div><input type='range' min='0' max='100' value='%d' onchange='lc(\"u\",%d,value)'></div>";
const uint16_t SHUTTER_VERSION = 0x0100; // Latest driver version (See settings deltas below)
typedef struct { // depreciated 2023-04-28
int8_t pos;
int8_t tilt;
bool mqtt_broadcast;
} tPosition_old;
typedef struct {
int8_t pos;
int8_t tilt;
bool mqtt_broadcast;
int8_t pos_incrdecr;
int8_t tilt_incrdecr;
} tPosition;
typedef struct { // depreciated 2023-04-28
bool enabled;
bool mqtt_all;
uint8_t shutter_number;
tPosition_old position[4];
} tButtonSettings_old;
typedef struct {
bool enabled;
bool mqtt_all;
uint8_t shutter_number;
tPosition position[4];
} tButtonSettings;
// Global structure containing shutter saved variables
struct SHUTTERSETTINGS {
uint32_t crc32; // To detect file changes
uint16_t version; // To detect driver function changes
uint16_t spare;
uint8_t shutter_accuracy;
uint8_t shutter_mode;
uint16_t shutter_motorstop;
uint16_t open_velocity_max;
int8_t shutter_tilt_config[5][MAX_SHUTTERS_ESP32];
int8_t shutter_tilt_pos[MAX_SHUTTERS_ESP32];
uint16_t shutter_opentime[MAX_SHUTTERS_ESP32];
uint16_t shutter_closetime[MAX_SHUTTERS_ESP32];
int16_t shuttercoeff[5][MAX_SHUTTERS_ESP32];
uint8_t shutter_options[MAX_SHUTTERS_ESP32];
uint8_t shutter_set50percent[MAX_SHUTTERS_ESP32];
uint8_t shutter_position[MAX_SHUTTERS_ESP32];
uint8_t shutter_startrelay[MAX_SHUTTERS_ESP32];
uint8_t shutter_motordelay[MAX_SHUTTERS_ESP32];
uint16_t shutter_pwmrange[2][MAX_SHUTTERS_ESP32];
tButtonSettings_old shutter_button_old[MAX_SHUTTERS_ESP32*2]; // depreciated 2023-04-28
tButtonSettings shutter_button[MAX_SHUTTERS_ESP32*2];
} ShutterSettings;
const uint16_t RESOLUTION = 1000; // incresed to 1000 in 8.5 to ramp servos
const uint8_t STEPS_PER_SECOND = 20; // FUNC_EVERY_50_MSECOND
const uint16_t pwm_servo_max = 500;
const uint16_t pwm_servo_min = 90;
uint8_t calibrate_pos[6] = {0,30,50,70,90,100};
uint16_t messwerte[5] = {30,50,70,90,100};
int32_t velocity_max = 0;
int32_t velocity_change_per_step_max = 0;
int32_t min_runtime_ms = 0;
int32_t current_stop_way = 0;
int32_t next_possible_stop_position = 0;
int32_t current_real_position = 0;
int32_t current_pwm_velocity = 0;
const uint8_t MAX_MODES = 8;
enum Shutterposition_mode {SHT_UNDEF, SHT_TIME, SHT_TIME_UP_DOWN, SHT_TIME_GARAGE, SHT_COUNTER, SHT_PWM_VALUE, SHT_PWM_TIME,SHT_AUTOCONFIG};
enum Shutterswitch_mode {SHT_SWITCH, SHT_PULSE,};
enum ShutterButtonStates { SHT_NOT_PRESSED, SHT_PRESSED_MULTI, SHT_PRESSED_HOLD, SHT_PRESSED_IMMEDIATE, SHT_PRESSED_EXT_HOLD, SHT_PRESSED_MULTI_SIMULTANEOUS, SHT_PRESSED_HOLD_SIMULTANEOUS, SHT_PRESSED_EXT_HOLD_SIMULTANEOUS,};
const char kShutterCommands[] PROGMEM = D_PRFX_SHUTTER "|"
D_CMND_SHUTTER_OPEN "|" D_CMND_SHUTTER_CLOSE "|" D_CMND_SHUTTER_TOGGLE "|" D_CMND_SHUTTER_TOGGLEDIR "|" D_CMND_SHUTTER_STOP "|" D_CMND_SHUTTER_POSITION "|"
D_CMND_SHUTTER_OPENTIME "|" D_CMND_SHUTTER_CLOSETIME "|" D_CMND_SHUTTER_RELAY "|" D_CMND_SHUTTER_MODE "|" D_CMND_SHUTTER_PWMRANGE "|"
D_CMND_SHUTTER_SETHALFWAY "|" D_CMND_SHUTTER_SETCLOSE "|" D_CMND_SHUTTER_SETOPEN "|" D_CMND_SHUTTER_INVERT "|" D_CMND_SHUTTER_CLIBRATION "|"
D_CMND_SHUTTER_MOTORDELAY "|" D_CMND_SHUTTER_FREQUENCY "|" D_CMND_SHUTTER_BUTTON "|" D_CMND_SHUTTER_LOCK "|" D_CMND_SHUTTER_ENABLEENDSTOPTIME "|" D_CMND_SHUTTER_INVERTWEBBUTTONS "|"
D_CMND_SHUTTER_STOPOPEN "|" D_CMND_SHUTTER_STOPCLOSE "|" D_CMND_SHUTTER_STOPTOGGLE "|" D_CMND_SHUTTER_STOPTOGGLEDIR "|" D_CMND_SHUTTER_STOPPOSITION "|" D_CMND_SHUTTER_INCDEC "|"
D_CMND_SHUTTER_UNITTEST "|" D_CMND_SHUTTER_TILTCONFIG "|" D_CMND_SHUTTER_SETTILT "|" D_CMND_SHUTTER_TILTINCDEC "|" D_CMND_SHUTTER_MOTORSTOP "|" D_CMND_SHUTTER_SETUP;
void (* const ShutterCommand[])(void) PROGMEM = {
&CmndShutterOpen, &CmndShutterClose, &CmndShutterToggle, &CmndShutterToggleDir, &CmndShutterStop, &CmndShutterPosition,
&CmndShutterOpenTime, &CmndShutterCloseTime, &CmndShutterRelay, &CmndShutterMode, &CmndShutterPwmRange,
&CmndShutterSetHalfway, &CmndShutterSetClose, &CmndShutterSetOpen, &CmndShutterInvert, &CmndShutterCalibration , &CmndShutterMotorDelay,
&CmndShutterFrequency, &CmndShutterButton, &CmndShutterLock, &CmndShutterEnableEndStopTime, &CmndShutterInvertWebButtons,
&CmndShutterStopOpen, &CmndShutterStopClose, &CmndShutterStopToggle, &CmndShutterStopToggleDir, &CmndShutterStopPosition, &CmndShutterIncDec,
&CmndShutterUnitTest,&CmndShutterTiltConfig,&CmndShutterSetTilt,&CmndShutterTiltIncDec,&CmndShutterMotorStop,&CmndShutterSetup
};
const char JSON_SHUTTER_POS[] PROGMEM = "\"" D_PRFX_SHUTTER "%d\":{\"Position\":%d,\"Direction\":%d,\"Target\":%d,\"Tilt\":%d}";
const char JSON_SHUTTER_BUTTON[] PROGMEM = "\"" D_PRFX_SHUTTER "%d\":{\"Button%d\":%d}";
#include <Ticker.h>
Ticker TickerShutter;
struct SHUTTER {
uint32_t time; // operating time of the shutter in 0.05sec
int32_t open_max; // max value on maximum open calculated
int32_t target_position; // position to go to
int32_t start_position; // position before a movement is started. init at start
int32_t real_position; // value between 0 and Shutter[i].open_max
uint16_t open_time; // duration to open the Shutter[i]. 112 = 11.2sec
uint16_t close_time; // duration to close the Shutter[i]. 112 = 11.2sec
uint16_t close_velocity; // in relation to open velocity. higher value = faster
int8_t direction; // 1 == UP , 0 == stop; -1 == down
int8_t lastdirection; // last direction (1 == UP , -1 == down)
uint8_t switch_mode; // how to switch relays: SHT_SWITCH, SHT_PULSE
int8_t motordelay; // initial motorstarttime in 0.05sec. Also uses for ramp at steppers and servos, negative if motor stops late
int16_t pwm_velocity; // frequency of PWN for stepper motors or PWM duty cycle change for PWM servo
uint16_t pwm_value; // dutyload of PWM 0..1023 on ESP8266
uint16_t close_velocity_max; // maximum of PWM change during closeing. Defines velocity on opening. Steppers and Servos only
int32_t accelerator; // speed of ramp-up, ramp down of shutters with velocity control. Steppers and Servos only
int8_t tilt_config[5]; // tilt_min, tilt_max, duration, tilt_closed_value, tilt_opened_value
int8_t tilt_real_pos; // -90 to 90
int8_t tilt_target_pos; // target positon for movements of the tilt
int8_t tilt_target_pos_override; // one time override of automatic calculation of tilt_target
int8_t tilt_start_pos; // saved start position before shutter moves
uint8_t tilt_velocity; // degree rotation per step 0.05sec
int8_t tiltmoving; // 0 operating move, 1 = operating tilt
uint16_t venetian_delay = 0; // Delay in steps before venetian shutter start physical moving. Based on tilt position
uint16_t min_realPositionChange = 0; // minimum change of the position before the shutter operates. different for PWM and time based operations
uint16_t min_TiltChange = 0; // minimum change of the tilt before the shutter operates. different for PWM and time based operations
uint16_t last_reported_time = 0; // get information on skipped 50ms loop() slots
uint32_t last_stop_time = 0; // record the last time the relay was switched off
} Shutter[MAX_SHUTTERS_ESP32];
struct SHUTTERGLOBAL {
power_t RelayShutterMask = 0; // bit mask with 11 at the position of relays that belong to at least ONE shutter
power_t RelayOldMask = 0; // bitmatrix that contain the last known state of all relays. Required to detemine the manual changed relay.
power_t RelayCurrentMask = 0; // bitmatrix that contain the current state of all relays
uint8_t LastChangedRelay = 0; // Relay 1..32, 0 no change
uint8_t position_mode = 0; // how to calculate actual position: SHT_TIME, SHT_COUNTER, SHT_PWM_VALUE, SHT_PWM_TIME
uint8_t skip_relay_change; // avoid overrun at endstops
uint8_t start_reported = 0; // indicates of the shutter start was reported through MQTT JSON
uint16_t open_velocity_max = RESOLUTION; // maximum of PWM change during opening. Defines velocity on opening. Steppers and Servos only
bool callibration_run = false; // if true a callibration is running and additional measures are captured
uint8_t stopp_armed = 0; // Count each step power usage is below limit of 1 Watt
} ShutterGlobal;
#define SHT_DIV_ROUND(__A, __B) (((__A) + (__B)/2) / (__B))
/*********************************************************************************************\
* Driver Settings load and save
\*********************************************************************************************/
void ShutterSettingsDefault(void) {
// Init default values in case file is not found
AddLog(LOG_LEVEL_INFO, PSTR("Shutter: " D_USE_DEFAULTS));
memset(&ShutterSettings, 0x00, sizeof(ShutterSettings));
ShutterSettings.version = SHUTTER_VERSION;
// Init any other parameter in struct ShutterSettings
ShutterSettings.open_velocity_max = ShutterGlobal.open_velocity_max;
ShutterSettings.shutter_accuracy = Settings->shutter_accuracy;
ShutterSettings.shutter_mode = Settings->shutter_mode;
ShutterSettings.shutter_motorstop = Settings->shutter_motorstop;
for (uint32_t i = 0; i < MAX_SHUTTERS; i++) {
// copy values from settings
for (uint32_t j = 0; j < 5; j++) {
if (j<2) ShutterSettings.shutter_pwmrange[j][i] = Settings->shutter_pwmrange[j][i];
ShutterSettings.shutter_tilt_config[j][i] = Settings->shutter_tilt_config[j][i];
ShutterSettings.shuttercoeff[j][i] = Settings->shuttercoeff[j][i];
}
ShutterSettings.shutter_tilt_pos[i] = Settings->shutter_tilt_pos[i];
ShutterSettings.shutter_opentime[i] = Settings->shutter_opentime[i];
ShutterSettings.shutter_closetime[i] = Settings->shutter_closetime[i];
ShutterSettings.shutter_options[i] = Settings->shutter_options[i];
ShutterSettings.shutter_set50percent[i] = Settings->shutter_set50percent[i];
ShutterSettings.shutter_position[i] = Settings->shutter_position[i];
ShutterSettings.shutter_startrelay[i] = Settings->shutter_startrelay[i];
ShutterSettings.shutter_motordelay[i] = Settings->shutter_motordelay[i];
}
for (uint32_t i = 0; i < MAX_SHUTTER_KEYS; i++) {
ShutterSettings.shutter_button[i].shutter_number = Settings->shutter_button[i] & 0x03;
ShutterSettings.shutter_button[i].enabled = Settings->shutter_button[i] &(1<<31);
for (uint8_t j = 0; j < 4; j++) {
ShutterSettings.shutter_button[i].position[j].pos = (((Settings->shutter_button[i]>> (2+6*j))&(0x3f))-1)<<1;
ShutterSettings.shutter_button[i].position[j].tilt = -128; // -128 == DISBALED
ShutterSettings.shutter_button[i].position[j].mqtt_broadcast = ((Settings->shutter_button[i]>>(26+j))&(0x01)!=0);
}
}
for (uint32_t i = MAX_SHUTTERS; i < MAX_SHUTTERS_ESP32; i++) {
ShutterSettings.shutter_set50percent[i] = 50;
ShutterSettings.shutter_opentime[i] = 100;
ShutterSettings.shutter_closetime[i] = 100;
ShutterSettings.shutter_pwmrange[0][i] = pwm_servo_min;
ShutterSettings.shutter_pwmrange[1][i] = pwm_servo_max;
}
}
void ShutterSettingsDelta(void) {
// Fix possible setting deltas
if (ShutterSettings.version != SHUTTER_VERSION) { // Fix version dependent changes
if (ShutterSettings.version < 0x0100) {
for (uint8_t i=0; i < MAX_SHUTTERS_ESP32; i++){
if (ShutterSettings.shutter_startrelay[i] == 0) continue;
AddLog(LOG_LEVEL_INFO, PSTR("SHT: %s SHT%d:%d"),D_CMND_SHUTTER_RELAY,i+1,ShutterSettings.shutter_startrelay[i]);
AddLog(LOG_LEVEL_INFO, PSTR("SHT: %s: %d"),D_CMND_SHUTTER_OPENTIME,ShutterSettings.shutter_opentime[i]);
AddLog(LOG_LEVEL_INFO, PSTR("SHT: %s: %d"),D_CMND_SHUTTER_CLOSETIME,ShutterSettings.shutter_closetime[i]);
}
for (uint8_t i=0; i < MAX_SHUTTERS_ESP32*2; i++){
ShutterSettings.shutter_button[i].enabled = ShutterSettings.shutter_button_old[i].enabled;
ShutterSettings.shutter_button[i].mqtt_all = ShutterSettings.shutter_button_old[i].mqtt_all;
ShutterSettings.shutter_button[i].shutter_number = ShutterSettings.shutter_button_old[i].shutter_number;
for (uint8_t j = 0; j < 4; j++){
ShutterSettings.shutter_button[i].position[j].pos = ShutterSettings.shutter_button_old[i].position[j].pos;
ShutterSettings.shutter_button[i].position[j].tilt = ShutterSettings.shutter_button_old[i].position[j].tilt;
ShutterSettings.shutter_button[i].position[j].mqtt_broadcast = ShutterSettings.shutter_button_old[i].position[j].mqtt_broadcast;
}
}
}
// Set current version and save settings
ShutterSettings.version = SHUTTER_VERSION;
ShutterSettingsSave();
}
}
void ShutterSettingsLoad(bool erase) {
// Called from FUNC_PRE_INIT once at restart
// Init default values in case file is not found
ShutterSettingsDefault();
// Try to load file /.drvset027
char filename[20];
// Use for drivers:
snprintf_P(filename, sizeof(filename), PSTR(TASM_FILE_DRIVER), XDRV_27);
AddLog(LOG_LEVEL_INFO, PSTR("SHT: About to load settings from file %s"), filename);
#ifdef USE_UFILESYS
if (erase) {
TfsDeleteFile(filename); // Use defaults
}
else if (TfsLoadFile(filename, (uint8_t*)&ShutterSettings, sizeof(ShutterSettings))) {
// Fix possible setting deltas
ShutterSettingsDelta();
} else {
// File system not ready: No flash space reserved for file system
AddLog(LOG_LEVEL_INFO, PSTR(D_ERROR_FILE_NOT_FOUND));
}
#else
AddLog(LOG_LEVEL_INFO, D_ERROR_FILESYSTEM_NOT_READY);
#endif // USE_UFILESYS
}
void ShutterSettingsSave(void) {
