Tasmota/tasmota/support_esp.ino

706 lines
25 KiB
C++

/*
support_esp.ino - ESP specific code for Tasmota
Copyright (C) 2021 Theo Arends / Jörg Schüler-Maroldt
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*********************************************************************************************\
* ESP8266 and ESP32 specific code
*
* At the end the common Tasmota calls are provided
\*********************************************************************************************/
/*********************************************************************************************\
* ESP8266 Support
\*********************************************************************************************/
#ifdef ESP8266
extern "C" {
extern struct rst_info resetInfo;
}
uint32_t ESP_ResetInfoReason(void) {
return resetInfo.reason;
}
String ESP_getResetReason(void) {
return ESP.getResetReason();
}
uint32_t ESP_getChipId(void) {
return ESP.getChipId();
}
uint32_t ESP_getSketchSize(void) {
return ESP.getSketchSize();
}
uint32_t ESP_getFreeHeap(void) {
return ESP.getFreeHeap();
}
void ESP_Restart(void) {
// ESP.restart(); // This results in exception 3 on restarts on core 2.3.0
ESP.reset();
}
uint32_t FlashWriteStartSector(void) {
return (ESP.getSketchSize() / SPI_FLASH_SEC_SIZE) + 2; // Stay on the safe side
}
uint32_t FlashWriteMaxSector(void) {
return (((uint32_t)&_FS_start - 0x40200000) / SPI_FLASH_SEC_SIZE) - 2;
}
uint8_t* FlashDirectAccess(void) {
return (uint8_t*)(0x40200000 + (FlashWriteStartSector() * SPI_FLASH_SEC_SIZE));
}
void *special_malloc(uint32_t size) {
return malloc(size);
}
void *special_realloc(void *ptr, size_t size) {
return realloc(ptr, size);
}
String GetDeviceHardware(void) {
char buff[10];
// esptool.py get_efuses
uint32_t efuse1 = *(uint32_t*)(0x3FF00050);
uint32_t efuse2 = *(uint32_t*)(0x3FF00054);
// uint32_t efuse3 = *(uint32_t*)(0x3FF00058);
// uint32_t efuse4 = *(uint32_t*)(0x3FF0005C);
bool is_8285 = ( (efuse1 & (1 << 4)) || (efuse2 & (1 << 16)) );
if (is_8285 && (ESP.getFlashChipRealSize() > 1048576)) {
is_8285 = false; // ESP8285 can only have 1M flash
}
if (is_8285) {
strcpy_P(buff, PSTR("ESP8285"));
} else {
strcpy_P(buff, PSTR("ESP8266EX"));
}
return String(buff);
}
#endif
/*********************************************************************************************\
* ESP32 Support
\*********************************************************************************************/
#ifdef ESP32
// Handle 20k of NVM
#include <nvs.h>
// See libraries\ESP32\examples\ResetReason.ino
#if ESP_IDF_VERSION_MAJOR > 3 // IDF 4+
#if CONFIG_IDF_TARGET_ESP32 // ESP32/PICO-D4
#include "esp32/rom/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32S2 // ESP32-S2
#include "esp32s2/rom/rtc.h"
#elif CONFIG_IDF_TARGET_ESP32C3 // ESP32-C3
#include "esp32c3/rom/rtc.h"
#else
#error Target CONFIG_IDF_TARGET is not supported
#endif
#else // ESP32 Before IDF 4.0
#include "rom/rtc.h"
#endif
#include <esp_phy_init.h>
void NvmLoad(const char *sNvsName, const char *sName, void *pSettings, unsigned nSettingsLen) {
nvs_handle handle;
noInterrupts();
nvs_open(sNvsName, NVS_READONLY, &handle);
size_t size = nSettingsLen;
nvs_get_blob(handle, sName, pSettings, &size);
nvs_close(handle);
interrupts();
}
void NvmSave(const char *sNvsName, const char *sName, const void *pSettings, unsigned nSettingsLen) {
nvs_handle handle;
noInterrupts();
nvs_open(sNvsName, NVS_READWRITE, &handle);
nvs_set_blob(handle, sName, pSettings, nSettingsLen);
nvs_commit(handle);
nvs_close(handle);
interrupts();
}
int32_t NvmErase(const char *sNvsName) {
nvs_handle handle;
noInterrupts();
int32_t result = nvs_open(sNvsName, NVS_READWRITE, &handle);
if (ESP_OK == result) { result = nvs_erase_all(handle); }
if (ESP_OK == result) { result = nvs_commit(handle); }
nvs_close(handle);
interrupts();
return result;
}
void SettingsErase(uint8_t type) {
// SDK and Tasmota data is held in default NVS partition
// Tasmota data is held also in file /.settings on default filesystem
// cal_data - SDK PHY calibration data as documented in esp_phy_init.h
// qpc - Tasmota Quick Power Cycle state
// main - Tasmota Settings data
int32_t r1, r2, r3;
switch (type) {
case 0: // Reset 2 = Erase all flash from program end to end of physical flash
case 2: // Reset 5, 6 = Erase all flash from program end to end of physical flash excluding filesystem
// nvs_flash_erase(); // Erase RTC, PHY, sta.mac, ap.sndchan, ap.mac, Tasmota etc.
