mirror of https://github.com/arendst/Tasmota.git
417 lines
13 KiB
C++
417 lines
13 KiB
C++
/*
|
|
support_esp32.ino - ESP32 specific code for Tasmota
|
|
|
|
Copyright (C) 2021 Theo Arends / Jörg Schüler-Maroldt
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
/*********************************************************************************************\
|
|
* ESP8266 Support
|
|
\*********************************************************************************************/
|
|
|
|
#ifdef ESP8266
|
|
|
|
extern "C" {
|
|
extern struct rst_info resetInfo;
|
|
}
|
|
|
|
uint32_t ESP_ResetInfoReason(void) {
|
|
return resetInfo.reason;
|
|
}
|
|
|
|
String ESP_getResetReason(void) {
|
|
return ESP.getResetReason();
|
|
}
|
|
|
|
uint32_t ESP_getChipId(void) {
|
|
return ESP.getChipId();
|
|
}
|
|
|
|
uint32_t ESP_getSketchSize(void) {
|
|
return ESP.getSketchSize();
|
|
}
|
|
|
|
uint32_t ESP_getFreeHeap(void) {
|
|
return ESP.getFreeHeap();
|
|
}
|
|
|
|
uint32_t ESP_getMaxAllocHeap(void) {
|
|
/*
|
|
From libraries.rst
|
|
ESP.getMaxFreeBlockSize() returns the largest contiguous free RAM block in
|
|
the heap, useful for checking heap fragmentation. **NOTE:** Maximum
|
|
``malloc()``able block will be smaller due to memory manager overheads.
|
|
|
|
From HeapMetric.ino
|
|
ESP.getMaxFreeBlockSize() does not indicate the amount of memory that is
|
|
available for use in a single malloc call. It indicates the size of a
|
|
contiguous block of (raw) memory before the umm_malloc overhead is removed.
|
|
|
|
It should also be pointed out that, if you allow for the needed overhead in
|
|
your malloc call, it could still fail in the general case. An IRQ handler
|
|
could have allocated memory between the time you call
|
|
ESP.getMaxFreeBlockSize() and your malloc call, reducing the available
|
|
memory.
|
|
*/
|
|
uint32_t free_block_size = ESP.getMaxFreeBlockSize();
|
|
if (free_block_size > 100) { free_block_size -= 100; }
|
|
return free_block_size;
|
|
}
|
|
|
|
void ESP_Restart(void) {
|
|
// ESP.restart(); // This results in exception 3 on restarts on core 2.3.0
|
|
ESP.reset();
|
|
}
|
|
|
|
uint32_t FlashWriteStartSector(void) {
|
|
return (ESP.getSketchSize() / SPI_FLASH_SEC_SIZE) + 2; // Stay on the safe side
|
|
}
|
|
|
|
uint32_t FlashWriteMaxSector(void) {
|
|
return (((uint32_t)&_FS_end - 0x40200000) / SPI_FLASH_SEC_SIZE) - 2;
|
|
}
|
|
|
|
uint8_t* FlashDirectAccess(void) {
|
|
return (uint8_t*)(0x40200000 + (FlashWriteStartSector() * SPI_FLASH_SEC_SIZE));
|
|
}
|
|
#endif
|
|
|
|
/*********************************************************************************************\
|
|
* ESP32 Support
|
|
\*********************************************************************************************/
|
|
|
|
#ifdef ESP32
|
|
|
|
// Handle 20k of NVM
|
|
|
|
#include <nvs.h>
|
|
#include <rom/rtc.h>
|
|
#include <esp_phy_init.h>
|
|
|
|
void NvmLoad(const char *sNvsName, const char *sName, void *pSettings, unsigned nSettingsLen) {
|
|
nvs_handle handle;
|
|
noInterrupts();
|
|
nvs_open(sNvsName, NVS_READONLY, &handle);
|
|
size_t size = nSettingsLen;
|
|
nvs_get_blob(handle, sName, pSettings, &size);
|
|
nvs_close(handle);
|
|
interrupts();
|
|
}
|
|
|
|
void NvmSave(const char *sNvsName, const char *sName, const void *pSettings, unsigned nSettingsLen) {
|
|
nvs_handle handle;
|
|
noInterrupts();
|
|
nvs_open(sNvsName, NVS_READWRITE, &handle);
|
|
nvs_set_blob(handle, sName, pSettings, nSettingsLen);
|
|
nvs_commit(handle);
|
|
nvs_close(handle);
|
|
interrupts();
|
|
}
|
|
|
|
int32_t NvmErase(const char *sNvsName) {
|
|
nvs_handle handle;
|
|
noInterrupts();
|
|
int32_t result = nvs_open(sNvsName, NVS_READWRITE, &handle);
|
|
if (ESP_OK == result) { result = nvs_erase_all(handle); }
|
|
if (ESP_OK == result) { result = nvs_commit(handle); }
|
|
nvs_close(handle);
|
|
interrupts();
|
|
return result;
|
|
}
|
|
|
|
void SettingsErase(uint8_t type) {
|
|
// All SDK and Tasmota data is held in default NVS partition
|
|
// cal_data - SDK PHY calibration data as documented in esp_phy_init.h
|
|
// qpc - Tasmota Quick Power Cycle state
|
|
// main - Tasmota Settings data
|
|
int32_t r1, r2, r3;
|
|
switch (type) {
|
|
case 0: // Reset 2, 5, 6 = Erase all flash from program end to end of physical flash
|
|
// nvs_flash_erase(); // Erase RTC, PHY, sta.mac, ap.sndchan, ap.mac, Tasmota etc.