// Called from FUNC_SAVE_SETTINGS every SaveData second and at restart
uint32_t crc32 = GetCfgCrc32((uint8_t*)&ShutterSettings +4, sizeof(ShutterSettings) -4); // Skip crc32
if (crc32 != ShutterSettings.crc32) {
// Try to save file /.drvset027
ShutterSettings.crc32 = crc32;
char filename[20];
// Use for drivers:
snprintf_P(filename, sizeof(filename), PSTR(TASM_FILE_DRIVER), XDRV_27);
AddLog(LOG_LEVEL_INFO, PSTR("SHT: About to save settings to file %s"), filename);
#ifdef USE_UFILESYS
if (!TfsSaveFile(filename, (const uint8_t*)&ShutterSettings, sizeof(ShutterSettings))) {
// File system not ready: No flash space reserved for file system
AddLog(LOG_LEVEL_INFO, D_ERROR_FILE_NOT_FOUND);
}
#else
AddLog(LOG_LEVEL_INFO, D_ERROR_FILESYSTEM_NOT_READY);
#endif // USE_UFILESYS
}
}
bool ShutterSettingsRestore(void) {
XdrvMailbox.data = (char*)&ShutterSettings;
XdrvMailbox.index = sizeof(ShutterSettings);
return true;
}
uint8_t ShutterGetRelayNoFromBitfield(power_t number) {
int position = 0;
while (number != 0) {
position++;
if (number & 1) return position;
number >>= 1;
}
return 0; // return 0 if no relay found
}
bool ShutterStatus(void) {
if (Settings->flag3.shutter_mode) { // SetOption80 - (Shutter) Enable shutter support (1)
Response_P(PSTR("{\"" D_CMND_STATUS D_STATUS13_SHUTTER "\":{"));
for (uint32_t i = 0; i < MAX_SHUTTERS_ESP32; i++) {
if (0 == ShutterSettings.shutter_startrelay[i]) { break; }
if (i > 0) { ResponseAppend_P(PSTR(",")); }
ResponseAppend_P(PSTR("\"" D_STATUS13_SHUTTER "%d\":{\"Relay1\":%d,\"Relay2\":%d,\"Open\":%d,\"Close\":%d,"
"\"50perc\":%d,\"Delay\":%d,\"Opt\":\"%s\","
"\"Calib\":[%d,%d,%d,%d,%d],"
"\"Mode\":\"%d\","
"\"TiltConfig\":[%d,%d,%d,%d,%d]}"),
i, ShutterSettings.shutter_startrelay[i], ShutterSettings.shutter_startrelay[i] +1, ShutterSettings.shutter_opentime[i], ShutterSettings.shutter_closetime[i],
ShutterSettings.shutter_set50percent[i], ShutterSettings.shutter_motordelay[i], GetBinary8(ShutterSettings.shutter_options[i], 4).c_str(),
ShutterSettings.shuttercoeff[0][i], ShutterSettings.shuttercoeff[1][i], ShutterSettings.shuttercoeff[2][i], ShutterSettings.shuttercoeff[3][i], ShutterSettings.shuttercoeff[4][i],
ShutterSettings.shutter_mode,
ShutterSettings.shutter_tilt_config[0][i], ShutterSettings.shutter_tilt_config[1][i], ShutterSettings.shutter_tilt_config[2][i], ShutterSettings.shutter_tilt_config[3][i], ShutterSettings.shutter_tilt_config[4][i]
);
}
ResponseJsonEndEnd();
return true;
}
return false;
}
void ShutterLogPos(uint32_t i)
{
char stemp2[10];
dtostrfd((float)Shutter[i].time / STEPS_PER_SECOND, 2, stemp2);
AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Shtr%d Real %d, Start %d, Stop %d, Dir %d, Delay %d, Rtc %s [s], Freq %d, PWM %d, Tilt %d"),
i+1, Shutter[i].real_position, Shutter[i].start_position, Shutter[i].target_position, Shutter[i].direction, Shutter[i].motordelay, stemp2,
Shutter[i].pwm_velocity, Shutter[i].pwm_value,Shutter[i].tilt_real_pos);
}
uint8_t ShutterGetStartRelay(uint8_t index) {
return ShutterSettings.shutter_startrelay[index];
}
uint8_t ShutterGetOptions(uint8_t index) {
return ShutterSettings.shutter_options[index];
}
int8_t ShutterGetTiltConfig(uint8_t config_idx,uint8_t index) {
return Shutter[index].tilt_config[config_idx];
}
void ExecuteCommandPowerShutter(uint32_t device, uint32_t state, uint32_t source)
{
// first implementation for virtual relays. Avoid switching relay numbers that do not exist.
if (device <= TasmotaGlobal.devices_present) ExecuteCommandPower(device,state,source);
}
void ShutterUpdateVelocity(uint8_t i)
{
// No Logging allowed. Part of RTC Timer
// will be calles through RTC every 50ms.
// do not allow accellerator to stop movement
Shutter[i].pwm_velocity = tmax(velocity_change_per_step_max, Shutter[i].pwm_velocity+Shutter[i].accelerator);
Shutter[i].pwm_velocity = tmin(Shutter[i].direction==1 ? ShutterGlobal.open_velocity_max : Shutter[i].close_velocity_max,Shutter[i].pwm_velocity);
// respect hard coded SDK limit of PWM_MIN on PWM frequency.
if (ShutterGlobal.position_mode == SHT_COUNTER) {
Shutter[i].pwm_velocity = tmax(PWM_MIN,Shutter[i].pwm_velocity);
}
}
void ShutterRtc50mS(void)
{
#ifdef ESP32
bool pwm_apply = false; // ESP32 only, do we need to apply PWM changes
#endif
// No Logging allowed. RTC Timer
for (uint8_t i = 0; i < TasmotaGlobal.shutters_present; i++) {
if (Shutter[i].direction) {
// update position data before increasing counter
Shutter[i].real_position = ShutterCalculatePosition(i);
Shutter[i].time++;
ShutterCalculateAccelerator(i);
switch (ShutterGlobal.position_mode) {
case SHT_PWM_VALUE:
ShutterUpdateVelocity(i);
Shutter[i].real_position += Shutter[i].direction > 0 ? Shutter[i].pwm_velocity : (Shutter[i].direction < 0 ? -Shutter[i].pwm_velocity : 0);
Shutter[i].pwm_value = SHT_DIV_ROUND((ShutterSettings.shutter_pwmrange[1][i]-ShutterSettings.shutter_pwmrange[0][i]) * Shutter[i].real_position , Shutter[i].open_max)+ShutterSettings.shutter_pwmrange[0][i];
analogWrite(Pin(GPIO_PWM1, i), Shutter[i].pwm_value);
break;
case SHT_COUNTER:
if (Shutter[i].accelerator) {
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Accelerator i=%d -> %d"),i, Shutter[i].accelerator);
ShutterUpdateVelocity(i);
digitalWrite(Pin(GPIO_PWM1, i), LOW);
#ifdef ESP8266
// Convert frequency into clock cycles
uint32_t cc = microsecondsToClockCycles(1000000UL) / Shutter[i].pwm_velocity;
startWaveformClockCycles(Pin(GPIO_PWM1, i), cc/2, cc/2, 0, -1, 0, false);
#endif // ESP8266
#ifdef ESP32
analogWriteFreq(Shutter[i].pwm_velocity,Pin(GPIO_PWM1, i));
TasmotaGlobal.pwm_value[i] = 512;
pwm_apply = true;
#endif // ESP32
}
break;
}
} // if (Shutter[i].direction)
}
#ifdef ESP32
if (pwm_apply) { PwmApplyGPIO(false); }
#endif
}
int32_t ShutterPercentToRealPosition(int16_t percent, uint32_t index)
{
// if inverted recalculate the percentposition
percent = (ShutterSettings.shutter_options[index] & 1) ? 100 - percent : percent;
if (ShutterSettings.shutter_set50percent[index] != 50) {
return (percent <= 5) ? ShutterSettings.shuttercoeff[2][index] * percent*10 : (ShutterSettings.shuttercoeff[1][index] * percent + (ShutterSettings.shuttercoeff[0][index]*10))*10;
} else {
int64_t realpos;
// check against DIV 0
for (uint32_t j = 0; j < 5; j++) {
if (0 == ShutterSettings.shuttercoeff[j][index]) {
AddLog(LOG_LEVEL_ERROR, PSTR("SHT: RESET/INIT CALIBRATION MATRIX DIV 0"));
for (uint32_t k = 0; k < 5; k++) {
ShutterSettings.shuttercoeff[k][index] = SHT_DIV_ROUND(calibrate_pos[k+1] * 1000, calibrate_pos[5]);
}
}
}
for (uint32_t k = 0; k < 5; k++) {
if ((percent * 10) >= ShutterSettings.shuttercoeff[k][index]) {
realpos = SHT_DIV_ROUND(Shutter[index].open_max * calibrate_pos[k+1], 100);
//AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Realposition TEMP1: %d, %d %%, coeff %d"), realpos, percent, ShutterSettings.shuttercoeff[k][index]);
} else {
//AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Shutter[%d].open_max: %d"),index, Shutter[index].open_max);
if (0 == k) {
realpos = SHT_DIV_ROUND((int64_t)percent * Shutter[index].open_max * calibrate_pos[k+1], ShutterSettings.shuttercoeff[k][index]*10 );
//AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Realposition TEMP3: %d, %d %%, coeff %d"), realpos, percent, ShutterSettings.shuttercoeff[k][index]);
} else {
//uint32_t addon = ( percent*10 - ShutterSettings.shuttercoeff[k-1][index] ) * Shutter[index].open_max * (calibrate_pos[k+1] - calibrate_pos[k]) / (ShutterSettings.shuttercoeff[k][index] -ShutterSettings.shuttercoeff[k-1][index]) / 100;
//AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Realposition TEMP2: %d, %d %%, coeff %d"), addon, (calibrate_pos[k+1] - calibrate_pos[k]), (ShutterSettings.shuttercoeff[k][index] -ShutterSettings.shuttercoeff[k-1][index]));
realpos += SHT_DIV_ROUND(((int64_t)percent*10 - ShutterSettings.shuttercoeff[k-1][index] ) * Shutter[index].open_max * (calibrate_pos[k+1] - calibrate_pos[k]), (ShutterSettings.shuttercoeff[k][index] - ShutterSettings.shuttercoeff[k-1][index])*100);
}
break;
}
}
return realpos < 0 ? 0 : realpos;
}
}
uint8_t ShutterRealToPercentPosition(int32_t realpos, uint32_t index)
{
int64_t realpercent;
if (realpos == -9999) {
realpos = Shutter[index].real_position;
}
if (ShutterSettings.shutter_set50percent[index] != 50) {
realpercent = (ShutterSettings.shuttercoeff[2][index] * 5 > realpos/10) ? SHT_DIV_ROUND(realpos/10, ShutterSettings.shuttercoeff[2][index]) : SHT_DIV_ROUND(realpos/10-ShutterSettings.shuttercoeff[0][index]*10, ShutterSettings.shuttercoeff[1][index]);
} else {
for (uint32_t j = 0; j < 5; j++) {
if (realpos >= Shutter[index].open_max * calibrate_pos[j+1] / 100) {
realpercent = SHT_DIV_ROUND(ShutterSettings.shuttercoeff[j][index], 10);
//AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Realpercent TEMP1: %d %%, %d, coeff %d"), realpercent, realpos, Shutter[index].open_max * calibrate_pos[j+1] / 100);
} else {
//AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Shutter[%d].open_max: %d"),index, Shutter[index].open_max);
if (0 == j) {
realpercent = SHT_DIV_ROUND(((int64_t)realpos - SHT_DIV_ROUND(Shutter[index].open_max * calibrate_pos[j], 100)) * ShutterSettings.shuttercoeff[j][index], calibrate_pos[j+1]/10*Shutter[index].open_max);
} else {
//uint16_t addon = ( realpos - (Shutter[index].open_max * calibrate_pos[j] / 100) ) * 10 * (ShutterSettings.shuttercoeff[j][index] - ShutterSettings.shuttercoeff[j-1][index]) / (calibrate_pos[j+1] - calibrate_pos[j])/Shutter[index].open_max;
//uint16_t addon = ( realpercent*10 - ShutterSettings.shuttercoeff[j-1][index] ) * Shutter[index].open_max * (calibrate_pos[j+1] - calibrate_pos[j]) / (ShutterSettings.shuttercoeff[j][index] -ShutterSettings.shuttercoeff[j-1][index]) / 100;
//AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Realpercent TEMP2: %d %%, delta %d, %d, coeff %d"), addon,( realpos - (Shutter[index].open_max * calibrate_pos[j] / 100) ) , (calibrate_pos[j+1] - calibrate_pos[j])* Shutter[index].open_max/100, (ShutterSettings.shuttercoeff[j][index] -ShutterSettings.shuttercoeff[j-1][index]));
realpercent += SHT_DIV_ROUND(((int64_t)realpos - SHT_DIV_ROUND(Shutter[index].open_max * calibrate_pos[j], 100)) * (ShutterSettings.shuttercoeff[j][index] - ShutterSettings.shuttercoeff[j-1][index]), (calibrate_pos[j+1] - calibrate_pos[j])/10*Shutter[index].open_max) ;
}
break;
}
}
}
realpercent = realpercent < 0 ? 0 : realpercent;
// if inverted recalculate the percentposition
return (ShutterSettings.shutter_options[index] & 1) ? 100 - realpercent : realpercent;
}
void ShutterInit(void)
{
TasmotaGlobal.shutters_present = 0;
ShutterGlobal.RelayShutterMask = 0;
//Initialize to get relay that changed
ShutterGlobal.RelayOldMask = TasmotaGlobal.power;
// if shutter 4 is unused
if (ShutterSettings.shutter_startrelay[MAX_SHUTTERS_ESP32 -1] == 0) {
ShutterGlobal.open_velocity_max = ShutterSettings.shuttercoeff[4][3] > 0 ? ShutterSettings.shuttercoeff[4][3] : ShutterGlobal.open_velocity_max;
}
for (uint32_t i = 0; i < MAX_SHUTTERS_ESP32; i++) {
// set startrelay to 1 on first init, but only to shutter 1. 90% usecase
if (ShutterSettings.shutter_startrelay[i] && (ShutterSettings.shutter_startrelay[i] <= 32 )) {
bool relay_in_interlock = false;
TasmotaGlobal.shutters_present++;
// Add the two relays to the mask to knaw they belong to shutters
ShutterGlobal.RelayShutterMask |= 3 << (ShutterSettings.shutter_startrelay[i] -1) ;
// All shutters must have same mode. Switch OR Pulse. N
switch (Settings->pulse_timer[i]) {
case 0:
Shutter[i].switch_mode = SHT_SWITCH;
break;
default:
Shutter[i].switch_mode = SHT_PULSE;
break;
}
// Check if the relay is in an INTERLOCK group. required to set the right mode or
// verify that on SHT_TIME INTERLOCK is set
for (uint32_t j = 0; j < MAX_INTERLOCKS * Settings->flag.interlock; j++) { // CMND_INTERLOCK - Enable/disable interlock
//AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Interlock state i=%d %d, flag %d, Shuttermask %d, MaskedIL %d"),i, ShutterSettings.interlock[i], ShutterSettings.flag.interlock,ShutterGlobal.RelayShutterMask, ShutterSettings.interlock[i]&ShutterGlobal.RelayShutterMask);
if (Settings->interlock[j] && (Settings->interlock[j] & ShutterGlobal.RelayShutterMask)) {
//AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Relay in Interlock group"));
relay_in_interlock = true;
}
}
if (ShutterSettings.shutter_mode == SHT_AUTOCONFIG || ShutterSettings.shutter_mode == SHT_UNDEF) {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Mode undef.. calculate..."));
ShutterGlobal.position_mode = SHT_TIME;
if (!relay_in_interlock) {
// temporary to maintain old functionality
if (ShutterSettings.shutter_mode == SHT_UNDEF) {
ShutterGlobal.position_mode = SHT_TIME_UP_DOWN;
}
if (PinUsed(GPIO_PWM1, i) && PinUsed(GPIO_CNTR1, i)) {
ShutterGlobal.position_mode = SHT_COUNTER;
}
}
} else {
ShutterGlobal.position_mode = ShutterSettings.shutter_mode;
}
AddLog(LOG_LEVEL_INFO, PSTR("SHT: ShutterMode: %d"), ShutterGlobal.position_mode);
// main function for stepper and servos to control velocity and acceleration.
