Tasmota/sonoff/xsns_02_analog.ino

158 lines
4.2 KiB
C++

/*
xsns_02_analog.ino - ESP8266 ADC support for Sonoff-Tasmota
Copyright (C) 2019 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef USE_ADC_VCC
/*********************************************************************************************\
* ADC support
\*********************************************************************************************/
#define XSNS_02 2
#define TO_CELSIUS(x) ((x) - 273.15)
#define TO_KELVIN(x) ((x) + 273.15)
// Parameters for Steinhart-Hart equation
#define ANALOG_V33 3.3 // ESP8266 Analog voltage
#define ANALOG_T0 TO_KELVIN(25.0) // 25 degrees Celcius in Kelvin (= 298.15)
// Shelly 2.5 thermistor
#define ANALOG_R21 32000.0 // Voltage bridge resistor
#define ANALOG_R0 10000.0 // Thermistor resistance
#define ANALOG_B 3350.0 // Thermistor Beta Coefficient
uint16_t adc_last_value = 0;
float adc_temp = 0;
uint16_t AdcRead(uint8_t factor)
{
// factor 1 = 2 samples
// factor 2 = 4 samples
// factor 3 = 8 samples
// factor 4 = 16 samples
// factor 5 = 32 samples
uint8_t samples = 1 << factor;
uint16_t analog = 0;
for (uint8_t i = 0; i < samples; i++) {
analog += analogRead(A0);
delay(1);
}
analog >>= factor;
return analog;
}
#ifdef USE_RULES
void AdcEvery250ms(void)
{
if (my_module_flag.adc0) {
uint16_t new_value = AdcRead(5);
if ((new_value < adc_last_value -10) || (new_value > adc_last_value +10)) {
adc_last_value = new_value;
uint16_t value = adc_last_value / 10;
Response_P(PSTR("{\"ANALOG\":{\"A0div10\":%d}}"), (value > 99) ? 100 : value);
XdrvRulesProcess();
}
}
}
#endif // USE_RULES
void AdcEverySecond(void)
{
if (my_module_flag.adc0_temp) {
int adc = AdcRead(2);
// Steinhart-Hart equation for thermistor as temperature sensor
double Rt = (adc * ANALOG_R21) / (1024.0 * ANALOG_V33 - (double)adc);
double T = ANALOG_B / (ANALOG_B/ANALOG_T0 + log(Rt/ANALOG_R0));
adc_temp = ConvertTemp(TO_CELSIUS(T));
}
}
float AdcTemperature(void)
{
return adc_temp;
}
void AdcShow(bool json)
{
if (my_module_flag.adc0) {
uint16_t analog = AdcRead(5);
if (json) {
ResponseAppend_P(PSTR(",\"ANALOG\":{\"A0\":%d}"), analog);
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_ANALOG, "", 0, analog);
#endif // USE_WEBSERVER
}
}
if (my_module_flag.adc0_temp) {
char temperature[33];
dtostrfd(adc_temp, Settings.flag2.temperature_resolution, temperature);
if (json) {
ResponseAppend_P(JSON_SNS_TEMP, "ANALOG", temperature);
#ifdef USE_DOMOTICZ
if (0 == tele_period) {
DomoticzSensor(DZ_TEMP, temperature);
}
#endif // USE_DOMOTICZ
#ifdef USE_KNX
if (0 == tele_period) {
KnxSensor(KNX_TEMPERATURE, temp);
}
#endif // USE_KNX
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_TEMP, "", temperature, TempUnit());
#endif // USE_WEBSERVER
}
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns02(uint8_t function)
{
bool result = false;
if (my_module_flag.adc0 || my_module_flag.adc0_temp) {
switch (function) {
#ifdef USE_RULES
case FUNC_EVERY_250_MSECOND:
AdcEvery250ms();
break;
#endif // USE_RULES
case FUNC_EVERY_SECOND:
AdcEverySecond();
break;
case FUNC_JSON_APPEND:
AdcShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
AdcShow(0);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_ADC_VCC