|
|
r1 = NvmErase("qpc");
|
|
r2 = NvmErase("main");
|
|
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_ERASE " Tasmota data (%d,%d)"), r1, r2);
|
|
break;
|
|
case 1: case 4: // Reset 3 or WIFI_FORCE_RF_CAL_ERASE = SDK parameter area
|
|
r1 = esp_phy_erase_cal_data_in_nvs();
|
|
// r1 = NvmErase("cal_data");
|
|
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_ERASE " PHY data (%d)"), r1);
|
|
break;
|
|
case 2: // Not used = QPC and Tasmota parameter area (0x0F3xxx - 0x0FBFFF)
|
|
r1 = NvmErase("qpc");
|
|
r2 = NvmErase("main");
|
|
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_ERASE " Tasmota data (%d,%d)"), r1, r2);
|
|
break;
|
|
case 3: // QPC Reached = QPC, Tasmota and SDK parameter area (0x0F3xxx - 0x0FFFFF)
|
|
// nvs_flash_erase(); // Erase RTC, PHY, sta.mac, ap.sndchan, ap.mac, Tasmota etc.
|
|
r1 = NvmErase("qpc");
|
|
r2 = NvmErase("main");
|
|
// r3 = esp_phy_erase_cal_data_in_nvs();
|
|
// r3 = NvmErase("cal_data");
|
|
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_ERASE " Tasmota (%d,%d) and PHY data (%d)"), r1, r2, r3);
|
|
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_ERASE " Tasmota data (%d,%d)"), r1, r2);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void SettingsRead(void *data, size_t size) {
|
|
#ifdef USE_TFS
|
|
// if (!TfsLoadFile("/settings", (uint8_t*)data, size)) {
|
|
NvmLoad("main", "Settings", data, size);
|
|
// }
|
|
#else
|
|
NvmLoad("main", "Settings", data, size);
|
|
#endif
|
|
}
|
|
|
|
void SettingsWrite(const void *pSettings, unsigned nSettingsLen) {
|
|
#ifdef USE_TFS
|
|
// TfsSaveFile("/settings", (const uint8_t*)pSettings, nSettingsLen);
|
|
#endif
|
|
NvmSave("main", "Settings", pSettings, nSettingsLen);
|
|
}
|
|
|
|
void QPCRead(void *pSettings, unsigned nSettingsLen) {
|
|
NvmLoad("qpc", "pcreg", pSettings, nSettingsLen);
|
|
}
|
|
|
|
void QPCWrite(const void *pSettings, unsigned nSettingsLen) {
|
|
NvmSave("qpc", "pcreg", pSettings, nSettingsLen);
|
|
}
|
|
|
|
void NvsInfo(void) {
|
|
nvs_stats_t nvs_stats;
|
|
nvs_get_stats(NULL, &nvs_stats);
|
|
AddLog_P(LOG_LEVEL_INFO, PSTR("NVS: Used %d/%d entries, NameSpaces %d"),
|
|
nvs_stats.used_entries, nvs_stats.total_entries, nvs_stats.namespace_count);
|
|
}
|
|
|
|
//
|
|
// Flash memory mapping
|
|
//
|
|
|
|
#include "Esp.h"
|
|
#include "rom/spi_flash.h"
|
|
#include "esp_spi_flash.h"
|
|
#include <memory>
|
|
#include <soc/soc.h>
|
|
#include <soc/efuse_reg.h>
|
|
#include <esp_partition.h>
|
|
extern "C" {
|
|
#include "esp_ota_ops.h"
|
|
#include "esp_image_format.h"
|
|
}
|
|
|
|
uint32_t EspFlashBaseAddress(void) {
|
|
const esp_partition_t* partition = esp_ota_get_next_update_partition(nullptr);
|
|
if (!partition) { return 0; }
|
|
return partition->address; // For tasmota 0x00010000 or 0x00200000
|
|
}
|
|
|
|
uint32_t EspFlashBaseEndAddress(void) {
|
|
const esp_partition_t* partition = esp_ota_get_next_update_partition(nullptr);
|
|
if (!partition) { return 0; }
|
|
return partition->address + partition->size; // For tasmota 0x00200000 or 0x003F0000