TickerShutter.attach_ms(50, ShutterRtc50mS );
// default the 50 percent should not have any impact without changing it. set to 60
ShutterSettings.shutter_set50percent[i] = (ShutterSettings.shutter_set50percent[i] > 0) ? ShutterSettings.shutter_set50percent[i] : 50;
// use 10 sec. as default to allow everybody to play without deep initialize
Shutter[i].open_time = ShutterSettings.shutter_opentime[i] = (ShutterSettings.shutter_opentime[i] > 0) ? ShutterSettings.shutter_opentime[i] : 100;
Shutter[i].close_time = ShutterSettings.shutter_closetime[i] = (ShutterSettings.shutter_closetime[i] > 0) ? ShutterSettings.shutter_closetime[i] : 100;
// Update Calculation 20 because time interval is 0.05 sec ans time is in 0.1sec
Shutter[i].open_max = STEPS_PER_SECOND * RESOLUTION * Shutter[i].open_time / 10;
Shutter[i].close_velocity = Shutter[i].open_max / Shutter[i].close_time / 2 ;
// calculate a ramp slope at the first 5 percent to compensate that shutters move with down part later than the upper part
if (ShutterSettings.shutter_set50percent[i] != 50) {
ShutterSettings.shuttercoeff[1][i] = Shutter[i].open_max/10 * (100 - ShutterSettings.shutter_set50percent[i] ) / 5000 ;
ShutterSettings.shuttercoeff[0][i] = Shutter[i].open_max/100 - (ShutterSettings.shuttercoeff[1][i] * 10);
ShutterSettings.shuttercoeff[2][i] = (int32_t)(ShutterSettings.shuttercoeff[0][i]*10 + 5 * ShutterSettings.shuttercoeff[1][i]) / 5;
//AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Shtr%d Shutter[i].open_max %d, 50perc:%d, 0:%d, 1:%d 2:%d"), i, Shutter[i].open_max, ShutterSettings.shutter_set50percent[i], ShutterSettings.shuttercoeff[0][i],ShutterSettings.shuttercoeff[1][i],ShutterSettings.shuttercoeff[2][i]);
}
ShutterGlobal.RelayShutterMask |= 3 << (ShutterSettings.shutter_startrelay[i] -1);
Shutter[i].real_position = ShutterPercentToRealPosition(ShutterSettings.shutter_position[i], i);
Shutter[i].start_position = Shutter[i].target_position = Shutter[i].real_position;
Shutter[i].motordelay = ShutterSettings.shutter_motordelay[i];
Shutter[i].lastdirection = (50 < ShutterSettings.shutter_position[i]) ? 1 : -1;
// Venetian Blind
// ensure min is smaller than max
ShutterSettings.shutter_tilt_config[2][i] = ShutterSettings.shutter_tilt_config[0][i] >= ShutterSettings.shutter_tilt_config[1][i]?0:ShutterSettings.shutter_tilt_config[2][i];
//copy config to shutter
for (uint8_t k=0; k<5; k++) {
Shutter[i].tilt_config[k] = ShutterSettings.shutter_tilt_config[k][i];
}
// wipe open/close position if duration is 0
if (Shutter[i].tilt_config[2]==0) {
Shutter[i].tilt_config[3] = Shutter[i].tilt_config[4] = 0;
}
Shutter[i].tilt_target_pos = Shutter[i].tilt_real_pos = ShutterSettings.shutter_tilt_pos[i];
Shutter[i].tilt_velocity = Shutter[i].tilt_config[2] > 0 ? ((Shutter[i].tilt_config[1]-Shutter[i].tilt_config[0])/Shutter[i].tilt_config[2])+1 : 1;
Shutter[i].close_velocity_max = ShutterGlobal.open_velocity_max*Shutter[i].open_time / Shutter[i].close_time;
Shutter[i].min_realPositionChange = 2 * tmax(ShutterGlobal.open_velocity_max, Shutter[i].close_velocity_max);
Shutter[i].min_TiltChange = 2 * Shutter[i].tilt_velocity;
switch (ShutterGlobal.position_mode) {
case SHT_PWM_VALUE:
ShutterGlobal.open_velocity_max = RESOLUTION;
// Initiate pwm range with defaults if not already set.
ShutterSettings.shutter_pwmrange[0][i] = ShutterSettings.shutter_pwmrange[0][i] > 0 ? ShutterSettings.shutter_pwmrange[0][i] : pwm_servo_min;
ShutterSettings.shutter_pwmrange[1][i] = ShutterSettings.shutter_pwmrange[1][i] > 0 ? ShutterSettings.shutter_pwmrange[1][i] : pwm_servo_max;
Shutter[i].min_realPositionChange = 0;
Shutter[i].min_TiltChange = 0;
break;
case SHT_TIME:
// Test is the relays are in interlock mode. Disable shuttermode if error
if (!relay_in_interlock) {
TasmotaGlobal.shutters_present = 0,
AddLog(LOG_LEVEL_ERROR, PSTR("SHT: ERROR: Shtr%d Relays are not in INTERLOCK. Pls read documentation. Shutter DISABLE. Fix and REBOOT"), i+1);
return;
}
break;
}
AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Shtr%d min realpos_chg: %d, min tilt_chg %d"), i+1, Shutter[i].min_realPositionChange, Shutter[i].min_TiltChange);
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d Openvel %d, Closevel: %d"), i+1, ShutterGlobal.open_velocity_max, Shutter[i].close_velocity_max);
AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Shtr%d Init. Pos %d, Inv %d, Locked %d, Endstop enab %d, webButt inv %d, Motordel: %d"),
i+1, Shutter[i].real_position,
(ShutterSettings.shutter_options[i] & 1) ? 1 : 0, (ShutterSettings.shutter_options[i] & 2) ? 1 : 0, (ShutterSettings.shutter_options[i] & 4) ? 1 : 0, (ShutterSettings.shutter_options[i] & 8) ? 1 : 0, Shutter[i].motordelay);
} else {
// terminate loop at first INVALID Shutter[i].
break;
}
ShutterLimitRealAndTargetPositions(i);
ShutterSettings.shutter_accuracy = 1;
ShutterSettings.shutter_mode = ShutterGlobal.position_mode;
// initialize MotorStop time with 500ms if not set
// typical not set start values are 0 and 65535
if (ShutterSettings.shutter_motorstop > 5000 || ShutterSettings.shutter_motorstop == 0) {
ShutterSettings.shutter_motorstop = 500;
}
}
}
void ShutterReportPosition(bool always, uint32_t index)
{
Response_P(PSTR("{"));
uint32_t i = 0;
uint32_t n = TasmotaGlobal.shutters_present;
uint8_t shutter_running = 0;
for (i; i < n; i++) {
if (Shutter[i].direction != 0) {
shutter_running++;
}
}
// Allow function exit if nothing to report (99.9% use case)
if (!always && !shutter_running) return;
if( index != MAX_SHUTTERS_ESP32) {
i = index;
n = index+1;
} else {
i = 0;
}
for (i; i < n; i++) {
//AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Shtr%d Real Pos %d"), i+1,Shutter[i].real_position);
if (Shutter[i].direction != 0) {
ShutterLogPos(i);
shutter_running++;
}
if (i && index == MAX_SHUTTERS_ESP32) { ResponseAppend_P(PSTR(",")); }
ResponseAppend_P(JSON_SHUTTER_POS, i+1, ShutterRealToPercentPosition(Shutter[i].real_position, i), Shutter[i].direction, ShutterRealToPercentPosition(Shutter[i].target_position, i), Shutter[i].tilt_real_pos );
}
ResponseJsonEnd();
if (always || shutter_running) {
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_PRFX_SHUTTER)); // RulesProcess() now re-entry protected
}
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: rules_flag.shutter_moving: %d, moved %d"), TasmotaGlobal.rules_flag.shutter_moving, TasmotaGlobal.rules_flag.shutter_moved);
}
void ShutterLimitRealAndTargetPositions(uint32_t i)
{
if (Shutter[i].real_position<0) Shutter[i].real_position = 0;
if (Shutter[i].real_position>Shutter[i].open_max) Shutter[i].real_position = Shutter[i].open_max;
if (Shutter[i].target_position<0) Shutter[i].target_position = 0;
if (Shutter[i].target_position>Shutter[i].open_max) Shutter[i].target_position = Shutter[i].open_max;
}
void ShutterCalculateAccelerator(uint8_t i)
{
// No Logging allowed. Part of RTC Timer
if (Shutter[i].direction != 0) {
switch (ShutterGlobal.position_mode) {
case SHT_COUNTER:
case SHT_PWM_VALUE:
current_real_position = Shutter[i].real_position;
current_pwm_velocity = Shutter[i].pwm_velocity;
// calculate max velocity allowed in this direction
velocity_max = Shutter[i].direction == 1 ? ShutterGlobal.open_velocity_max : Shutter[i].close_velocity_max;
// calculate max change of velocyty based on the defined motordelay in steps
velocity_change_per_step_max = velocity_max / (Shutter[i].motordelay>0 ? Shutter[i].motordelay : 1);
// minimumtime required from current velocity to stop
min_runtime_ms = current_pwm_velocity * 1000 / STEPS_PER_SECOND / velocity_change_per_step_max;
// decellaration way from current velocity
current_stop_way = min_runtime_ms * STEPS_PER_SECOND * (current_pwm_velocity + velocity_change_per_step_max) * Shutter[i].direction / 2 / ShutterGlobal.open_velocity_max - (Shutter[i].accelerator<0?Shutter[i].direction*1000*current_pwm_velocity/ShutterGlobal.open_velocity_max:0);
next_possible_stop_position = current_real_position + current_stop_way ;
// ensure that the accelerotor kicks in at the first overrun of the target position
if ( Shutter[i].accelerator < 0 || next_possible_stop_position * Shutter[i].direction > Shutter[i].target_position * Shutter[i].direction ) {
// if startet to early because of 0.05sec maximum accuracy and final position is to far away (200) accelerate a bit less
if (next_possible_stop_position * Shutter[i].direction+200 < Shutter[i].target_position * Shutter[i].direction) {
Shutter[i].accelerator = -velocity_change_per_step_max*9/10;
} else {
// in any case increase accelleration if overrun is detected during decelleration
if (next_possible_stop_position * Shutter[i].direction > Shutter[i].target_position * Shutter[i].direction && Shutter[i].accelerator < 0) {
Shutter[i].accelerator = -velocity_change_per_step_max*11/10;
} else {
// as long as the calculated end position is ok stay with proposed decelleration
Shutter[i].accelerator = -velocity_change_per_step_max;
}
}
// detect during the acceleration phase the point final speed is reached
} else if ( Shutter[i].accelerator > 0 && current_pwm_velocity == velocity_max) {
Shutter[i].accelerator = 0;
}
break;
}
}
}
void ShutterDecellerateForStop(uint8_t i)
{
#ifdef ESP32
bool pwm_apply = false; // ESP32 only, do we need to apply PWM changes
#endif
switch (ShutterGlobal.position_mode) {
case SHT_PWM_VALUE:
case SHT_COUNTER:
int16_t missing_steps;
Shutter[i].accelerator = -(ShutterGlobal.open_velocity_max / (Shutter[i].motordelay>4 ? (Shutter[i].motordelay*11)/10 : 4) );
while (Shutter[i].pwm_velocity > -2*Shutter[i].accelerator && Shutter[i].pwm_velocity != PWM_MIN) {
delay(50);
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Velocity %ld, Delta %d"), Shutter[i].pwm_velocity, Shutter[i].accelerator );
// Control will be done in RTC Ticker.