r1 = NvmErase("qpc");
r2 = NvmErase("main");
r3 = TfsDeleteFile(TASM_FILE_SETTINGS);
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_ERASE " Tasmota data (%d,%d,%d)"), r1, r2, r3);
break;
case 1: // Reset 3 = SDK parameter area
case 4: // WIFI_FORCE_RF_CAL_ERASE = SDK parameter area
r1 = esp_phy_erase_cal_data_in_nvs();
// r1 = NvmErase("cal_data");
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_ERASE " PHY data (%d)"), r1);
break;
case 3: // QPC Reached = QPC, Tasmota and SDK parameter area (0x0F3xxx - 0x0FFFFF)
// nvs_flash_erase(); // Erase RTC, PHY, sta.mac, ap.sndchan, ap.mac, Tasmota etc.
r1 = NvmErase("qpc");
r2 = NvmErase("main");
// r3 = esp_phy_erase_cal_data_in_nvs();
// r3 = NvmErase("cal_data");
// AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_ERASE " Tasmota (%d,%d) and PHY data (%d)"), r1, r2, r3);
r3 = TfsDeleteFile(TASM_FILE_SETTINGS);
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_ERASE " Tasmota data (%d,%d,%d)"), r1, r2, r3);
break;
}
}
uint32_t SettingsRead(void *data, size_t size) {
uint32_t source = 1;
if (!TfsLoadFile(TASM_FILE_SETTINGS, (uint8_t*)data, size)) {
source = 0;
NvmLoad("main", "Settings", data, size);
}
return source;
}
void SettingsWrite(const void *pSettings, unsigned nSettingsLen) {
TfsSaveFile(TASM_FILE_SETTINGS, (const uint8_t*)pSettings, nSettingsLen);
NvmSave("main", "Settings", pSettings, nSettingsLen);
}
void QPCRead(void *pSettings, unsigned nSettingsLen) {
NvmLoad("qpc", "pcreg", pSettings, nSettingsLen);
}
void QPCWrite(const void *pSettings, unsigned nSettingsLen) {
NvmSave("qpc", "pcreg", pSettings, nSettingsLen);
}
void NvsInfo(void) {
nvs_stats_t nvs_stats;
nvs_get_stats(NULL, &nvs_stats);
AddLog(LOG_LEVEL_INFO, PSTR("NVS: Used %d/%d entries, NameSpaces %d"),
nvs_stats.used_entries, nvs_stats.total_entries, nvs_stats.namespace_count);
}
//
// Flash memory mapping
//
// See Esp.cpp
#include "Esp.h"
#include "esp_spi_flash.h"
#include <memory>
#include <soc/soc.h>
#include <soc/efuse_reg.h>
#include <esp_partition.h>
extern "C" {
#include "esp_ota_ops.h"
#include "esp_image_format.h"
}
#include "esp_system.h"
#if ESP_IDF_VERSION_MAJOR > 3 // IDF 4+
#if CONFIG_IDF_TARGET_ESP32 // ESP32/PICO-D4
#include "esp32/rom/spi_flash.h"
#elif CONFIG_IDF_TARGET_ESP32S2 // ESP32-S2
#include "esp32s2/rom/spi_flash.h"
#elif CONFIG_IDF_TARGET_ESP32C3 // ESP32-C3
#include "esp32c3/rom/spi_flash.h"
#else
#error Target CONFIG_IDF_TARGET is not supported
#endif
#else // ESP32 Before IDF 4.0
#include "rom/spi_flash.h"
#endif
uint32_t EspFlashBaseAddress(void) {
const esp_partition_t* partition = esp_ota_get_next_update_partition(nullptr);
if (!partition) { return 0; }
return partition->address; // For tasmota 0x00010000 or 0x00200000
}
uint32_t EspFlashBaseEndAddress(void) {
const esp_partition_t* partition = esp_ota_get_next_update_partition(nullptr);
if (!partition) { return 0; }
return partition->address + partition->size; // For tasmota 0x00200000 or 0x003F0000
}