|
|
}
|
|
|
|
uint8_t* EspFlashMmap(uint32_t address) {
|
|
static spi_flash_mmap_handle_t handle = 0;
|
|
|
|
if (handle) {
|
|
spi_flash_munmap(handle);
|
|
handle = 0;
|
|
}
|
|
|
|
const uint8_t* data;
|
|
int32_t err = spi_flash_mmap(address, 5 * SPI_FLASH_MMU_PAGE_SIZE, SPI_FLASH_MMAP_DATA, (const void **)&data, &handle);
|
|
|
|
/*
|
|
AddLog_P(LOG_LEVEL_DEBUG, PSTR("DBG: Spi_flash_map %d"), err);
|
|
|
|
spi_flash_mmap_dump();
|
|
*/
|
|
return (uint8_t*)data;
|
|
}
|
|
|
|
/*
|
|
int32_t EspPartitionMmap(uint32_t action) {
|
|
static spi_flash_mmap_handle_t handle;
|
|
|
|
int32_t err = 0;
|
|
if (1 == action) {
|
|
const esp_partition_t *partition = esp_ota_get_running_partition();
|
|
// const esp_partition_t* partition = esp_ota_get_next_update_partition(nullptr);
|
|
if (!partition) { return 0; }
|
|
err = esp_partition_mmap(partition, 0, 4 * SPI_FLASH_MMU_PAGE_SIZE, SPI_FLASH_MMAP_DATA, (const void **)&TasmotaGlobal_mmap_data, &handle);
|
|
|
|
AddLog_P(LOG_LEVEL_DEBUG, PSTR("DBG: Partition start 0x%08X, Partition end 0x%08X, Mmap data 0x%08X"), partition->address, partition->size, TasmotaGlobal_mmap_data);
|
|
|
|
} else {
|
|
spi_flash_munmap(handle);
|
|
handle = 0;
|
|
}
|
|
return err;
|
|
}
|
|
|
|
*/
|
|
//
|
|
// Crash stuff
|
|
//
|
|
|
|
void CrashDump(void) {
|
|
}
|
|
|
|
bool CrashFlag(void) {
|
|
return false;
|
|
}
|
|
|
|
void CrashDumpClear(void) {
|
|
}
|
|
|
|
void CmndCrash(void) {
|
|
/*
|
|
volatile uint32_t dummy;
|
|
dummy = *((uint32_t*) 0x00000000);
|
|
*/
|
|
}
|
|
|
|
// Do an infinite loop to trigger WDT watchdog
|
|
void CmndWDT(void) {
|
|
/*
|
|
volatile uint32_t dummy = 0;
|
|
while (1) {
|
|
dummy++;
|
|
}
|
|
*/
|
|
}
|
|
// This will trigger the os watch after OSWATCH_RESET_TIME (=120) seconds
|
|
void CmndBlockedLoop(void) {
|
|
/*
|
|
while (1) {
|
|
delay(1000);
|
|
}
|
|
*/
|
|
}
|
|
|
|
//
|
|
// ESP32 specific
|
|
//
|
|
|
|
#include "soc/soc.h"
|
|
#include "soc/rtc_cntl_reg.h"
|
|
|
|
void DisableBrownout(void) {
|
|
// https://github.com/espressif/arduino-esp32/issues/863#issuecomment-347179737
|
|
WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0); // Disable brownout detector
|
|
}
|
|
|
|
//
|
|
// ESP32 Alternatives
|
|
//
|
|
|
|
String ESP32GetResetReason(uint32_t cpu_no) {
|
|
// tools\sdk\include\esp32\rom\rtc.h
|
|
switch (rtc_get_reset_reason(cpu_no)) {
|
|
case POWERON_RESET : return F("Vbat power on reset"); // 1
|
|
case SW_RESET : return F("Software reset digital core"); // 3
|
|
case OWDT_RESET : return F("Legacy watch dog reset digital core"); // 4
|
|
case DEEPSLEEP_RESET : return F("Deep Sleep reset digital core"); // 5
|
|
case SDIO_RESET : return F("Reset by SLC module, reset digital core"); // 6
|
|
case TG0WDT_SYS_RESET : return F("Timer Group0 Watch dog reset digital core"); // 7
|
|
case TG1WDT_SYS_RESET : return F("Timer Group1 Watch dog reset digital core"); // 8
|
|
case RTCWDT_SYS_RESET : return F("RTC Watch dog Reset digital core"); // 9
|
|