}
if (ShutterGlobal.position_mode == SHT_COUNTER){
missing_steps = ((Shutter[i].target_position-Shutter[i].start_position)*Shutter[i].direction*ShutterGlobal.open_velocity_max/RESOLUTION/STEPS_PER_SECOND) - RtcSettings.pulse_counter[i];
//prepare for stop PWM
Shutter[i].accelerator = 0;
Shutter[i].pwm_velocity = 0;
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Remain %d count %d -> target %d, dir %d"), missing_steps, RtcSettings.pulse_counter[i], (uint32_t)(Shutter[i].target_position-Shutter[i].start_position)*Shutter[i].direction*ShutterGlobal.open_velocity_max/RESOLUTION/STEPS_PER_SECOND, Shutter[i].direction);
while (RtcSettings.pulse_counter[i] < (uint32_t)(Shutter[i].target_position-Shutter[i].start_position)*Shutter[i].direction*ShutterGlobal.open_velocity_max/RESOLUTION/STEPS_PER_SECOND && missing_steps > 0) {
}
#ifdef ESP8266
analogWrite(Pin(GPIO_PWM1, i), 0); // removed with 8.3 because of reset caused by watchog
#endif
#ifdef ESP32
TasmotaGlobal.pwm_value[i] = 0;
pwm_apply = true;
#endif // ESP32
Shutter[i].real_position = ShutterCalculatePosition(i);
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Remain steps %d"), missing_steps);
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Real %d, Pulsecount %d, tobe %d, Start %d"), Shutter[i].real_position,RtcSettings.pulse_counter[i], (uint32_t)(Shutter[i].target_position-Shutter[i].start_position)*Shutter[i].direction*ShutterGlobal.open_velocity_max/RESOLUTION/STEPS_PER_SECOND, Shutter[i].start_position);
}
Shutter[i].direction = 0;
Shutter[i].pwm_velocity = 0;
break;
}
#ifdef ESP32
if (pwm_apply) { PwmApplyGPIO(false); }
#endif
}
void ShutterPowerOff(uint8_t i)
{
AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Stop %d Mode %d time %d, last source %d"), i+1,Shutter[i].switch_mode, Shutter[i].time, TasmotaGlobal.last_source); // fix log to indicate correct shutter number
ShutterDecellerateForStop(i);
uint8_t cur_relay = ShutterSettings.shutter_startrelay[i] + (Shutter[i].direction == 1 ? 0 : (uint8_t)(ShutterGlobal.position_mode == SHT_TIME)) ;
if (Shutter[i].direction !=0) {
Shutter[i].direction = 0;
}
if (Shutter[i].real_position == Shutter[i].start_position) {
//AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Update target tilt shutter %d from %d to %d"), i+1, Shutter[i].tilt_target_pos , Shutter[i].tilt_real_pos);
Shutter[i].tilt_target_pos = Shutter[i].tilt_real_pos;
}
TasmotaGlobal.rules_flag.shutter_moved = 1;
switch (Shutter[i].switch_mode) {
case SHT_SWITCH:
for (int8_t k=0;k<2;k++) {
if ((1 << (ShutterSettings.shutter_startrelay[i]+k-1)) & TasmotaGlobal.power) {
ExecuteCommandPowerShutter(ShutterSettings.shutter_startrelay[i]+k, 0, SRC_SHUTTER);
}
}
break;
case SHT_PULSE:
// we have a momentary switch here. Needs additional pulse on same relay after the end
switch (TasmotaGlobal.last_source) {
case SRC_PULSETIMER:
case SRC_SHUTTER:
case SRC_WEBGUI:
ExecuteCommandPowerShutter(cur_relay, 1, SRC_SHUTTER);
// switch off direction relay to make it power less
if (((1 << (ShutterSettings.shutter_startrelay[i])) & TasmotaGlobal.power) && ShutterSettings.shutter_startrelay[i]+1 != cur_relay) {
ExecuteCommandPowerShutter(ShutterSettings.shutter_startrelay[i]+1, 0, SRC_SHUTTER);
}
break;
default:
TasmotaGlobal.last_source = SRC_SHUTTER;
}
break;
}
// Store current PWM value to ensure proper position after reboot.
switch (ShutterGlobal.position_mode) {
case SHT_PWM_VALUE:
Shutter[i].pwm_value = SHT_DIV_ROUND((ShutterSettings.shutter_pwmrange[1][i]-ShutterSettings.shutter_pwmrange[0][i]) * Shutter[i].target_position , Shutter[i].open_max)+ShutterSettings.shutter_pwmrange[0][i];
analogWrite(Pin(GPIO_PWM1, i), Shutter[i].pwm_value);
AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: PWM final %d"),Shutter[i].pwm_value);
char scmnd[20];
#ifdef SHUTTER_CLEAR_PWM_ONSTOP
// free the PWM servo lock on stop.
analogWrite(Pin(GPIO_PWM1, i), 0);
#endif
break;
}
if (Settings->save_data) {
TasmotaGlobal.save_data_counter = Settings->save_data;
}
//delay(MOTOR_STOP_TIME);
Shutter[i].last_stop_time = millis();
}
void ShutterWaitForMotorStop(uint8_t i)
{
Shutter[i].last_stop_time = millis();
ShutterWaitForMotorStart(i);
}
void ShutterWaitForMotorStart(uint8_t i)
{
while (millis() < Shutter[i].last_stop_time + ShutterSettings.shutter_motorstop) {
loop();
}
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Stoptime done"));
}
void ShutterUpdatePosition(void)
{
char scommand[CMDSZ];
char stopic[TOPSZ];
// Iterate through all available shutters
for (uint32_t i = 0; i < TasmotaGlobal.shutters_present; i++) {
// Check if the shutter is in motion
if (Shutter[i].direction != 0) {
// Report the position of the shutter if not already done
if (!ShutterGlobal.start_reported) {
ShutterReportPosition(true, i);
ShutterGlobal.start_reported = 1;
}
// Update time information
int32_t deltatime = Shutter[i].time-Shutter[i].last_reported_time;
Shutter[i].last_reported_time = Shutter[i].time+1;
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d Time %d(%d), cStop %d, cVelo %d, mVelo %d, aVelo %d, mRun %d, aPos %d, aPos2 %d, nStop %d, Trgt %d, mVelo %d, Dir %d, Tilt %d, TrgtTilt: %d, Tiltmove: %d"),
i+1, Shutter[i].time, deltatime, current_stop_way, current_pwm_velocity, velocity_max, Shutter[i].accelerator, min_runtime_ms, current_real_position,Shutter[i].real_position,
next_possible_stop_position, Shutter[i].target_position, velocity_change_per_step_max, Shutter[i].direction,Shutter[i].tilt_real_pos, Shutter[i].tilt_target_pos,
Shutter[i].tiltmoving);
// Check calibration mode and energy information
if (ShutterGlobal.callibration_run ) {
// update energy consumption on every loop to dectect stop of the shutter
XnrgCall(FUNC_ENERGY_EVERY_SECOND);
// fency calculation with direction gives index 0 and 1 of the energy meter
// stop if endpoint is reached
if (Energy->active_power[0]+Energy->active_power[1] < 1.0 && Shutter[i].time > 20){
ShutterGlobal.stopp_armed++;
AddLog(LOG_LEVEL_INFO, PSTR("SHT: stopp_armed:%d"),ShutterGlobal.stopp_armed);
if (ShutterGlobal.stopp_armed > 2) {
Shutter[i].target_position = Shutter[i].real_position;
}
} else {
ShutterGlobal.stopp_armed = 0;
}
}
// Check if shutter reached its target position or if the speed falls below the minimum value
if ( ((Shutter[i].real_position * Shutter[i].direction >= Shutter[i].target_position * Shutter[i].direction && Shutter[i].tiltmoving==0) ||
((int16_t)Shutter[i].tilt_real_pos * Shutter[i].direction * Shutter[i].tilt_config[2] >= (int16_t)Shutter[i].tilt_target_pos * Shutter[i].direction * Shutter[i].tilt_config[2] && Shutter[i].tiltmoving==1))
|| (ShutterGlobal.position_mode == SHT_COUNTER && Shutter[i].accelerator <0 && Shutter[i].pwm_velocity+Shutter[i].accelerator<PWM_MIN)) {
// Save the last direction if the shutter is in motion
if (Shutter[i].direction != 0) {
Shutter[i].lastdirection = Shutter[i].direction;
}
ShutterPowerOff(i);
ShutterLimitRealAndTargetPositions(i);
// Update the shutter position setting to the current real position as a percentage
ShutterSettings.shutter_position[i] = ShutterRealToPercentPosition(Shutter[i].real_position, i);
// Update the shutter start position to the current real position
Shutter[i].start_position = Shutter[i].real_position;
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Pre: Tilt not match %d -> %d, moving: %d"),Shutter[i].tilt_real_pos,Shutter[i].tilt_target_pos,Shutter[i].tiltmoving);
// Check if the tilt position doesn't match the target tilt position and the shutter is not currently tilting
if (abs(Shutter[i].tilt_real_pos - Shutter[i].tilt_target_pos) > Shutter[i].min_TiltChange && Shutter[i].tiltmoving == 0) {
AddLog(LOG_LEVEL_INFO, PSTR("SHT: Tilt not match %d -> %d"),Shutter[i].tilt_real_pos,Shutter[i].tilt_target_pos);
// Prepare the command to update the shutter position
char databuf[1] = "";
XdrvMailbox.data = databuf;
XdrvMailbox.payload = -99;
XdrvMailbox.index = i+1;
// Set the shutter to tilting mode
Shutter[i].tiltmoving = 1;
CmndShutterPosition();
return;
} else {
// Update the shutter tilt position setting to the current real tilt position
ShutterSettings.shutter_tilt_pos[i] = Shutter[i].tilt_real_pos;
}
ShutterLogPos(i);
if (!Settings->flag4.only_json_message) { // SetOption90 - Disable non-json MQTT response
// sending MQTT result to broker
snprintf_P(scommand, sizeof(scommand),PSTR(D_SHUTTER "%d"), i+1);
GetTopic_P(stopic, STAT, TasmotaGlobal.mqtt_topic, scommand);
Response_P("%d", ShutterSettings.shutter_position[i]);
MqttPublish(stopic, Settings->flag.mqtt_power_retain); // CMND_POWERRETAIN
}
// Report the shutter position
ShutterReportPosition(true, i);
TasmotaGlobal.rules_flag.shutter_moved = 1;
}
}
}
}
bool ShutterState(uint32_t device)
{
if (device > 4) { return false; }
device--;
device &= 3;
return (Settings->flag3.shutter_mode && // SetOption80 - Enable shutter support
(ShutterGlobal.RelayShutterMask & (1 << (ShutterSettings.shutter_startrelay[device]-1))) );
}
void ShutterAllowPreStartProcedure(uint8_t i) {
// Tricky!!! Execute command status 2 while in the 10 sec loop and you'll end up in an exception
// What PreStartProcedure do you want to execute here?
// Anyway, as long var1 != 99 this is skipped (luckily)
#ifdef USE_RULES
uint32_t uptime_Local=0;
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Delay Start? var%d <99>=<%s>, max10s?"),i+1, rules_vars[i]);
uptime_Local = TasmotaGlobal.uptime;
while (uptime_Local+10 > TasmotaGlobal.uptime && (String)rules_vars[i] == "99") {
loop();
}
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Delay Start. Done"));
#endif // USE_RULES
}
void ShutterStartInit(uint32_t i, int32_t direction, int32_t target_pos)
{
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: dir %d, delta1 %d, delta2 %d"),direction, (Shutter[i].open_max - Shutter[i].real_position) / Shutter[i].close_velocity, Shutter[i].real_position / Shutter[i].close_velocity);
if ( ( ( (1 == direction) && ((Shutter[i].open_max - Shutter[i].real_position) <= Shutter[i].min_realPositionChange))
|| ( (-1 == direction) && (Shutter[i].real_position <= Shutter[i].min_realPositionChange)) )
&& abs(Shutter[i].tilt_real_pos-Shutter[i].tilt_target_pos) <= Shutter[i].min_TiltChange) {
ShutterGlobal.skip_relay_change = 1;
} else {
Shutter[i].pwm_velocity = 0;
ShutterWaitForMotorStart(i);
switch (ShutterGlobal.position_mode) {
#ifdef SHUTTER_STEPPER
case SHT_COUNTER:
#ifdef ESP8266
analogWriteFreq(Shutter[i].pwm_velocity);
analogWrite(Pin(GPIO_PWM1, i), 0);
#endif
#ifdef ESP32
analogWriteFreq(PWM_MIN,Pin(GPIO_PWM1, i));
TasmotaGlobal.pwm_value[i] = 0;
PwmApplyGPIO(false);
#endif
RtcSettings.pulse_counter[i] = 0;
break;
#endif
}
Shutter[i].accelerator = ShutterGlobal.open_velocity_max / (Shutter[i].motordelay>0 ? Shutter[i].motordelay : 1);
Shutter[i].target_position = target_pos;
Shutter[i].start_position = Shutter[i].real_position;
TasmotaGlobal.rules_flag.shutter_moving = 1;
ShutterAllowPreStartProcedure(i);
Shutter[i].time = Shutter[i].last_reported_time = 0;
ShutterGlobal.skip_relay_change = 0;
TasmotaGlobal.rules_flag.shutter_moved = 0;
ShutterGlobal.start_reported = 0;
Shutter[i].tilt_real_pos = tmax(tmin(Shutter[i].tilt_real_pos,Shutter[i].tilt_config[1]),Shutter[i].tilt_config[0]);
Shutter[i].tilt_start_pos = Shutter[i].tilt_real_pos;
if (Shutter[i].tilt_config[1]-Shutter[i].tilt_config[0] != 0) {
Shutter[i].venetian_delay = SHT_DIV_ROUND((direction > 0 ? Shutter[i].tilt_config[1]-Shutter[i].tilt_real_pos : Shutter[i].tilt_real_pos-Shutter[i].tilt_config[0]) * Shutter[i].tilt_config[2], Shutter[i].tilt_config[1]-Shutter[i].tilt_config[0]);
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: real %d, start %d, counter %d,freq_max %d, dir %d, freq %d"),Shutter[i].real_position, Shutter[i].start_position ,RtcSettings.pulse_counter[i],ShutterGlobal.open_velocity_max , direction ,ShutterGlobal.open_velocity_max );
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: VenetianDelay: %d, Pos: %d, Dir: %d, Delta: %d, Dur: %d, StartP: %d, TgtP: %d"),
Shutter[i].venetian_delay, Shutter[i].tilt_real_pos,direction,(Shutter[i].tilt_config[1]-Shutter[i].tilt_config[0]), Shutter[i].tilt_config[2],Shutter[i].tilt_start_pos,Shutter[i].tilt_target_pos);
}
// avoid file system writes during move to minimize missing steps
if (Settings->save_data) {
uint32_t move_duration = (direction > 0) ? Shutter[i].open_time : Shutter[i].close_time;
TasmotaGlobal.save_data_counter = Settings->save_data + (move_duration / 10) +1;
}
}
//AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Start shtr%d from %d to %d in dir: %d"), i, Shutter[i].start_position, Shutter[i].target_position, direction);
Shutter[i].direction = direction; // Last action. This causes RTC to start.
}
int32_t ShutterCalculatePosition(uint32_t i)
{
// No Logging allowed. Part of RTC Timer
if (Shutter[i].direction != 0) {
switch (ShutterGlobal.position_mode) {
case SHT_COUNTER:
return ((int64_t)RtcSettings.pulse_counter[i]*Shutter[i].direction*STEPS_PER_SECOND * RESOLUTION / ShutterGlobal.open_velocity_max)+Shutter[i].start_position;
break;
case SHT_TIME:
case SHT_TIME_UP_DOWN:
case SHT_TIME_GARAGE:
if (Shutter[i].tilt_config[2] > 0) {
// the tilt time is defined and therefore the tiltposition must be calculated
if (Shutter[i].time <= Shutter[i].venetian_delay+Shutter[i].motordelay) {
Shutter[i].tilt_real_pos = (Shutter[i].tilt_start_pos + ((Shutter[i].direction * (int16_t)(Shutter[i].time - tmin(Shutter[i].motordelay, Shutter[i].time)) * (Shutter[i].tilt_config[1]-Shutter[i].tilt_config[0])) / Shutter[i].tilt_config[2]));
} else {
Shutter[i].tilt_real_pos = Shutter[i].direction == 1 ? Shutter[i].tilt_config[1] : Shutter[i].tilt_config[0];
}
}
return Shutter[i].start_position + ( (Shutter[i].time - tmin(Shutter[i].venetian_delay+Shutter[i].motordelay, Shutter[i].time)) * (Shutter[i].direction > 0 ? RESOLUTION : -Shutter[i].close_velocity));
break;
case SHT_PWM_TIME:
break;
case SHT_PWM_VALUE:
return Shutter[i].real_position;
break;
default:
break;
}
} else {
return Shutter[i].real_position;
}
return 0; // Never reaches here, Satisfy compiler
}
void ShutterRelayChanged(void)
{
// ShutterGlobal.RelayCurrentMask = binary relay that was recently changed and cause an Action
// powerstate_local = binary powermatrix and relays from shutter: 0..3
// relays_changed = bool if one of the relays that belong to the shutter changed not by shutter or pulsetimer
char stemp1[10];
for (uint32_t i = 0; i < TasmotaGlobal.shutters_present; i++) {
power_t powerstate_local = (TasmotaGlobal.power >> (ShutterSettings.shutter_startrelay[i] -1)) & 3;
// SRC_IGNORE added because INTERLOCK function bite causes this as last source for changing the relay.
