Tasmota/tasmota/xsns_12_ads1115.ino

315 lines
13 KiB
Python

/*
xsns_12_ads1115_ada.ino - ADS1115 A/D Converter support for Tasmota
Copyright (C) 2021 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_I2C
#ifdef USE_ADS1115
/*********************************************************************************************\
* ADS1115 - 4 channel 16BIT A/D converter
*
* Required library: none but based on Adafruit Industries ADS1015 library
*
* I2C Address: 0x48, 0x49, 0x4A or 0x4B
*
* The ADC input range (or gain) can be changed via the following
* defines, but be careful never to exceed VDD +0.3V max, or to
* exceed the upper and lower limits if you adjust the input range!
* Setting these values incorrectly may destroy your ADC!
* ADS1115
* -------
* ADS1115_REG_CONFIG_PGA_6_144V // 2/3x gain +/- 6.144V 1 bit = 0.1875mV (default)
* ADS1115_REG_CONFIG_PGA_4_096V // 1x gain +/- 4.096V 1 bit = 0.125mV
* ADS1115_REG_CONFIG_PGA_2_048V // 2x gain +/- 2.048V 1 bit = 0.0625mV
* ADS1115_REG_CONFIG_PGA_1_024V // 4x gain +/- 1.024V 1 bit = 0.03125mV
* ADS1115_REG_CONFIG_PGA_0_512V // 8x gain +/- 0.512V 1 bit = 0.015625mV
* ADS1115_REG_CONFIG_PGA_0_256V // 16x gain +/- 0.256V 1 bit = 0.0078125mV
\*********************************************************************************************/
#define XSNS_12 12
#define XI2C_13 13 // See I2CDEVICES.md
#define ADS1115_ADDRESS_ADDR_GND 0x48 // address pin low (GND)
#define ADS1115_ADDRESS_ADDR_VDD 0x49 // address pin high (VCC)
#define ADS1115_ADDRESS_ADDR_SDA 0x4A // address pin tied to SDA pin
#define ADS1115_ADDRESS_ADDR_SCL 0x4B // address pin tied to SCL pin
#define ADS1115_CONVERSIONDELAY (8) // CONVERSION DELAY (in mS)
/*======================================================================
POINTER REGISTER
-----------------------------------------------------------------------*/
#define ADS1115_REG_POINTER_MASK (0x03)
#define ADS1115_REG_POINTER_CONVERT (0x00)
#define ADS1115_REG_POINTER_CONFIG (0x01)
#define ADS1115_REG_POINTER_LOWTHRESH (0x02)
#define ADS1115_REG_POINTER_HITHRESH (0x03)
/*======================================================================
CONFIG REGISTER
-----------------------------------------------------------------------*/
#define ADS1115_REG_CONFIG_OS_MASK (0x8000)
#define ADS1115_REG_CONFIG_OS_SINGLE (0x8000) // Write: Set to start a single-conversion
#define ADS1115_REG_CONFIG_OS_BUSY (0x0000) // Read: Bit = 0 when conversion is in progress
#define ADS1115_REG_CONFIG_OS_NOTBUSY (0x8000) // Read: Bit = 1 when device is not performing a conversion
#define ADS1115_REG_CONFIG_MUX_MASK (0x7000)
#define ADS1115_REG_CONFIG_MUX_DIFF_0_1 (0x0000) // Differential P = AIN0, N = AIN1 (default)
#define ADS1115_REG_CONFIG_MUX_DIFF_0_3 (0x1000) // Differential P = AIN0, N = AIN3
#define ADS1115_REG_CONFIG_MUX_DIFF_1_3 (0x2000) // Differential P = AIN1, N = AIN3
#define ADS1115_REG_CONFIG_MUX_DIFF_2_3 (0x3000) // Differential P = AIN2, N = AIN3
#define ADS1115_REG_CONFIG_MUX_SINGLE_0 (0x4000) // Single-ended AIN0
#define ADS1115_REG_CONFIG_MUX_SINGLE_1 (0x5000) // Single-ended AIN1
#define ADS1115_REG_CONFIG_MUX_SINGLE_2 (0x6000) // Single-ended AIN2
#define ADS1115_REG_CONFIG_MUX_SINGLE_3 (0x7000) // Single-ended AIN3
#define ADS1115_REG_CONFIG_PGA_MASK (0x0E00)
#define ADS1115_REG_CONFIG_PGA_6_144V (0x0000) // +/-6.144V range = Gain 2/3 (default)
#define ADS1115_REG_CONFIG_PGA_4_096V (0x0200) // +/-4.096V range = Gain 1
#define ADS1115_REG_CONFIG_PGA_2_048V (0x0400) // +/-2.048V range = Gain 2
#define ADS1115_REG_CONFIG_PGA_1_024V (0x0600) // +/-1.024V range = Gain 4
#define ADS1115_REG_CONFIG_PGA_0_512V (0x0800) // +/-0.512V range = Gain 8