uint8_t* EspFlashMmap(uint32_t address) {
static spi_flash_mmap_handle_t handle = 0;
if (handle) {
spi_flash_munmap(handle);
handle = 0;
}
const uint8_t* data;
int32_t err = spi_flash_mmap(address, 5 * SPI_FLASH_MMU_PAGE_SIZE, SPI_FLASH_MMAP_DATA, (const void **)&data, &handle);
/*
AddLog(LOG_LEVEL_DEBUG, PSTR("DBG: Spi_flash_map %d"), err);
spi_flash_mmap_dump();
*/
return (uint8_t*)data;
}
/*
int32_t EspPartitionMmap(uint32_t action) {
static spi_flash_mmap_handle_t handle;
int32_t err = 0;
if (1 == action) {
const esp_partition_t *partition = esp_ota_get_running_partition();
// const esp_partition_t* partition = esp_ota_get_next_update_partition(nullptr);
if (!partition) { return 0; }
err = esp_partition_mmap(partition, 0, 4 * SPI_FLASH_MMU_PAGE_SIZE, SPI_FLASH_MMAP_DATA, (const void **)&TasmotaGlobal_mmap_data, &handle);
AddLog(LOG_LEVEL_DEBUG, PSTR("DBG: Partition start 0x%08X, Partition end 0x%08X, Mmap data 0x%08X"), partition->address, partition->size, TasmotaGlobal_mmap_data);
} else {
spi_flash_munmap(handle);
handle = 0;
}
return err;
}
*/
//
// Crash stuff
//
void CrashDump(void) {
}
bool CrashFlag(void) {
return false;
}
void CrashDumpClear(void) {
}
void CmndCrash(void) {
/*
volatile uint32_t dummy;
dummy = *((uint32_t*) 0x00000000);
*/
}
// Do an infinite loop to trigger WDT watchdog
void CmndWDT(void) {
/*
volatile uint32_t dummy = 0;
while (1) {
dummy++;
}
*/
}
// This will trigger the os watch after OSWATCH_RESET_TIME (=120) seconds
void CmndBlockedLoop(void) {
/*
while (1) {
delay(1000);
}
*/
}
//
// ESP32 specific
//
#include "soc/soc.h"
#include "soc/rtc_cntl_reg.h"
void DisableBrownout(void) {
// https://github.com/espressif/arduino-esp32/issues/863#issuecomment-347179737
WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0); // Disable brownout detector
}
//
// ESP32 Alternatives
//
String ESP32GetResetReason(uint32_t cpu_no) {
#if CONFIG_IDF_TARGET_ESP32
// tools\sdk\include\esp32\rom\rtc.h
switch (rtc_get_reset_reason(cpu_no)) {
case POWERON_RESET : return F("Vbat power on reset"); // 1
case SW_RESET : return F("Software reset digital core"); // 3
case OWDT_RESET : return F("Legacy watch dog reset digital core"); // 4
case DEEPSLEEP_RESET : return F("Deep Sleep reset digital core"); // 5
case SDIO_RESET : return F("Reset by SLC module, reset digital core"); // 6
case TG0WDT_SYS_RESET : return F("Timer Group0 Watch dog reset digital core"); // 7
case TG1WDT_SYS_RESET : return F("Timer Group1 Watch dog reset digital core"); // 8
case RTCWDT_SYS_RESET : return F("RTC Watch dog Reset digital core"); // 9
case INTRUSION_RESET : return F("Instrusion tested to reset CPU"); // 10
case TGWDT_CPU_RESET : return F("Time Group reset CPU"); // 11
case SW_CPU_RESET : return F("Software reset CPU"); // 12
case RTCWDT_CPU_RESET : return F("RTC Watch dog Reset CPU"); // 13
case EXT_CPU_RESET : return F("or APP CPU, reseted by PRO CPU"); // 14
case RTCWDT_BROWN_OUT_RESET : return F("Reset when the vdd voltage is not stable"); // 15