//uint8 manual_relays_changed = ((ShutterGlobal.RelayCurrentMask >> (ShutterSettings.shutter_startrelay[i] -1)) & 3) && SRC_IGNORE != TasmotaGlobal.last_source && SRC_SHUTTER != TasmotaGlobal.last_source && SRC_PULSETIMER != TasmotaGlobal.last_source ;
uint8 manual_relays_changed = ((ShutterGlobal.RelayCurrentMask >> (ShutterSettings.shutter_startrelay[i] -1)) & 3) && SRC_SHUTTER != TasmotaGlobal.last_source && SRC_PULSETIMER != TasmotaGlobal.last_source ;
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d, Source %s, Powerstate %ld, RelayMask %d, ManualChange %d"),
// i+1, GetTextIndexed(stemp1, sizeof(stemp1), TasmotaGlobal.last_source, kCommandSource), powerstate_local,ShutterGlobal.RelayCurrentMask,manual_relays_changed);
if (manual_relays_changed) {
//ShutterGlobal.skip_relay_change = true;
ShutterLimitRealAndTargetPositions(i);
switch (Shutter[i].switch_mode ) {
case SHT_PULSE:
if (Shutter[i].direction != 0 && powerstate_local) {
Shutter[i].target_position = Shutter[i].real_position;
powerstate_local = 0;
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d, Switch OFF motor. Target %ld, Source %s, Powerstate %ld, RelayMask %d, ManualChange %d"),
i+1, Shutter[i].target_position, GetTextIndexed(stemp1, sizeof(stemp1), TasmotaGlobal.last_source, kCommandSource), powerstate_local,ShutterGlobal.RelayCurrentMask,manual_relays_changed);
}
break;
default:
TasmotaGlobal.last_source = SRC_SHUTTER; // avoid switch off in the next loop
if (Shutter[i].direction != 0 ) Shutter[i].target_position = Shutter[i].real_position;
}
if (powerstate_local > 0) {
Shutter[i].tiltmoving = 0;
}
switch (ShutterGlobal.position_mode) {
// enum Shutterposition_mode {SHT_TIME, SHT_TIME_UP_DOWN, SHT_TIME_GARAGE, SHT_COUNTER, SHT_PWM_VALUE, SHT_PWM_TIME,};
case SHT_TIME_UP_DOWN:
case SHT_COUNTER:
case SHT_PWM_VALUE:
case SHT_PWM_TIME:
ShutterPowerOff(i);
case SHT_TIME: {
// powerstate_local == 0 => direction=0, stop
// powerstate_local == 1 => direction=1, target=Shutter[i].open_max
// powerstate_local == 2 => direction=-1, target=0 // only happen on SHT_TIME
// powerstate_local == 3 => direction=-1, target=0 // only happen if NOT SHT_TIME
int8_t direction = (powerstate_local == 0) ? 0 : (powerstate_local == 1) ? 1 : -1;
int32_t target = (powerstate_local == 1) ? Shutter[i].open_max : 0;
if (direction != 0) {
ShutterStartInit(i, direction, target);
} else {
Shutter[i].target_position = Shutter[i].real_position;
Shutter[i].last_stop_time = millis();
}
break;
}
case SHT_TIME_GARAGE:
switch (powerstate_local) {
case 1:
ShutterStartInit(i, Shutter[i].lastdirection * -1, Shutter[i].lastdirection == 1 ? 0 : Shutter[i].open_max);
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d Garage. NewTarget %d"), i, Shutter[i].target_position);
break;
default:
Shutter[i].target_position = Shutter[i].real_position;
}
}
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d, Target %ld, Power: %d, tiltmv: %d"), i+1, Shutter[i].target_position, powerstate_local,Shutter[i].tiltmoving);
} // if (manual_relays_changed)
} // for (uint32_t i = 0; i < TasmotaGlobal.shutters_present; i++)
}
bool ShutterButtonIsSimultaneousHold(uint32_t button_index, uint32_t shutter_index)
{
// check for simultaneous shutter button hold
uint32 min_shutterbutton_hold_timer = -1; // -1 == max(uint32)
for (uint32_t i = 0; i < MAX_SHUTTERS_ESP32*2 ; i++) {
if ((button_index != i) && (ShutterSettings.shutter_button[i].enabled) && (ShutterSettings.shutter_button[i].shutter_number == shutter_index) && (Button.hold_timer[i] < min_shutterbutton_hold_timer))
min_shutterbutton_hold_timer = Button.hold_timer[i];
}
return ((-1 != min_shutterbutton_hold_timer) && (min_shutterbutton_hold_timer > (Button.hold_timer[button_index]>>1)));
}
bool ShutterButtonHandlerMulti(void)
{
uint8_t button = XdrvMailbox.payload;
uint32_t button_index = XdrvMailbox.index;
uint8_t shutter_index = ShutterSettings.shutter_button[button_index].shutter_number;
uint8_t button_press_counter = Button.press_counter[button_index] ;
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("MULTI: SHT: Shtr%d, Button %d, hold %d, dir %d, index %d, payload %d, last state %d, press counter %d, window %d"),
shutter_index+1, button_index+1, Button.hold_timer[button_index],Shutter[shutter_index].direction,XdrvMailbox.index,XdrvMailbox.payload,
Button.last_state[button_index], Button.press_counter[button_index], Button.window_timer[button_index]);
// multipress event handle back to main procedure
if (Button.press_counter[button_index]>4) return false;
uint8_t pos_press_index = Button.press_counter[button_index]-1;
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d, Button %d = %d (single=1, double=2, tripple=3, hold=4)"), shutter_index+1, button_index+1, pos_press_index+1);
XdrvMailbox.index = shutter_index +1;
TasmotaGlobal.last_source = SRC_BUTTON;
XdrvMailbox.data_len = 0;
char databuf[1] = "";
XdrvMailbox.data = databuf;
XdrvMailbox.command = NULL;
int8_t position = ShutterSettings.shutter_button[button_index].position[pos_press_index].pos;
if (position == -1) {
position = tmin(100,tmax(0,ShutterRealToPercentPosition(Shutter[XdrvMailbox.index-1].real_position, XdrvMailbox.index-1)
+ ShutterSettings.shutter_button[button_index].position[pos_press_index].pos_incrdecr));
}
XdrvMailbox.payload = position;
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d -> %d"), shutter_index+1, position);
if (102 == position) {
XdrvMailbox.payload = XdrvMailbox.index;
CmndShutterToggle();
} else {
if (position == ShutterRealToPercentPosition(Shutter[XdrvMailbox.index-1].real_position, XdrvMailbox.index-1) ) {
Shutter[XdrvMailbox.index -1].tilt_target_pos = position==0? Shutter[XdrvMailbox.index -1].tilt_config[0]:(position==100?Shutter[XdrvMailbox.index -1].tilt_config[1]:Shutter[XdrvMailbox.index -1].tilt_target_pos);
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d -> Endpoint movement detected at %d. Set Tilt: %d"), shutter_index+1, position, Shutter[XdrvMailbox.index -1].tilt_target_pos);
}
// set the tilt
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Target tilt %d for button %d"), ShutterSettings.shutter_button[button_index].position[pos_press_index].tilt, button_index+1);
switch (ShutterSettings.shutter_button[button_index].position[pos_press_index].tilt) {
// No change in tilt defined
case -128:
break;
// tilt change defined on position or (127) incr/decr
case 127:
Shutter[shutter_index].tilt_target_pos_override = Shutter[shutter_index].tilt_real_pos + ShutterSettings.shutter_button[button_index].position[pos_press_index].tilt_incrdecr;
break;
default:
Shutter[shutter_index].tilt_target_pos_override = ShutterSettings.shutter_button[button_index].position[pos_press_index].tilt;
}
// set the tilt
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Target tilt %d for button %d"), Shutter[shutter_index].tilt_target_pos_override, button_index+1);
// reset button to default
Button.press_counter[button_index] = 0;
CmndShutterPosition();
}
if (ShutterSettings.shutter_button[button_index].position[pos_press_index].mqtt_broadcast) {
// MQTT broadcast to grouptopic
char scommand[CMDSZ];
char stopic[TOPSZ];
for (uint32_t i = 0; i < MAX_SHUTTERS_ESP32; i++) {
if ((i==shutter_index) || (ShutterSettings.shutter_button[button_index].mqtt_all)) {
snprintf_P(scommand, sizeof(scommand),PSTR("ShutterPosition%d"), i+1);
GetGroupTopic_P(stopic, scommand, SET_MQTT_GRP_TOPIC);
Response_P("%d", position);
MqttPublish(stopic, false);
}
} // for (uint32_t)
} // ShutterSettings.shutter_button[button_index].positionmatrix & ((0x01<<26)<<pos_press_index
// reset counter is served by shutter driver
Response_P(PSTR("{"));
ResponseAppend_P(JSON_SHUTTER_BUTTON, shutter_index+1, button_index+1 , button_press_counter);
ResponseJsonEnd();
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_PRFX_SHUTTER));
return true;
}
bool ShutterButtonHandler(void)
{
uint8_t button = XdrvMailbox.payload;
uint32_t button_index = XdrvMailbox.index;
uint8_t shutter_index = ShutterSettings.shutter_button[button_index].shutter_number;
if (Button.hold_timer[button_index] > 0 || (button != Button.last_state[button_index] || Button.window_timer[button_index] > 0)) {
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d, Button %d, hold %d, dir %d, index %d, payload %d, last state %d, press counter %d, window %d"),
shutter_index+1, button_index+1, Button.hold_timer[button_index],Shutter[shutter_index].direction,XdrvMailbox.index,XdrvMailbox.payload,
Button.last_state[button_index], Button.press_counter[button_index], Button.window_timer[button_index]);
if (Button.hold_timer[button_index] > 100 ) {
Button.hold_timer[button_index] = 1; // Reset button hold counter to stay below hold trigger
}
}
// handle on button release: start shutter on shortpress and stop running shutter after longpress.
if (NOT_PRESSED == button
&& Shutter[shutter_index].direction != 0 // only act on shutters activly moving
&& Button.hold_timer[button_index] > 0) // kick in on first release of botton. do not check for multipress
{
XdrvMailbox.index = shutter_index +1;
XdrvMailbox.payload = -99; // reset any payload to invalid
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("Stop moving shutter"));
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Shtr%d, Button %d, hold %d, dir %d, index %d, payload %d"), shutter_index+1, button_index+1, Button.hold_timer[button_index],Shutter[shutter_index].direction,XdrvMailbox.index,XdrvMailbox.payload);
CmndShutterStop();
Button.press_counter[button_index] = 0;
return true;
}
//long press detected. Start moving shutter into direction
if (PRESSED == button
&& Shutter[shutter_index].direction == 0 //shutter in STOP Position
&& Button.window_timer[button_index] == 0 //time for waiting for multipress window expired
&& Button.press_counter[button_index] > 0) //only execute if at least pressed ONECE. 0==disable
{
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("Start shutter after long press"));
Button.press_counter[button_index] = 4;
ShutterButtonHandlerMulti();
}
return false;
}
void ShutterSetPosition(uint32_t device, uint32_t position)
{
char svalue[32]; // Command and number parameter
snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_POSITION "%d %d"), device, position);
ExecuteCommand(svalue, SRC_SHUTTER);
}
void ShutterToggle(bool dir)
{
AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Toggle: %d, i %d, dir %d, lastdir %d"), XdrvMailbox.payload, XdrvMailbox.index, dir, Shutter[XdrvMailbox.index-1].lastdirection);
if ((1 == XdrvMailbox.index) && (XdrvMailbox.payload != -99)) {
XdrvMailbox.index = XdrvMailbox.payload;
}
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
uint32_t index = XdrvMailbox.index-1;
if (dir) {
XdrvMailbox.payload = (Shutter[index].direction==0 ? ((Shutter[index].lastdirection > 0) ? 0 : 100) : (Shutter[index].direction > 0) ? 0 : 100);
}
else {
XdrvMailbox.payload = (50 < ShutterRealToPercentPosition(Shutter[index].real_position, index)) ? 0 : 100;
}
XdrvMailbox.data_len = 0;
TasmotaGlobal.last_source = SRC_WEBGUI;
CmndShutterPosition();
}
}
void ShutterShow(){
for (uint32_t i = 0; i < TasmotaGlobal.shutters_present; i++) {
WSContentSend_P(HTTP_MSG_SLIDER_SHUTTER, (ShutterSettings.shutter_options[i] & 1) ? D_OPEN : D_CLOSE,(ShutterSettings.shutter_options[i] & 1) ? D_CLOSE : D_OPEN, ShutterRealToPercentPosition(-9999, i), i+1);
}
}
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
void CmndShutterOpen(void)
{
//AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Payload open: %d, i %d"), XdrvMailbox.payload, XdrvMailbox.index);
if ((!XdrvMailbox.usridx) && (XdrvMailbox.payload != -99)) {
XdrvMailbox.index = XdrvMailbox.payload;
}
XdrvMailbox.payload = 100;
TasmotaGlobal.last_source = SRC_WEBGUI;
CmndShutterPosition();
}
void CmndShutterStopOpen(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
uint32_t index = XdrvMailbox.index-1;
if (Shutter[index].direction) {
CmndShutterStop();
} else {
CmndShutterOpen();
}
}
}
void CmndShutterClose(void)
{
//AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Payload close: %d, i %d"), XdrvMailbox.payload, XdrvMailbox.index);
if ((!XdrvMailbox.usridx) && (XdrvMailbox.payload != -99)) {
XdrvMailbox.index = XdrvMailbox.payload;
}
XdrvMailbox.payload = 0;
TasmotaGlobal.last_source = SRC_WEBGUI;
CmndShutterPosition();
}
void CmndShutterStopClose(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
uint32_t index = XdrvMailbox.index-1;
if (Shutter[index].direction) {
CmndShutterStop();
} else {
CmndShutterClose();
}
}
}
void CmndShutterToggle(void)
{
ShutterToggle(false);
}
void CmndShutterToggleDir(void)
{
ShutterToggle(true);
}
void CmndShutterStopToggle(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
uint32_t index = XdrvMailbox.index-1;
if (Shutter[index].direction) {
CmndShutterStop();
} else {
CmndShutterToggle();
}
}
}
void CmndShutterStopToggleDir(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
uint32_t index = XdrvMailbox.index-1;
if (Shutter[index].direction) {
CmndShutterStop();
} else {
CmndShutterToggleDir();
}
}
}
void CmndShutterStop(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
//AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Try Stop %d: dir: %d"), XdrvMailbox.index, Shutter[XdrvMailbox.index -1].direction);
if (!(ShutterSettings.shutter_options[XdrvMailbox.index-1] & 2)) {
if ((!XdrvMailbox.usridx) && (XdrvMailbox.payload != -99)) {
XdrvMailbox.index = XdrvMailbox.payload;
}
uint32_t i = XdrvMailbox.index -1;
if (Shutter[i].direction != 0) {
AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Stop %d: dir: %d"), XdrvMailbox.index, Shutter[i].direction);
Shutter[i].target_position = Shutter[i].real_position;
TasmotaGlobal.last_source = SRC_SHUTTER;
}
if (XdrvMailbox.command)
ResponseCmndDone();
ShutterUpdatePosition();
} else {
if (XdrvMailbox.command)
ResponseCmndIdxChar("Locked");
}
}
}
void CmndShutterIncDec(void)
{
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Change in: payload %s (%d), payload %d, idx %d, src %d"), XdrvMailbox.data , XdrvMailbox.data_len, XdrvMailbox.payload , XdrvMailbox.index, TasmotaGlobal.last_source );
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
if (XdrvMailbox.data_len > 0) {
XdrvMailbox.payload = ShutterRealToPercentPosition(Shutter[XdrvMailbox.index-1].target_position, XdrvMailbox.index-1)+XdrvMailbox.payload;
// limit position to boundaries
XdrvMailbox.payload = XdrvMailbox.payload < 0 ? 0 : (XdrvMailbox.payload > 100 ? 100 : XdrvMailbox.payload);
CmndShutterPosition();
}
}
}
void CmndShutterPosition(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
if (!(ShutterSettings.shutter_options[XdrvMailbox.index-1] & 2)) {
uint32_t index = XdrvMailbox.index-1;
//limit the payload
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Pos. payload <%s> (%d), payload %d, idx %d (%d), src %d"), XdrvMailbox.data , XdrvMailbox.data_len, XdrvMailbox.payload , XdrvMailbox.index, XdrvMailbox.usridx, TasmotaGlobal.last_source );
if (XdrvMailbox.data_len >= 3) {
// check if input is of format "position,tilt"
uint32_t i = 0;
char *str_ptr;
char data_copy[strlen(XdrvMailbox.data) +1];
strncpy(data_copy, XdrvMailbox.data, sizeof(data_copy)); // Duplicate data as strtok_r will modify it.