case INTRUSION_RESET : return F("Instrusion tested to reset CPU"); // 10
|
|
case TGWDT_CPU_RESET : return F("Time Group reset CPU"); // 11
|
|
case SW_CPU_RESET : return F("Software reset CPU"); // 12
|
|
case RTCWDT_CPU_RESET : return F("RTC Watch dog Reset CPU"); // 13
|
|
case EXT_CPU_RESET : return F("or APP CPU, reseted by PRO CPU"); // 14
|
|
case RTCWDT_BROWN_OUT_RESET : return F("Reset when the vdd voltage is not stable"); // 15
|
|
case RTCWDT_RTC_RESET : return F("RTC Watch dog reset digital core and rtc module"); // 16
|
|
}
|
|
return F("No meaning"); // 0 and undefined
|
|
}
|
|
|
|
String ESP_getResetReason(void) {
|
|
return ESP32GetResetReason(0); // CPU 0
|
|
}
|
|
|
|
uint32_t ESP_ResetInfoReason(void) {
|
|
RESET_REASON reason = rtc_get_reset_reason(0);
|
|
if (POWERON_RESET == reason) { return REASON_DEFAULT_RST; }
|
|
if (SW_CPU_RESET == reason) { return REASON_SOFT_RESTART; }
|
|
if (DEEPSLEEP_RESET == reason) { return REASON_DEEP_SLEEP_AWAKE; }
|
|
if (SW_RESET == reason) { return REASON_EXT_SYS_RST; }
|
|
return -1; //no "official error code", but should work with the current code base
|
|
}
|
|
|
|
uint32_t ESP_getChipId(void) {
|
|
uint32_t id = 0;
|
|
for (uint32_t i = 0; i < 17; i = i +8) {
|
|
id |= ((ESP.getEfuseMac() >> (40 - i)) & 0xff) << i;
|
|
}
|
|
return id;
|
|
}
|
|
|
|
uint32_t ESP_getSketchSize(void) {
|
|
static uint32_t sketchsize = 0;
|
|
|
|
if (!sketchsize) {
|
|
sketchsize = ESP.getSketchSize(); // This takes almost 2 seconds on an ESP32
|
|
}
|
|
return sketchsize;
|
|
}
|
|
|
|
uint32_t ESP_getFreeHeap(void) {
|
|
// return ESP.getFreeHeap();
|
|
return ESP.getMaxAllocHeap();
|
|
}
|
|
|
|
uint32_t ESP_getMaxAllocHeap(void) {
|
|
// largest block of heap that can be allocated at once
|
|
uint32_t free_block_size = ESP.getMaxAllocHeap();
|
|
if (free_block_size > 100) { free_block_size -= 100; }
|
|
return free_block_size;
|
|
}
|
|
|
|
void ESP_Restart(void) {
|
|
ESP.restart();
|
|
}
|
|
|
|
uint32_t FlashWriteStartSector(void) {
|
|
// Needs to be on SPI_FLASH_MMU_PAGE_SIZE (= 0x10000) alignment for mmap usage
|
|
uint32_t aligned_address = ((EspFlashBaseAddress() + (2 * SPI_FLASH_MMU_PAGE_SIZE)) / SPI_FLASH_MMU_PAGE_SIZE) * SPI_FLASH_MMU_PAGE_SIZE;
|
|
return aligned_address / SPI_FLASH_SEC_SIZE;
|
|
}
|
|
|
|
uint32_t FlashWriteMaxSector(void) {
|
|
// Needs to be on SPI_FLASH_MMU_PAGE_SIZE (= 0x10000) alignment for mmap usage
|
|
uint32_t aligned_end_address = (EspFlashBaseEndAddress() / SPI_FLASH_MMU_PAGE_SIZE) * SPI_FLASH_MMU_PAGE_SIZE;
|
|
return aligned_end_address / SPI_FLASH_SEC_SIZE;
|
|
}
|
|
|
|
uint8_t* FlashDirectAccess(void) {
|
|
uint32_t address = FlashWriteStartSector() * SPI_FLASH_SEC_SIZE;
|
|
uint8_t* data = EspFlashMmap(address);
|
|
/*
|
|
AddLog_P(LOG_LEVEL_DEBUG, PSTR("DBG: Flash start address 0x%08X, Mmap address 0x%08X"), address, data);
|
|
|
|
uint8_t buf[32];
|
|
memcpy(buf, data, sizeof(buf));
|
|
AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t*)&buf, 32);
|
|
*/
|
|
return data;
|
|
}
|
|
|
|
#endif // ESP32
|