case RTCWDT_RTC_RESET : return F("RTC Watch dog reset digital core and rtc module"); // 16
}
#elif CONFIG_IDF_TARGET_ESP32S2
// tools\sdk\esp32\include\esp_rom\include\esp32s2\rom\rtc.h
switch (rtc_get_reset_reason(cpu_no)) {
case POWERON_RESET : return F("Vbat power on reset"); // 1
case RTC_SW_SYS_RESET : return F("Software reset digital core"); // 3
case DEEPSLEEP_RESET : return F("Deep Sleep reset digital core"); // 5
case TG0WDT_SYS_RESET : return F("Timer Group0 Watch dog reset digital core"); // 7
case TG1WDT_SYS_RESET : return F("Timer Group1 Watch dog reset digital core"); // 8
case RTCWDT_SYS_RESET : return F("RTC Watch dog Reset digital core"); // 9
case INTRUSION_RESET : return F("Instrusion tested to reset CPU"); // 10
case TG0WDT_CPU_RESET : return F("Time Group0 reset CPU"); // 11
case RTC_SW_CPU_RESET : return F("Software reset CPU"); // 12
case RTCWDT_CPU_RESET : return F("RTC Watch dog Reset CPU"); // 13
case RTCWDT_BROWN_OUT_RESET : return F("Reset when the vdd voltage is not stable"); // 15
case RTCWDT_RTC_RESET : return F("RTC Watch dog reset digital core and rtc module"); // 16
case TG1WDT_CPU_RESET : return F("Time Group1 reset CPU"); // 17
case SUPER_WDT_RESET : return F("Super watchdog reset digital core and rtc module"); // 18
case GLITCH_RTC_RESET : return F("Glitch reset digital core and rtc module"); // 19
}
#endif
return F("No meaning"); // 0 and undefined
}
String ESP_getResetReason(void) {
return ESP32GetResetReason(0); // CPU 0
}
uint32_t ESP_ResetInfoReason(void) {
RESET_REASON reason = rtc_get_reset_reason(0);
#if CONFIG_IDF_TARGET_ESP32
if (POWERON_RESET == reason) { return REASON_DEFAULT_RST; }
if (SW_CPU_RESET == reason) { return REASON_SOFT_RESTART; }
if (DEEPSLEEP_RESET == reason) { return REASON_DEEP_SLEEP_AWAKE; }
if (SW_RESET == reason) { return REASON_EXT_SYS_RST; }
#elif CONFIG_IDF_TARGET_ESP32S2
if (POWERON_RESET == reason) { return REASON_DEFAULT_RST; }
if (RTC_SW_CPU_RESET == reason) { return REASON_SOFT_RESTART; }
if (DEEPSLEEP_RESET == reason) { return REASON_DEEP_SLEEP_AWAKE; }
if (RTC_SW_SYS_RESET == reason) { return REASON_EXT_SYS_RST; }
#endif
return -1; //no "official error code", but should work with the current code base
}
uint32_t ESP_getChipId(void) {
uint32_t id = 0;
for (uint32_t i = 0; i < 17; i = i +8) {
id |= ((ESP.getEfuseMac() >> (40 - i)) & 0xff) << i;
}
return id;
}
uint32_t ESP_getSketchSize(void) {
static uint32_t sketchsize = 0;
if (!sketchsize) {
sketchsize = ESP.getSketchSize(); // This takes almost 2 seconds on an ESP32
}
return sketchsize;
}
uint32_t ESP_getFreeHeap(void) {
return ESP.getFreeHeap();
}
uint32_t ESP_getMaxAllocHeap(void) {
// largest block of heap that can be allocated at once
uint32_t free_block_size = ESP.getMaxAllocHeap();
if (free_block_size > 100) { free_block_size -= 100; }
return free_block_size;
}
void ESP_Restart(void) {
ESP.restart();
}
uint32_t FlashWriteStartSector(void) {
// Needs to be on SPI_FLASH_MMU_PAGE_SIZE (= 0x10000) alignment for mmap usage