// Loop through the data string, splitting on ',' seperators.
for (char *str = strtok_r(data_copy, ",", &str_ptr); str && i < 2; str = strtok_r(nullptr, ",", &str_ptr), i++) {
switch(i) {
case 0:
XdrvMailbox.payload = atoi(str);
break;
case 1:
Shutter[index].tilt_target_pos_override = atoi(str);
break;
}
}
}
// value 0 with data_len > 0 can mean Open
// special handling fo UP,DOWN,TOGGLE,STOP command comming with payload -99
// STOP will come with payload 0 because predefined value in TASMOTA
if ((XdrvMailbox.data_len > 3) && (XdrvMailbox.payload <= 0)) {
// set len to 0 to avoid loop on close where payload is 0
XdrvMailbox.data_len = 0;
if (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_UP) || !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_OPEN) || ((Shutter[index].direction==0) && !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_STOPOPEN))) {
CmndShutterOpen();
return;
}
if (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_DOWN) || !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_CLOSE) || ((Shutter[index].direction==0) && !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_STOPCLOSE))) {
CmndShutterClose();
return;
}
if (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_TOGGLE)) {
CmndShutterToggle();
return;
}
if (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_TOGGLEDIR)) {
CmndShutterToggleDir();
return;
}
if (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_STOP) || ((Shutter[index].direction) && (!strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_STOPOPEN) || !strcasecmp(XdrvMailbox.data,D_CMND_SHUTTER_STOPCLOSE)))) {
// Back to normal: all -99 if not a clear position
XdrvMailbox.payload = -99;
CmndShutterStop();
return;
}
}
// if position is either 0 or 100 reset the tilt to avoid tilt moving at the end
if (XdrvMailbox.payload == 0 && ShutterRealToPercentPosition(Shutter[index].real_position, index) > 0 ) {Shutter[index].tilt_target_pos = Shutter[index].tilt_config[4];}
if (XdrvMailbox.payload == 100 && ShutterRealToPercentPosition(Shutter[index].real_position, index) < 100) {Shutter[index].tilt_target_pos = Shutter[index].tilt_config[3];}
//override tiltposition if explicit set (shutterbutton)
if (Shutter[index].tilt_target_pos_override != -128) {
Shutter[index].tilt_target_pos = tmin(tmax( Shutter[index].tilt_config[0],Shutter[index].tilt_target_pos_override ), Shutter[index].tilt_config[1]);
Shutter[index].tilt_target_pos_override = -128;
}
int8_t target_pos_percent = (XdrvMailbox.payload < 0) ? (XdrvMailbox.payload == -99 ? ShutterRealToPercentPosition(Shutter[index].real_position, index) : 0) : ((XdrvMailbox.payload > 100) ? 100 : XdrvMailbox.payload);
// webgui still send also on inverted shutter the native position.
target_pos_percent = ((ShutterSettings.shutter_options[index] & 1) && (SRC_WEBGUI == TasmotaGlobal.last_source)) ? 100 - target_pos_percent : target_pos_percent;
if (XdrvMailbox.payload != -99) {
Shutter[index].target_position = ShutterPercentToRealPosition(target_pos_percent, index);
//Shutter[i].accelerator[index] = ShutterGlobal.open_velocity_max / ((Shutter[i].motordelay[index] > 0) ? Shutter[i].motordelay[index] : 1);
//Shutter[i].target_position[index] = XdrvMailbox.payload < 5 ? ShutterSettings.shuttercoeff[2][index] * XdrvMailbox.payload : ShutterSettings.shuttercoeff[1][index] * XdrvMailbox.payload + ShutterSettings.shuttercoeff[0,index];
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: lastsource %d:, real %d, target %d, tiltreal: %d, tilttarget: %d, payload %d"), TasmotaGlobal.last_source, Shutter[index].real_position ,Shutter[index].target_position,Shutter[index].tilt_real_pos, Shutter[index].tilt_target_pos,target_pos_percent);
}
if ( (target_pos_percent >= 0) && (target_pos_percent <= 100) &&
(abs(Shutter[index].target_position - Shutter[index].real_position ) > Shutter[index].min_realPositionChange ||
abs(Shutter[index].tilt_target_pos - Shutter[index].tilt_real_pos ) > Shutter[index].min_TiltChange) ) {
if (ShutterSettings.shutter_options[index] & 4) {
if (0 == target_pos_percent && Shutter[index].real_position > 0) Shutter[index].target_position -= 1 * RESOLUTION * STEPS_PER_SECOND;
if (100 == target_pos_percent && Shutter[index].real_position < Shutter[index].open_max) Shutter[index].target_position += 1 * RESOLUTION * STEPS_PER_SECOND;
}
int8_t new_shutterdirection;
if (abs(Shutter[index].target_position - Shutter[index].real_position ) > Shutter[index].min_realPositionChange) {
new_shutterdirection = Shutter[index].real_position < Shutter[index].target_position ? 1 : -1;
Shutter[index].tiltmoving = 0;
} else {
new_shutterdirection = Shutter[index].tilt_real_pos < Shutter[index].tilt_target_pos ? 1 : -1;
Shutter[index].tiltmoving = 1;
}
if (Shutter[index].direction == -new_shutterdirection) {
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Stop shutter to reverse direction"));
ShutterPowerOff(index);
}
if (Shutter[index].direction != new_shutterdirection) {
ShutterStartInit(index, new_shutterdirection, Shutter[index].target_position);
uint8_t save_direction = Shutter[index].direction;
Shutter[index].direction = 0; // set temporary direction = 0 to avoid RTC timer sarting. Some delay may happen before shutter starts moving
switch (ShutterGlobal.position_mode) {
case SHT_COUNTER:
case SHT_PWM_TIME:
case SHT_PWM_VALUE:
case SHT_TIME_UP_DOWN:
if (!ShutterGlobal.skip_relay_change) {
// Code for shutters with circuit safe configuration, switch the direction Relay
ExecuteCommandPowerShutter(ShutterSettings.shutter_startrelay[index] +1, new_shutterdirection == 1 ? 0 : 1, SRC_SHUTTER);
delay(SHUTTER_RELAY_OPERATION_TIME);
// power on
ExecuteCommandPowerShutter(ShutterSettings.shutter_startrelay[index], 1, SRC_SHUTTER);
}
//if (ShutterGlobal.position_mode != SHT_TIME_UP_DOWN) ExecuteCommandPowerShutter(ShutterSettings.shutter_startrelay[index]+2, 1, SRC_SHUTTER);
break;
case SHT_TIME:
if (!ShutterGlobal.skip_relay_change) {
if ( (TasmotaGlobal.power >> (ShutterSettings.shutter_startrelay[index] -1)) & 3 > 0 ) {
ExecuteCommandPowerShutter(ShutterSettings.shutter_startrelay[index] + (new_shutterdirection == 1 ? 1 : 0), Shutter[index].switch_mode == SHT_SWITCH ? 0 : 1, SRC_SHUTTER);
}
ExecuteCommandPowerShutter(ShutterSettings.shutter_startrelay[index] + (new_shutterdirection == 1 ? 0 : 1), 1, SRC_SHUTTER);
}
break;
case SHT_TIME_GARAGE:
//AddLog(LOG_LEVEL_INFO, PSTR("SHT: Garage Skip Relay: %d"), ShutterGlobal.skip_relay_change);
if (!ShutterGlobal.skip_relay_change) {
if (new_shutterdirection == Shutter[index].lastdirection) {
AddLog(LOG_LEVEL_INFO, PSTR("SHT: Garage not move in this direction: %d"), Shutter[index].switch_mode == SHT_PULSE);
for (uint8_t k=0 ; k <= (uint8_t)(Shutter[index].switch_mode == SHT_PULSE) ; k++) {
ExecuteCommandPowerShutter(ShutterSettings.shutter_startrelay[index], 1, SRC_SHUTTER);
//delay(MOTOR_STOP_TIME);
ShutterWaitForMotorStop(index);
ExecuteCommandPowerShutter(ShutterSettings.shutter_startrelay[index], 0, SRC_SHUTTER);
//delay(MOTOR_STOP_TIME);
ShutterWaitForMotorStop(index);
}
// reset shutter time to avoid 2 seconds above count as runtime
Shutter[index].time = 0;
} // if (new_shutterdirection == Shutter[i].lastdirection[index])
ExecuteCommandPowerShutter(ShutterSettings.shutter_startrelay[index], 1, SRC_SHUTTER);
} // if (!ShutterGlobal.skip_relay_change)
break;
} // switch (ShutterGlobal.position_mode)
Shutter[index].direction = save_direction;
ShutterGlobal.RelayCurrentMask = 0;
} // if (Shutter[i].direction[index] != new_shutterdirection)
} else {
target_pos_percent = ShutterRealToPercentPosition(Shutter[index].real_position, index);
}
index = (!XdrvMailbox.usridx && !XdrvMailbox.data_len)?MAX_SHUTTERS_ESP32:index;
ShutterReportPosition(true, index);
ShutterGlobal.start_reported = 1;
XdrvMailbox.index = index +1; // Fix random index for ShutterClose
} else {
ShutterReportPosition(true, MAX_SHUTTERS_ESP32);
if (XdrvMailbox.command)
ResponseCmndIdxChar("Locked");
}
}
}
void CmndShutterStopPosition(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
uint32_t index = XdrvMailbox.index-1;
if (Shutter[index].direction) {
XdrvMailbox.payload = -99;
CmndShutterStop();
} else {
CmndShutterPosition();
}
}
}
void CmndShutterOpenTime(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
if (XdrvMailbox.data_len > 0) {
ShutterSettings.shutter_opentime[XdrvMailbox.index -1] = (uint16_t)(10 * CharToFloat(XdrvMailbox.data));
ShutterInit();
}
/*
char time_chr[10];
dtostrfd((float)(ShutterSettings.shutter_opentime[XdrvMailbox.index -1]) / 10, 1, time_chr);
ResponseCmndIdxChar(time_chr);
*/
ResponseCmndIdxFloat((float)(ShutterSettings.shutter_opentime[XdrvMailbox.index -1]) / 10, 1);
}
}
void CmndShutterCloseTime(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
if (XdrvMailbox.data_len > 0) {
ShutterSettings.shutter_closetime[XdrvMailbox.index -1] = (uint16_t)(10 * CharToFloat(XdrvMailbox.data));
ShutterInit();
}
ResponseCmndIdxFloat((float)(ShutterSettings.shutter_closetime[XdrvMailbox.index -1]) / 10, 1);
}
}
void CmndShutterMotorDelay(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
if (XdrvMailbox.data_len > 0) {
ShutterSettings.shutter_motordelay[XdrvMailbox.index -1] = (uint8_t)(STEPS_PER_SECOND * CharToFloat(XdrvMailbox.data));
ShutterInit();
//AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Shtr Init1. realdelay %d"),Shutter[XdrvMailbox.index -1].motordelay);
}
ResponseCmndIdxFloat((float)(Shutter[XdrvMailbox.index -1].motordelay) / STEPS_PER_SECOND, 2);
}
}
void CmndShutterMode(void)
{
if (!XdrvMailbox.usridx) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= MAX_MODES)) {
ShutterSettings.shutter_mode = ShutterGlobal.position_mode = XdrvMailbox.payload;
ShutterInit();
}
ResponseCmndNumber(ShutterGlobal.position_mode);
}
}
void CmndShutterRelay(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 32) && (XdrvMailbox.index <= MAX_SHUTTERS_ESP32)) {
//ShutterSettings.shutter_startrelay[XdrvMailbox.index -1] = XdrvMailbox.payload;
if (XdrvMailbox.payload > 0) {
ShutterGlobal.RelayShutterMask |= 3 << (XdrvMailbox.payload - 1);
} else {
ShutterGlobal.RelayShutterMask ^= 3 << (ShutterSettings.shutter_startrelay[XdrvMailbox.index -1] - 1);
}
AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: relold:%d index:%d, mode:%d, relaymask: %ld"),
ShutterSettings.shutter_startrelay[XdrvMailbox.index -1] , XdrvMailbox.index ,ShutterSettings.shutter_mode, ShutterGlobal.RelayShutterMask );
if (ShutterSettings.shutter_startrelay[XdrvMailbox.index -1] == 0 && XdrvMailbox.index == 1 && ShutterSettings.shutter_mode == SHT_UNDEF) {
// first shutter was not defined, maybe init
ShutterSettings.shutter_mode = SHT_AUTOCONFIG;
AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Autoconfig"));
}
ShutterSettings.shutter_startrelay[XdrvMailbox.index -1] = XdrvMailbox.payload;
ShutterInit();
// if payload is 0 to disable the relay there must be a reboot. Otherwhise does not work
}
uint32_t start = (!XdrvMailbox.usridx && !XdrvMailbox.data_len)?0:XdrvMailbox.index -1;
uint32_t end = (!XdrvMailbox.usridx && !XdrvMailbox.data_len)?TasmotaGlobal.shutters_present:XdrvMailbox.index;
// {"ShutterRelay1":"1","ShutterRelay2":"3","ShutterRelay3":"5"}
Response_P(PSTR("{"));
for (uint32_t i = start; i < end; i++) {
ResponseAppend_P(PSTR("%s\"" D_PRFX_SHUTTER D_CMND_SHUTTER_RELAY "%d\":%d"), (i>start)?",":"", i+1, ShutterSettings.shutter_startrelay[i]);
}
ResponseAppend_P(PSTR("}"));
}
void CmndShutterButton(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_SHUTTERS_ESP32)) {
tButtonSettings setting;
memset(&setting, 0x00, sizeof(setting));
// (setting>>31)&(0x01) : enabled
// (setting>>30)&(0x01) : mqtt broadcast to all index
// (setting>>29)&(0x01) : mqtt broadcast hold
// (setting>>28)&(0x01) : mqtt broadcast tripple press
// (setting>>27)&(0x01) : mqtt broadcast double press
// (setting>>26)&(0x01) : mqtt broadcast single press
// (setting>>20)&(0x3f) : shutter_position hold; 0 disabled, 1..101 == 0..100%, 102 == toggle
// (setting>>14)&(0x3f) : shutter_position tripple press 0 disabled, 1..101 == 0..100%, 102 == toggle
// (setting>> 8)&(0x3f) : shutter_position double press 0 disabled, 1..101 == 0..100%, 102 == toggle
// (setting>> 2)&(0x3f) : shutter_position single press 0 disabled, 1..101 == 0..100%, 102 == toggle
// (setting>> 0)&(0x03) : shutter_index
if (XdrvMailbox.data_len > 0) {
uint32_t i = 0; // tokencount on " "
uint32_t button_index = 0;
bool done = false;
bool isShortCommand = false;
char *str_ptr;
char *str_ptr2;
char data_copy[strlen(XdrvMailbox.data) +1];
strncpy(data_copy, XdrvMailbox.data, sizeof(data_copy)); // Duplicate data as strtok_r will modify it.