#define ADS1115_REG_CONFIG_PGA_0_256V (0x0A00) // +/-0.256V range = Gain 16
#define ADS1115_REG_CONFIG_MODE_MASK (0x0100)
#define ADS1115_REG_CONFIG_MODE_CONTIN (0x0000) // Continuous conversion mode
#define ADS1115_REG_CONFIG_MODE_SINGLE (0x0100) // Power-down single-shot mode (default)
#define ADS1115_REG_CONFIG_DR_MASK (0x00E0)
#define ADS1115_REG_CONFIG_DR_128SPS (0x0000) // 128 samples per second
#define ADS1115_REG_CONFIG_DR_250SPS (0x0020) // 250 samples per second
#define ADS1115_REG_CONFIG_DR_490SPS (0x0040) // 490 samples per second
#define ADS1115_REG_CONFIG_DR_920SPS (0x0060) // 920 samples per second
#define ADS1115_REG_CONFIG_DR_1600SPS (0x0080) // 1600 samples per second (default)
#define ADS1115_REG_CONFIG_DR_2400SPS (0x00A0) // 2400 samples per second
#define ADS1115_REG_CONFIG_DR_3300SPS (0x00C0) // 3300 samples per second
#define ADS1115_REG_CONFIG_DR_6000SPS (0x00E0) // 6000 samples per second
#define ADS1115_REG_CONFIG_CMODE_MASK (0x0010)
#define ADS1115_REG_CONFIG_CMODE_TRAD (0x0000) // Traditional comparator with hysteresis (default)
#define ADS1115_REG_CONFIG_CMODE_WINDOW (0x0010) // Window comparator
#define ADS1115_REG_CONFIG_CPOL_MASK (0x0008)
#define ADS1115_REG_CONFIG_CPOL_ACTVLOW (0x0000) // ALERT/RDY pin is low when active (default)
#define ADS1115_REG_CONFIG_CPOL_ACTVHI (0x0008) // ALERT/RDY pin is high when active
#define ADS1115_REG_CONFIG_CLAT_MASK (0x0004) // Determines if ALERT/RDY pin latches once asserted
#define ADS1115_REG_CONFIG_CLAT_NONLAT (0x0000) // Non-latching comparator (default)
#define ADS1115_REG_CONFIG_CLAT_LATCH (0x0004) // Latching comparator
#define ADS1115_REG_CONFIG_CQUE_MASK (0x0003)
#define ADS1115_REG_CONFIG_CQUE_1CONV (0x0000) // Assert ALERT/RDY after one conversions
#define ADS1115_REG_CONFIG_CQUE_2CONV (0x0001) // Assert ALERT/RDY after two conversions
#define ADS1115_REG_CONFIG_CQUE_4CONV (0x0002) // Assert ALERT/RDY after four conversions
#define ADS1115_REG_CONFIG_CQUE_NONE (0x0003) // Disable the comparator and put ALERT/RDY in high state (default)
struct ADS1115 {
uint8_t count = 0;
uint8_t address;
uint8_t addresses[4] = { ADS1115_ADDRESS_ADDR_GND, ADS1115_ADDRESS_ADDR_VDD, ADS1115_ADDRESS_ADDR_SDA, ADS1115_ADDRESS_ADDR_SCL };
uint8_t found[4] = {false,false,false,false};
int16_t last_values[4][4] = {{0,0,0,0},{0,0,0,0},{0,0,0,0},{0,0,0,0}};
} Ads1115;
//Ads1115StartComparator(channel, ADS1115_REG_CONFIG_MODE_SINGLE);
//Ads1115StartComparator(channel, ADS1115_REG_CONFIG_MODE_CONTIN);
void Ads1115StartComparator(uint8_t channel, uint16_t mode)
{
// Start with default values
uint16_t config = mode |
ADS1115_REG_CONFIG_CQUE_NONE | // Comparator enabled and asserts on 1 match
ADS1115_REG_CONFIG_CLAT_NONLAT | // Non Latching mode
ADS1115_REG_CONFIG_PGA_6_144V | // ADC Input voltage range (Gain)
ADS1115_REG_CONFIG_CPOL_ACTVLOW | // Alert/Rdy active low (default val)
ADS1115_REG_CONFIG_CMODE_TRAD | // Traditional comparator (default val)
ADS1115_REG_CONFIG_DR_6000SPS; // 6000 samples per second
// Set single-ended input channel
config |= (ADS1115_REG_CONFIG_MUX_SINGLE_0 + (0x1000 * channel));
// Write config register to the ADC
I2cWrite16(Ads1115.address, ADS1115_REG_POINTER_CONFIG, config);
}
int16_t Ads1115GetConversion(uint8_t channel)
{
Ads1115StartComparator(channel, ADS1115_REG_CONFIG_MODE_SINGLE);
// Wait for the conversion to complete
delay(ADS1115_CONVERSIONDELAY);
// Read the conversion results
I2cRead16(Ads1115.address, ADS1115_REG_POINTER_CONVERT);
Ads1115StartComparator(channel, ADS1115_REG_CONFIG_MODE_CONTIN);
delay(ADS1115_CONVERSIONDELAY);
// Read the conversion results
uint16_t res = I2cRead16(Ads1115.address, ADS1115_REG_POINTER_CONVERT);
return (int16_t)res;
}