uint32_t aligned_address = ((EspFlashBaseAddress() + (2 * SPI_FLASH_MMU_PAGE_SIZE)) / SPI_FLASH_MMU_PAGE_SIZE) * SPI_FLASH_MMU_PAGE_SIZE;
return aligned_address / SPI_FLASH_SEC_SIZE;
}
uint32_t FlashWriteMaxSector(void) {
// Needs to be on SPI_FLASH_MMU_PAGE_SIZE (= 0x10000) alignment for mmap usage
uint32_t aligned_end_address = (EspFlashBaseEndAddress() / SPI_FLASH_MMU_PAGE_SIZE) * SPI_FLASH_MMU_PAGE_SIZE;
return aligned_end_address / SPI_FLASH_SEC_SIZE;
}
uint8_t* FlashDirectAccess(void) {
uint32_t address = FlashWriteStartSector() * SPI_FLASH_SEC_SIZE;
uint8_t* data = EspFlashMmap(address);
/*
AddLog(LOG_LEVEL_DEBUG, PSTR("DBG: Flash start address 0x%08X, Mmap address 0x%08X"), address, data);
uint8_t buf[32];
memcpy(buf, data, sizeof(buf));
AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t*)&buf, 32);
*/
return data;
}
void *special_malloc(uint32_t size) {
if (psramFound()) {
return heap_caps_malloc(size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
} else {
return malloc(size);
}
}
void *special_realloc(void *ptr, size_t size) {
if (psramFound()) {
return heap_caps_realloc(ptr, size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT);
} else {
return realloc(ptr, size);
}
}
float CpuTemperature(void) {
return ConvertTemp(temperatureRead());
}
/*
#if CONFIG_IDF_TARGET_ESP32S2
#include "esp32s2/esp_efuse.h"
#elif CONFIG_IDF_TARGET_ESP32S3
#include "esp32s3/esp_efuse.h"
#elif CONFIG_IDF_TARGET_ESP32C3
#include "esp32c3/esp_efuse.h"
#endif
*/
String GetDeviceHardware(void) {
// https://www.espressif.com/en/products/socs
/*
Source: esp-idf esp_system.h and esptool
typedef enum {
CHIP_ESP32 = 1, //!< ESP32
CHIP_ESP32S2 = 2, //!< ESP32-S2
CHIP_ESP32S3 = 4, //!< ESP32-S3
CHIP_ESP32C3 = 5, //!< ESP32-C3
} esp_chip_model_t;
// Chip feature flags, used in esp_chip_info_t
#define CHIP_FEATURE_EMB_FLASH BIT(0) //!< Chip has embedded flash memory
#define CHIP_FEATURE_WIFI_BGN BIT(1) //!< Chip has 2.4GHz WiFi
#define CHIP_FEATURE_BLE BIT(4) //!< Chip has Bluetooth LE
#define CHIP_FEATURE_BT BIT(5) //!< Chip has Bluetooth Classic
// The structure represents information about the chip
typedef struct {
esp_chip_model_t model; //!< chip model, one of esp_chip_model_t
uint32_t features; //!< bit mask of CHIP_FEATURE_x feature flags
uint8_t cores; //!< number of CPU cores
uint8_t revision; //!< chip revision number
} esp_chip_info_t;
*/
esp_chip_info_t chip_info;
esp_chip_info(&chip_info);
uint32_t chip_model = chip_info.model;
uint32_t chip_revision = chip_info.revision;
// uint32_t chip_revision = ESP.getChipRevision();
bool rev3 = (3 == chip_revision);
// bool single_core = (1 == ESP.getChipCores());
bool single_core = (1 == chip_info.cores);
if (chip_model < 2) { // ESP32
#ifdef CONFIG_IDF_TARGET_ESP32
/* esptool:
def get_pkg_version(self):
word3 = self.read_efuse(3)
pkg_version = (word3 >> 9) & 0x07
pkg_version += ((word3 >> 2) & 0x1) << 3
return pkg_version
*/
uint32_t chip_ver = REG_GET_FIELD(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_VER_PKG);