// Loop through the data string, splitting on ' ' seperators.
for (char *str = strtok_r(data_copy, " ", &str_ptr); str && i < (1+4+4+1); str = strtok_r(nullptr, " ", &str_ptr), i++) {
int field = -1;
int tilt = -128;
int pos_incrdecr = 0;
int tilt_incrdecr = 0;
int j = 0; // tokencount on "/"
char field_copy[strlen(str) +1];
strncpy(field_copy, str, sizeof(field_copy)); // Duplicate data as strtok_r will modify it.
// Loop through the data string, splitting on '/' seperators. Syntax position[0..100]/tilt[-90..90]
for (char *str2 = strtok_r(field_copy, "/", &str_ptr2); str2 && j < 2; str2 = strtok_r(nullptr, "/", &str_ptr2), j++) {
switch (j) {
case 0:
switch (str2[0]) {
case 't': // toggle the tilt. currently not implemented
field = 102;
break;
case '-':
case '+':
field = -1;
// check for trigger -- or ++ for incremental change
if (str2[1] == '-' || str2[1] == '+') {
str2[0] = ' ';
pos_incrdecr = atoi(str2);
}
break;
default:
field = atoi(str2);
break;
}
if (i>0)
AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: FINAL: pos:%d, inc:%d, string:%s"),field,pos_incrdecr,str2);
break;
case 1:
switch (str2[0]) {
case 't':
tilt = 127;
break;
case '-': // special handling to seperate a - from a negative number. e.g. -90
case '+':
if (strlen(str2)==1 && str2[0] == '-') {
tilt = -128;
} else {
if (str2[1] == '-' || str2[1] == '+') {
str2[0] = ' ';
tilt = 127;
tilt_incrdecr = atoi(str2);
} else {
tilt = atoi(str2);
}
}
break;
default:
tilt = atoi(str2);
break;
}
AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: FINAL: tilt:%d, inc:%d, string:%s"),tilt,tilt_incrdecr,str2);
break;
}
} // end scanning "++10/-90" tokens
switch (i) {
case 0:
if ((field >= -1) && (field<=MAX_SHUTTERS_ESP32*2)) {
button_index = (field<=0)?(-1):field;
done = (button_index==-1);
} else
done = true;
break;
case 1:
if (!strcmp_P(str, PSTR("up"))) {
setting.position[0].pos = 100;
setting.position[1].pos = 50;
setting.position[2].pos = 75;
setting.position[3].pos = 100;
isShortCommand = true;
break;
} else if (!strcmp_P(str, PSTR("down"))) {
setting.position[0].pos = 0;
setting.position[1].pos = 50;
setting.position[2].pos = 25;
setting.position[3].pos = 0;
isShortCommand = true;
break;
} else if (!strcmp_P(str, PSTR("updown"))) {
setting.position[0].pos = 100;
setting.position[1].pos = 0;
setting.position[2].pos = 50;
isShortCommand = true;
break;
} else if (!strcmp_P(str, PSTR("toggle"))) {
setting.position[0].pos = 102;
setting.position[1].pos = 50;
isShortCommand = true;
break;
}
case 2:
/* Currently not supported
if (isShortCommand) {
if ((field==1) && (setting & (0x3F<<(2+6*3))))
// if short command up or down (hold press position set) then also enable MQTT broadcast
setting |= (0x3<<29);
done = true;
break;
}
*/
case 3:
case 4:
AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: CASE4: pos:%d, tilt:%d, incpos:%d, inctilt:%d"),
field,tilt,pos_incrdecr,tilt_incrdecr);
if ((field >= -1) && (field<=102))
setting.position[i-1].pos = field;
if ((tilt >= -128) && (tilt<=127))
setting.position[i-1].tilt = tilt;
if ((pos_incrdecr >= -100) && (pos_incrdecr <= 100))
setting.position[i-1].pos_incrdecr = pos_incrdecr;
if ((tilt_incrdecr >= -90) && (tilt_incrdecr <= 90))
setting.position[i-1].tilt_incrdecr = tilt_incrdecr;
break;
case 5:
case 6:
case 7:
case 8:
case 9:
if (field==1)
setting.position[i-6].mqtt_broadcast = true;
break;
}
if (isShortCommand) {
for (uint8_t j=0; j<4; j++) setting.position[j].tilt = -128;
}
if (done) break;
}
if (button_index) {
if (button_index==-1) {
// remove all buttons for this shutter
for (uint32_t i=0 ; i < MAX_SHUTTERS_ESP32*2 ; i++)
if (ShutterSettings.shutter_button[i].shutter_number == XdrvMailbox.index-1)
ShutterSettings.shutter_button[i].enabled = false;
ShutterSettings.shutter_button[i].shutter_number=0;
for (uint8_t j = 0; j < 4; j++)
ShutterSettings.shutter_button[i].position[j] = {-1,-128,0};
} else {
setting.enabled = true;
setting.shutter_number == XdrvMailbox.index-1;
ShutterSettings.shutter_button[button_index-1] = setting;
}
}
}
char setting_chr[30*MAX_SHUTTER_KEYS] = "-", *setting_chr_ptr = setting_chr;
for (uint32_t i=0 ; i < MAX_SHUTTERS_ESP32*2 ; i++) {
setting = ShutterSettings.shutter_button[i];
if ((setting.enabled) && (ShutterSettings.shutter_button[i].shutter_number == XdrvMailbox.index-1)) {
if (*setting_chr_ptr == 0)
setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR("|"));
setting_chr_ptr += snprintf_P(setting_chr_ptr, 3, PSTR("%d"), i+1);
for (uint32_t j=0 ; j < 4 ; j++) {
int8_t pos = setting.position[j].pos;
int8_t postilt = setting.position[j].tilt;
int8_t pos_incrdecr = setting.position[j].pos_incrdecr;
int8_t tilt_incrdecr = setting.position[j].tilt_incrdecr;
AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Merging: pos:%d, tilt:%d, incpos:%d, inctilt:%d"),
pos,postilt,pos_incrdecr,tilt_incrdecr);
if (0 <= pos)
if (102 == pos) {
setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR(" t"));
} else {
setting_chr_ptr += snprintf_P(setting_chr_ptr, 5, PSTR(" %d"), pos);
}
else {
switch (pos_incrdecr) {
case 0:
setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR(" -"));
break;
default:
if (pos_incrdecr > 0)
setting_chr_ptr += snprintf_P(setting_chr_ptr, 6, PSTR(" ++%d"), pos_incrdecr);
else
setting_chr_ptr += snprintf_P(setting_chr_ptr, 6, PSTR(" -%d"), pos_incrdecr);
break;
}
}
if (-128 != postilt || tilt_incrdecr !=0) {
setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR("/"));
if (127 == postilt) {
switch (tilt_incrdecr) {
case 0:
setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR("t"));
break;
default:
if (tilt_incrdecr > 0)
setting_chr_ptr += snprintf_P(setting_chr_ptr, 5, PSTR("++%d"), tilt_incrdecr);
else
setting_chr_ptr += snprintf_P(setting_chr_ptr, 5, PSTR("-%d"), tilt_incrdecr);
break;
}
} else {
setting_chr_ptr += snprintf_P(setting_chr_ptr, 5, PSTR("%d"), postilt);
}
}
}
for (uint32_t j=0 ; j < 4 ; j++) {
if (setting.position[j].mqtt_broadcast)
setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR(" 1"));
else
setting_chr_ptr += sprintf_P(setting_chr_ptr, PSTR(" -"));
}
}
}
ShutterSettingsSave();
ResponseCmndIdxChar(setting_chr);
}
}
void CmndShutterSetHalfway(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) {
ShutterSettings.shutter_set50percent[XdrvMailbox.index -1] = (ShutterSettings.shutter_options[XdrvMailbox.index -1] & 1) ? 100 - XdrvMailbox.payload : XdrvMailbox.payload;
ShutterSettings.shuttercoeff[0][XdrvMailbox.index -1] = 0;
if (XdrvMailbox.payload == ShutterSettings.shutter_position[XdrvMailbox.index -1]){
ShutterSettings.shutter_position[XdrvMailbox.index -1] = 50;
}
// Init calculates the realposition from the %-Position
ShutterInit();
}
ResponseCmndIdxNumber((ShutterSettings.shutter_options[XdrvMailbox.index -1] & 1) ? 100 - ShutterSettings.shutter_set50percent[XdrvMailbox.index -1] : ShutterSettings.shutter_set50percent[XdrvMailbox.index -1]);
}
}
void CmndShutterFrequency(void)
{
if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= 20000)) {
ShutterGlobal.open_velocity_max = XdrvMailbox.payload;
if (TasmotaGlobal.shutters_present < 4) {
ShutterSettings.shuttercoeff[4][3] = ShutterGlobal.open_velocity_max;
}
ShutterInit();
}
ResponseCmndNumber(ShutterGlobal.open_velocity_max);
}
void CmndShutterSetClose(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
Shutter[XdrvMailbox.index -1].real_position = 0;
Shutter[XdrvMailbox.index -1].tilt_real_pos = Shutter[XdrvMailbox.index -1].tilt_config[0];
Shutter[XdrvMailbox.index -1].lastdirection = -1;
ShutterStartInit(XdrvMailbox.index -1, 0, 0);
ShutterSettings.shutter_position[XdrvMailbox.index -1] = 0;
ResponseCmndIdxChar(D_CONFIGURATION_RESET);
}
}
void CmndShutterSetOpen(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
Shutter[XdrvMailbox.index -1].real_position = Shutter[XdrvMailbox.index -1].open_max;
Shutter[XdrvMailbox.index -1].tilt_real_pos = Shutter[XdrvMailbox.index -1].tilt_config[1];
Shutter[XdrvMailbox.index -1].lastdirection = 1;
ShutterStartInit(XdrvMailbox.index -1, 0, Shutter[XdrvMailbox.index -1].open_max);
ShutterSettings.shutter_position[XdrvMailbox.index -1] = 100;
ResponseCmndIdxChar(D_CONFIGURATION_RESET);
}
}
void CmndShutterPwmRange(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
if (XdrvMailbox.data_len > 0) {
uint8_t i = 0;
char *str_ptr;
char data_copy[strlen(XdrvMailbox.data) +1];
strncpy(data_copy, XdrvMailbox.data, sizeof(data_copy)); // Duplicate data as strtok_r will modify it.
// Loop through the data string, splitting on ' ' seperators.
for (char *str = strtok_r(data_copy, " ", &str_ptr); str && i < 2; str = strtok_r(nullptr, " ", &str_ptr), i++) {
uint16_t field = atoi(str);
// The fields in a data string can only range from 1-30000.
// and following value must be higher than previous one
if ((field <= 0) || (field > 1023)) {
break;
}
ShutterSettings.shutter_pwmrange[i][XdrvMailbox.index -1] = field;
}
AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Shtr%d Init1. pwmmin %d, pwmmax %d"), XdrvMailbox.index , ShutterSettings.shutter_pwmrange[0][XdrvMailbox.index -1], ShutterSettings.shutter_pwmrange[1][XdrvMailbox.index -1]);
ShutterInit();
ResponseCmndIdxChar(XdrvMailbox.data);
} else {
char setting_chr[30] = "0";
snprintf_P(setting_chr, sizeof(setting_chr), PSTR("Shutter %d: min:%d max:%d"), XdrvMailbox.index, ShutterSettings.shutter_pwmrange[0][XdrvMailbox.index -1], ShutterSettings.shutter_pwmrange[1][XdrvMailbox.index -1]);
ResponseCmndIdxChar(setting_chr);
}
}
}
void CmndShutterCalibration(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
if (XdrvMailbox.data_len > 0) {
uint8_t i = 0;
char *str_ptr;
char data_copy[strlen(XdrvMailbox.data) +1];
strncpy(data_copy, XdrvMailbox.data, sizeof(data_copy)); // Duplicate data as strtok_r will modify it.
// Loop through the data string, splitting on ' ' seperators.
for (char *str = strtok_r(data_copy, " ", &str_ptr); str && i < 5; str = strtok_r(nullptr, " ", &str_ptr), i++) {
int field = atoi(str);
// The fields in a data string can only range from 1-30000.
// and following value must be higher than previous one
if ((field <= 0) || (field > 30000) || ( (i>0) && (field <= messwerte[i-1]) ) ) {
break;
}
messwerte[i] = field;
}
ShutterSettings.shutter_set50percent[XdrvMailbox.index -1] = 50;
for (i = 0; i < 5; i++) {
ShutterSettings.shuttercoeff[i][XdrvMailbox.index -1] = SHT_DIV_ROUND((uint32_t)messwerte[i] * 1000, messwerte[4]);
AddLog(LOG_LEVEL_DEBUG, PSTR("SHT: Shuttercoeff %d, i %d, Value %d, MeasuredValue %d"), i,XdrvMailbox.index -1,ShutterSettings.shuttercoeff[i][XdrvMailbox.index -1], messwerte[i]);
}
ShutterInit();
ResponseCmndIdxChar(XdrvMailbox.data);
} else {
char setting_chr[30] = "0";
snprintf_P(setting_chr, sizeof(setting_chr), PSTR("%d %d %d %d %d"), ShutterSettings.shuttercoeff[0][XdrvMailbox.index -1], ShutterSettings.shuttercoeff[1][XdrvMailbox.index -1], ShutterSettings.shuttercoeff[2][XdrvMailbox.index -1], ShutterSettings.shuttercoeff[3][XdrvMailbox.index -1], ShutterSettings.shuttercoeff[4][XdrvMailbox.index -1]);
ResponseCmndIdxChar(setting_chr);
}
}
}
void ShutterOptionsSetHelper(uint16_t option)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
if (XdrvMailbox.payload == 0) {
ShutterSettings.shutter_options[XdrvMailbox.index -1] &= ~(option);
} else if (XdrvMailbox.payload == 1) {
ShutterSettings.shutter_options[XdrvMailbox.index -1] |= (option);
}
ResponseCmndIdxNumber((ShutterSettings.shutter_options[XdrvMailbox.index -1] & option) ? 1 : 0);
}
}
void CmndShutterInvert(void)
{
ShutterOptionsSetHelper(1);
}
void CmndShutterLock(void)
{
ShutterOptionsSetHelper(2);
}
void CmndShutterEnableEndStopTime(void)
{
ShutterOptionsSetHelper(4);
}
void CmndShutterInvertWebButtons(void)
{
ShutterOptionsSetHelper(8);
}
void CmndShutterSetTilt(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
if (XdrvMailbox.payload != -99 ) {
Shutter[XdrvMailbox.index -1].tilt_target_pos = tmin(tmax(XdrvMailbox.payload, Shutter[XdrvMailbox.index -1].tilt_config[0]), Shutter[XdrvMailbox.index -1].tilt_config[1]);
}
// assuming OPEN=100=tilt_config[3]/CLOSE=0=tilt_config[4]
if (XdrvMailbox.data_len > 3 && XdrvMailbox.payload >= 0 ) {
Shutter[XdrvMailbox.index -1].tilt_target_pos = Shutter[XdrvMailbox.index -1].tilt_config[XdrvMailbox.payload?3:4];
}
}
XdrvMailbox.data[0] = '\0';
AddLog(LOG_LEVEL_INFO, PSTR("SHT: TiltTarget %d, payload %d"), Shutter[XdrvMailbox.index -1].tilt_target_pos,XdrvMailbox.payload);
Shutter[XdrvMailbox.index -1].tiltmoving = 1;
// Avoid shutterposition try to interpret "open/close or payload"
XdrvMailbox.data_len = 0;
XdrvMailbox.payload = -99;
CmndShutterPosition();
}
void CmndShutterTiltConfig(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
if (XdrvMailbox.data_len > 0) {
uint8_t i = 0;
char *str_ptr;
char data_copy[strlen(XdrvMailbox.data) +1];
strncpy(data_copy, XdrvMailbox.data, sizeof(data_copy)); // Duplicate data as strtok_r will modify it.