/********************************************************************************************/
void Ads1115Detect(void)
{
for (uint32_t i = 0; i < sizeof(Ads1115.addresses); i++) {
if (!Ads1115.found[i]) {
Ads1115.address = Ads1115.addresses[i];
if (!I2cSetDevice(Ads1115.address)) { continue; }
uint16_t buffer;
if (I2cValidRead16(&buffer, Ads1115.address, ADS1115_REG_POINTER_CONVERT) &&
I2cValidRead16(&buffer, Ads1115.address, ADS1115_REG_POINTER_CONFIG)) {
Ads1115StartComparator(i, ADS1115_REG_CONFIG_MODE_CONTIN);
I2cSetActiveFound(Ads1115.address, "ADS1115");
Ads1115.found[i] = 1;
Ads1115.count++;
}
}
}
}
// Create the identifier of the the selected sensor
void Ads1115Label(char* label, uint32_t maxsize, uint8_t address) {
if (1 == Ads1115.count) {
// "ADS1115":{"A0":3240,"A1":3235,"A2":3269,"A3":3269}
snprintf_P(label, maxsize, PSTR("ADS1115"));
} else {
// "ADS1115-48":{"A0":3240,"A1":3235,"A2":3269,"A3":3269},"ADS1115-49":{"A0":3240,"A1":3235,"A2":3269,"A3":3269}
snprintf_P(label, maxsize, PSTR("ADS1115%c%02x"), IndexSeparator(), address);
}
}
#ifdef USE_RULES
// Check every 250ms if there are relevant changes in any of the analog inputs
// and if so then trigger a message
void AdsEvery250ms(void)
{
int16_t value;
for (uint32_t t = 0; t < sizeof(Ads1115.addresses); t++) {
if (Ads1115.found[t]) {
uint8_t old_address = Ads1115.address;
Ads1115.address = Ads1115.addresses[t];
// collect first wich addresses have changed. We can save on rule processing this way
uint32_t changed = 0;
for (uint32_t i = 0; i < 4; i++) {
value = Ads1115GetConversion(i);
// Check if value has changed more than 1 percent from last stored value
// we assume that gain is set up correctly, and we could use the whole 16bit result space
if (value >= Ads1115.last_values[t][i] + 327 || value <= Ads1115.last_values[t][i] - 327) {
Ads1115.last_values[t][i] = value;
bitSet(changed, i);
}
}
Ads1115.address = old_address;
if (changed) {
char label[15];
Ads1115Label(label, sizeof(label), Ads1115.addresses[t]);
Response_P(PSTR("{\"%s\":{"), label);
bool first = true;
for (uint32_t i = 0; i < 4; i++) {
if (bitRead(changed, i)) {
ResponseAppend_P(PSTR("%s\"A%ddiv10\":%d"), (first) ? "" : ",", i, Ads1115.last_values[t][i]);
first = false;
}
}
ResponseJsonEndEnd();
XdrvRulesProcess(0);
}
}
}
}
#endif // USE_RULES
void Ads1115Show(bool json)
{
int16_t values[4];
for (uint32_t t = 0; t < sizeof(Ads1115.addresses); t++) {
//AddLog(LOG_LEVEL_INFO, "Logging ADS1115 %02x", Ads1115.addresses[t]);
if (Ads1115.found[t]) {
uint8_t old_address = Ads1115.address;
Ads1115.address = Ads1115.addresses[t];
for (uint32_t i = 0; i < 4; i++) {
values[i] = Ads1115GetConversion(i);
//AddLog(LOG_LEVEL_INFO, "Logging ADS1115 %02x (%i) = %i", Ads1115.address, i, values[i] );
}
Ads1115.address = old_address;
char label[15];
Ads1115Label(label, sizeof(label), Ads1115.addresses[t]);
if (json) {
ResponseAppend_P(PSTR(",\"%s\":{"), label);
for (uint32_t i = 0; i < 4; i++) {
ResponseAppend_P(PSTR("%s\"A%d\":%d"), (0 == i) ? "" : ",", i, values[i]);
}
ResponseJsonEnd();
}
#ifdef USE_WEBSERVER
else {
for (uint32_t i = 0; i < 4; i++) {
WSContentSend_PD(HTTP_SNS_ANALOG, label, i, values[i]);
}
}
#endif // USE_WEBSERVER
}
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns12(uint8_t function)
{
if (!I2cEnabled(XI2C_13)) { return false; }
bool result = false;
if (FUNC_INIT == function) {
Ads1115Detect();
}
else if (Ads1115.count) {
switch (function) {
#ifdef USE_RULES
case FUNC_EVERY_250_MSECOND:
AdsEvery250ms();
break;
#endif // USE_RULES
case FUNC_JSON_APPEND:
Ads1115Show(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
Ads1115Show(0);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_ADS1115
#endif // USE_I2C