uint32_t pkg_version = chip_ver & 0x7;
AddLog(LOG_LEVEL_DEBUG, PSTR("HDW: ESP32 Model %d, Revision %d, Core %d, Package %d"), chip_info.model, chip_revision, chip_info.cores, chip_ver);
switch (pkg_version) {
case 0:
if (single_core) { return F("ESP32-S0WDQ6"); } // Max 240MHz, Single core, QFN 6*6
else if (rev3) { return F("ESP32-D0WDQ6-V3"); } // Max 240MHz, Dual core, QFN 6*6
else { return F("ESP32-D0WDQ6"); } // Max 240MHz, Dual core, QFN 6*6
case 1:
if (single_core) { return F("ESP32-S0WD"); } // Max 160MHz, Single core, QFN 5*5, ESP32-SOLO-1, ESP32-DevKitC
else if (rev3) { return F("ESP32-D0WD-V3"); } // Max 240MHz, Dual core, QFN 5*5, ESP32-WROOM-32E, ESP32_WROVER-E, ESP32-DevKitC
else { return F("ESP32-D0WD"); } // Max 240MHz, Dual core, QFN 5*5, ESP32-WROOM-32D, ESP32_WROVER-B, ESP32-DevKitC
case 2: return F("ESP32-D2WD"); // Max 160MHz, Dual core, QFN 5*5, 2MB embedded flash
case 3:
if (single_core) { return F("ESP32-S0WD-OEM"); } // Max 160MHz, Single core, QFN 5*5, Xiaomi Yeelight
else { return F("ESP32-D0WD-OEM"); } // Max 240MHz, Dual core, QFN 5*5
case 4: return F("ESP32-U4WDH"); // Max 160MHz, Single core, QFN 5*5, 4MB embedded flash, ESP32-MINI-1, ESP32-DevKitM-1
case 5:
if (rev3) { return F("ESP32-PICO-V3"); } // Max 240MHz, Dual core, LGA 7*7, ESP32-PICO-V3-ZERO, ESP32-PICO-V3-ZERO-DevKit
else { return F("ESP32-PICO-D4"); } // Max 240MHz, Dual core, LGA 7*7, 4MB embedded flash, ESP32-PICO-KIT
case 6: return F("ESP32-PICO-V3-02"); // Max 240MHz, Dual core, LGA 7*7, 8MB embedded flash, 2MB embedded PSRAM, ESP32-PICO-MINI-02, ESP32-PICO-DevKitM-2
}
#endif // CONFIG_IDF_TARGET_ESP32
return F("ESP32");
}
else if (2 == chip_model) { // ESP32-S2
#ifdef CONFIG_IDF_TARGET_ESP32S2
/* esptool:
def get_pkg_version(self):
num_word = 3
block1_addr = self.EFUSE_BASE + 0x044
word3 = self.read_reg(block1_addr + (4 * num_word))
pkg_version = (word3 >> 21) & 0x0F
return pkg_version
*/
uint32_t chip_ver = REG_GET_FIELD(EFUSE_RD_MAC_SPI_SYS_3_REG, EFUSE_PKG_VERSION);
uint32_t pkg_version = chip_ver & 0x7;
// uint32_t pkg_version = esp_efuse_get_pkg_ver();
AddLog(LOG_LEVEL_DEBUG, PSTR("HDW: ESP32 Model %d, Revision %d, Core %d, Package %d"), chip_info.model, chip_revision, chip_info.cores, chip_ver);
switch (pkg_version) {
case 0: return F("ESP32-S2"); // Max 240MHz, Single core, QFN 7*7, ESP32-S2-WROOM, ESP32-S2-WROVER, ESP32-S2-Saola-1, ESP32-S2-Kaluga-1
case 1: return F("ESP32-S2FH2"); // Max 240MHz, Single core, QFN 7*7, 2MB embedded flash, ESP32-S2-MINI-1, ESP32-S2-DevKitM-1
case 2: return F("ESP32-S2FH4"); // Max 240MHz, Single core, QFN 7*7, 4MB embedded flash
case 3: return F("ESP32-S2FN4R2"); // Max 240MHz, Single core, QFN 7*7, 4MB embedded flash, 2MB embedded PSRAM, , ESP32-S2-MINI-1U, ESP32-S2-DevKitM-1U
}
#endif // CONFIG_IDF_TARGET_ESP32S2
return F("ESP32-S2");
}
else if (4 == chip_model) { // ESP32-S3
return F("ESP32-S3"); // Max 240MHz, Dual core, QFN 7*7, ESP32-S3-WROOM-1, ESP32-S3-DevKitC-1