// Loop through the data string, splitting on ' ' seperators.
for (char *str = strtok_r(data_copy, " ", &str_ptr); str && i < 6; str = strtok_r(nullptr, " ", &str_ptr), i++) {
Shutter[XdrvMailbox.index -1].tilt_config[i] = ShutterSettings.shutter_tilt_config[i][XdrvMailbox.index -1] = atoi(str);
}
// avoid negative runtime
ShutterSettings.shutter_tilt_config[2][XdrvMailbox.index -1] = Shutter[XdrvMailbox.index -1].tilt_config[2] = Shutter[XdrvMailbox.index -1].tilt_config[2] >= 0 ? Shutter[XdrvMailbox.index -1].tilt_config[2] : 127;
ShutterInit();
}
char setting_chr[30] = "0";
snprintf_P(setting_chr, sizeof(setting_chr), PSTR("%d %d %d %d %d"), Shutter[XdrvMailbox.index -1].tilt_config[0], Shutter[XdrvMailbox.index -1].tilt_config[1],Shutter[XdrvMailbox.index -1].tilt_config[2],Shutter[XdrvMailbox.index -1].tilt_config[3],Shutter[XdrvMailbox.index -1].tilt_config[4]);
ResponseCmndIdxChar(setting_chr);
AddLog(LOG_LEVEL_INFO, PSTR("SHT: TiltConfig %d, min: %d, max %d, runtime %d, close_pos: %d, open_pos: %d"), XdrvMailbox.index ,Shutter[XdrvMailbox.index -1].tilt_config[0], Shutter[XdrvMailbox.index -1].tilt_config[1],Shutter[XdrvMailbox.index -1].tilt_config[2],Shutter[XdrvMailbox.index -1].tilt_config[3],Shutter[XdrvMailbox.index -1].tilt_config[4]);
}
}
void CmndShutterTiltIncDec(void)
{
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Change in: payload %s (%d), payload %d, idx %d, src %d"), XdrvMailbox.data , XdrvMailbox.data_len, XdrvMailbox.payload , XdrvMailbox.index, TasmotaGlobal.last_source );
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present) && XdrvMailbox.data_len > 0) {
XdrvMailbox.payload = Shutter[XdrvMailbox.index -1].tilt_target_pos+XdrvMailbox.payload;
CmndShutterSetTilt();
} else {
ResponseCmndIdxNumber(XdrvMailbox.payload);
}
}
void CmndShutterMotorStop(void)
{
if (!XdrvMailbox.usridx) {
if ((XdrvMailbox.payload >= 0) ) {
ShutterSettings.shutter_motorstop = XdrvMailbox.payload;
ShutterInit();
}
ResponseCmndNumber(ShutterSettings.shutter_motorstop);
}
}
uint16_t ShutterGetCycleTime(uint8_t i, uint8_t max_runtime) {
uint32_t cycle_time = 0;
bool started = false;
uint32_t last_time;
char time_chr[10];
last_time = millis();
while (!started && millis()-last_time < max_runtime * 1000) {
loop();
if (Shutter[i].direction) {
started = true;
last_time = millis();
}
}
if (!started) return 0;
AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Setup. Start detected. Waiting for STOP"));
while (Shutter[i].direction && millis()-last_time < max_runtime * 1000) {
loop();
}
if (Shutter[i].direction) {
AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Setup. No stop detected... Cancel"));
return 0;
}
// reduce cycle time by 0.1 because 2 Steps required to detect motorstop
cycle_time = (millis()-last_time)/100 - (Shutter[i].motordelay * 10 / STEPS_PER_SECOND)-0.1 ;
dtostrfd((float)(cycle_time) / 10, 1, time_chr);
AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Setup. Cycletime is: %s sec"),time_chr);
return cycle_time;
}
void CmndShutterSetup(void) {
uint8_t index_no;
char time_chr[10];
uint32_t new_opentime;
uint32_t new_closetime;
uint8_t max_runtime = 120; // max 120 seconds runtime
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= TasmotaGlobal.shutters_present)) {
index_no = XdrvMailbox.index-1; // save, because will be changed in following operations
// init shutter to default settings
ShutterGlobal.callibration_run = true;
ShutterSettings.shutter_position[index_no] = 0;
ShutterSettings.shutter_closetime[index_no] = max_runtime * 10;
ShutterSettings.shutter_opentime[index_no] = max_runtime * 10;
ShutterInit();
if (Energy->phase_count > 1) {
AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Setup: Ensure shutter is close. Now open, autostop detect. max duration is 2min Phase:%d"),Energy->phase_count);
ShutterWaitForMotorStop(index_no);
CmndShutterOpen();
} else {
AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Setup: Ensure shutter is close. Now open and stop when open. max duration is 2min"));
}
new_opentime = ShutterGetCycleTime(index_no, max_runtime);
if (new_opentime) {
ShutterSettings.shutter_position[index_no] = 100;
ShutterInit();
if (Energy->phase_count > 1) {
AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Setup: Now close, autostop detect. max duration is 2min"));
ShutterWaitForMotorStop(index_no);
CmndShutterClose();
}else {
AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Setup: Now close and stop when closed. max duration is 2min"));
}
new_closetime = ShutterGetCycleTime(index_no, max_runtime);
ShutterSettings.shutter_position[index_no] = 0;
if (new_closetime) {
ShutterSettings.shutter_opentime[index_no] = new_opentime;
ShutterSettings.shutter_closetime[index_no] = new_closetime;
//good default value for normal european shutters. Setting here because Position == 0
ShutterSettings.shutter_set50percent[index_no] = 70;
ShutterInit();
}
}
ShutterGlobal.callibration_run = false;
} else {
// print out help instructions
// will only work without TILT configuration
}
return;
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv27(uint32_t function)
{
bool result = false;
if (Settings->flag3.shutter_mode) { // SetOption80 - Enable shutter support
uint8_t counter = XdrvMailbox.index==0?1:XdrvMailbox.index;
uint8_t counterend = XdrvMailbox.index==0?TasmotaGlobal.shutters_present:XdrvMailbox.index;
int32_t rescue_payload = XdrvMailbox.payload;
uint32_t rescue_data_len = XdrvMailbox.data_len;
char stemp1[10];
power_t save_powermatrix;
switch (function) {
case FUNC_RESTORE_SETTINGS:
result = ShutterSettingsRestore();
break;
case FUNC_SAVE_SETTINGS:
ShutterSettingsSave();
break;
case FUNC_PRE_INIT:
ShutterSettingsLoad(0);
ShutterInit();
break;
case FUNC_RESET_SETTINGS:
ShutterSettingsLoad(1);
break;
case FUNC_EVERY_50_MSECOND:
ShutterUpdatePosition();
break;
case FUNC_EVERY_SECOND:
//case FUNC_EVERY_250_MSECOND:
ShutterReportPosition(false, MAX_SHUTTERS_ESP32);
break;
case FUNC_COMMAND:
for (uint8_t i = counter; i <= counterend; i++) {
XdrvMailbox.index = i;
XdrvMailbox.payload = rescue_payload;
XdrvMailbox.data_len = rescue_data_len;
result = DecodeCommand(kShutterCommands, ShutterCommand);
}
break;
case FUNC_JSON_APPEND:
for (uint8_t i = 0; i < TasmotaGlobal.shutters_present; i++) {
ResponseAppend_P(",");
ResponseAppend_P(JSON_SHUTTER_POS, i+1, ShutterRealToPercentPosition(Shutter[i].real_position, i), Shutter[i].direction, ShutterRealToPercentPosition(Shutter[i].target_position, i), Shutter[i].tilt_real_pos);
#ifdef USE_DOMOTICZ
if ((0 == TasmotaGlobal.tele_period) && (0 == i)) {
DomoticzSensor(DZ_SHUTTER, ShutterRealToPercentPosition(Shutter[i].real_position, i));
}
#endif // USE_DOMOTICZ
}
break;
case FUNC_SET_POWER:
// extract the number of the relay that was switched and save for later in Update Position.
ShutterGlobal.RelayCurrentMask = XdrvMailbox.index ^ ShutterGlobal.RelayOldMask;
ShutterGlobal.LastChangedRelay = ShutterGetRelayNoFromBitfield(XdrvMailbox.index ^ ShutterGlobal.RelayOldMask);
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: FUNC_SET_POWER Relaymask %d SwitchedRelay:%d by %s, payload %d, powermask %d"), ShutterGlobal.RelayOldMask, ShutterGlobal.LastChangedRelay,GetTextIndexed(stemp1, sizeof(stemp1), TasmotaGlobal.last_source, kCommandSource),XdrvMailbox.payload, TasmotaGlobal.power);
save_powermatrix = TasmotaGlobal.power; // can be changed in ShutterRelayChanged
if (!ShutterGlobal.LastChangedRelay) {
ShutterGlobal.skip_relay_change = 1;
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("INVALID REQUEST"));
} else {
ShutterRelayChanged();
ShutterGlobal.RelayOldMask = XdrvMailbox.index; // may be changed and now revert
TasmotaGlobal.power = save_powermatrix;
}
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: FUNC_SET_POWER end. powermask %d"), TasmotaGlobal.power);
break;
case FUNC_SET_DEVICE_POWER:
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: FUNC_SET_DEVICE_POWER Skipping:%d, Source %s"), ShutterGlobal.skip_relay_change,GetTextIndexed(stemp1, sizeof(stemp1), XdrvMailbox.payload, kCommandSource));
if (ShutterGlobal.skip_relay_change ) {
//AddLog(LOG_LEVEL_ERROR, PSTR("SHT: Skip relay change %d"), i+1);
result = true;
ShutterGlobal.skip_relay_change = 0;
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Skipping switch off relay %d"), ShutterGlobal.LastChangedRelay);
//ExecuteCommandPowerShutter(i+1, 0, SRC_SHUTTER); // should not required anymore. check for bugs
if (ShutterGlobal.LastChangedRelay) ShutterGlobal.RelayOldMask = TasmotaGlobal.power ^= 1<<(ShutterGlobal.LastChangedRelay-1);
}
//AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: FUNC_SET_DEVICE_POWER end. powermask %ld, current rel: %ld"), TasmotaGlobal.power, ShutterGlobal.RelayOldMask);
break;
case FUNC_BUTTON_MULTI_PRESSED:
if (XdrvMailbox.index < MAX_SHUTTERS_ESP32*2 && ShutterSettings.shutter_button[XdrvMailbox.index].enabled) {
result = ShutterButtonHandlerMulti();
}
break;
case FUNC_BUTTON_PRESSED:
if (XdrvMailbox.index < MAX_SHUTTERS_ESP32*2 && ShutterSettings.shutter_button[XdrvMailbox.index].enabled) {
if (!Settings->flag3.mqtt_buttons) Settings->flag3.mqtt_buttons = 1; // ensure to detach buttons from relay to let the shutter controll the relay
ShutterButtonHandler();
result = false;
}
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
ShutterShow();
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif //USE_SHUTTER
#ifdef SHUTTER_UNITTEST
void CmndShutterUnitTest(void) {
int16_t input_percent[10] = {-5,0,10,26,35,55,80,99,100,105};
int16_t output_percent[10] = {0,0,10,26,35,55,80,99,100,100};
uint32_t result_percent[2][2][10] = {{{0,0,24000,62400,84000,132000,192000,237600,240000,240000},
{0,0,360000,936000,1260000,1980000,2880000,3564000,3600000,3600000}},
{{0,0,76296,100000,113333,174299,205795,237983,240000,240000},
{0,0,1144444,1500000,1700000,2614488,3086929,3569748,3600000,3600000}}};
uint32_t result = 0;
char svalue[50]; // Command and number parameter
ShutterSettings.shuttercoeff[0][0] = 0;
for (uint8_t i=0; i<2 ; i++){
snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_OPENTIME "%d %d"), 1, 12);
ExecuteCommand(svalue, SRC_SHUTTER);
ShutterInit();
for (uint8_t j=0; j<2 ; j++){
for (uint8_t k=0; k<10 ; k++){
result += (result_percent[i][j][k] == ShutterPercentToRealPosition(input_percent[k] , 0) ? 0 : 1);
AddLog(LOG_LEVEL_ERROR, PSTR("SHT: ShutterPercentToRealPosition error %d: %d <-> %d"),result, ShutterPercentToRealPosition(input_percent[k] , 0), result_percent[i][j][k]);
}
snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_OPENTIME "%d %d"), 1, 180);
ExecuteCommand(svalue, SRC_SHUTTER);
}
snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_CLIBRATION "%d %s"), 1, "15 83 105 185 210");
ExecuteCommand(svalue, SRC_SHUTTER);
}
if (!result){
AddLog(LOG_LEVEL_ERROR, PSTR("SHT: ShutterPercentToRealPosition: PASS"));
} else {
AddLog(LOG_LEVEL_ERROR, PSTR("SHT: ShutterPercentToRealPosition: FAIL"));
}
ShutterSettings.shuttercoeff[0][0] = 0;
for (uint8_t i=0; i<2 ; i++){
snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_OPENTIME "%d %d"), 1, 12);
ExecuteCommand(svalue, SRC_SHUTTER);
ShutterInit();
for (uint8_t j=0; j<2 ; j++){
for (uint8_t k=0; k<10 ; k++){
result += (output_percent[k] == ShutterRealToPercentPosition(result_percent[i][j][k] , 0) ? 0 : 1);
AddLog(LOG_LEVEL_ERROR, PSTR("SHT: ShutterRealToPercentPosition error %d: %d <-> %d"),result, ShutterRealToPercentPosition(result_percent[i][j][k] , 0), output_percent[k]);
}
snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_OPENTIME "%d %d"), 1, 180);
ExecuteCommand(svalue, SRC_SHUTTER);
}
snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_CLIBRATION "%d %s"), 1, "15 83 105 185 210");
ExecuteCommand(svalue, SRC_SHUTTER);
}
if (!result){
AddLog(LOG_LEVEL_ERROR, PSTR("SHT: ShutterRealToPercentPosition: PASS"));
} else {
AddLog(LOG_LEVEL_ERROR, PSTR("SHT: ShutterRealToPercentPosition: FAIL"));
}
}
#else
void CmndShutterUnitTest(void) {}
#endif // SHUTTER_UNITTEST
#endif // ESP32