}
else if (5 == chip_model) { // ESP32-C3
#ifdef CONFIG_IDF_TARGET_ESP32C3
/* esptool:
def get_pkg_version(self):
num_word = 3
block1_addr = self.EFUSE_BASE + 0x044
word3 = self.read_reg(block1_addr + (4 * num_word))
pkg_version = (word3 >> 21) & 0x0F
return pkg_version
*/
uint32_t chip_ver = REG_GET_FIELD(EFUSE_RD_MAC_SPI_SYS_3_REG, EFUSE_PKG_VERSION);
uint32_t pkg_version = chip_ver & 0x7;
// uint32_t pkg_version = esp_efuse_get_pkg_ver();
AddLog(LOG_LEVEL_DEBUG, PSTR("HDW: ESP32 Model %d, Revision %d, Core %d, Package %d"), chip_info.model, chip_revision, chip_info.cores, chip_ver);
switch (pkg_version) {
case 0: return F("ESP32-C3"); // Max 160MHz, Single core, QFN 5*5, ESP32-C3-WROOM-02, ESP32-C3-DevKitC-02
case 1: return F("ESP32-C3FH4"); // Max 160MHz, Single core, QFN 5*5, 4MB embedded flash, ESP32-C3-MINI-1, ESP32-C3-DevKitM-1
}
#endif // CONFIG_IDF_TARGET_ESP32C3
return F("ESP32-C3");
}
else if (6 == chip_model) { // ESP32-S3(beta3)
return F("ESP32-S3");
}
else if (7 == chip_model) { // ESP32-C6
#ifdef CONFIG_IDF_TARGET_ESP32C6
/* esptool:
def get_pkg_version(self):
num_word = 3
block1_addr = self.EFUSE_BASE + 0x044
word3 = self.read_reg(block1_addr + (4 * num_word))
pkg_version = (word3 >> 21) & 0x0F
return pkg_version
*/
uint32_t chip_ver = REG_GET_FIELD(EFUSE_RD_MAC_SPI_SYS_3_REG, EFUSE_PKG_VERSION);
uint32_t pkg_version = chip_ver & 0x7;
// uint32_t pkg_version = esp_efuse_get_pkg_ver();
AddLog(LOG_LEVEL_DEBUG, PSTR("HDW: ESP32 Model %d, Revision %d, Core %d, Package %d"), chip_info.model, chip_revision, chip_info.cores, chip_ver);
switch (pkg_version) {
case 0: return F("ESP32-C6");
}
#endif // CONFIG_IDF_TARGET_ESP32C6
return F("ESP32-C6");
}
return F("ESP32");
}
#endif // ESP32
/*********************************************************************************************\
* ESP Support
\*********************************************************************************************/
uint32_t ESP_getFreeHeap1024(void) {
return ESP_getFreeHeap() / 1024;
}
/*
float ESP_getFreeHeap1024(void) {
return ((float)ESP_getFreeHeap()) / 1024;
}
*/
/*********************************************************************************************\
* High entropy hardware random generator
* Thanks to DigitalAlchemist
\*********************************************************************************************/
// Based on code from https://raw.githubusercontent.com/espressif/esp-idf/master/components/esp32/hw_random.c
uint32_t HwRandom(void) {
#if ESP8266
// https://web.archive.org/web/20160922031242/http://esp8266-re.foogod.com/wiki/Random_Number_Generator
#define _RAND_ADDR 0x3FF20E44UL
#endif // ESP8266
#ifdef ESP32
#define _RAND_ADDR 0x3FF75144UL
#endif // ESP32
static uint32_t last_ccount = 0;
uint32_t ccount;
uint32_t result = 0;
do {
ccount = ESP.getCycleCount();
result ^= *(volatile uint32_t *)_RAND_ADDR;
} while (ccount - last_ccount < 64);
last_ccount = ccount;
return result ^ *(volatile uint32_t *)_RAND_ADDR;
#undef _RAND_ADDR
}