Tasmota/tasmota/support.ino

2419 lines
71 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
support.ino - support for Tasmota
Copyright (C) 2021 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
extern "C" {
extern struct rst_info resetInfo;
}
/*********************************************************************************************\
* Watchdog extension (https://github.com/esp8266/Arduino/issues/1532)
\*********************************************************************************************/
#include <Ticker.h>
Ticker tickerOSWatch;
const uint32_t OSWATCH_RESET_TIME = 120;
static unsigned long oswatch_last_loop_time;
uint8_t oswatch_blocked_loop = 0;
#ifndef USE_WS2812_DMA // Collides with Neopixelbus but solves exception
//void OsWatchTicker() IRAM_ATTR;
#endif // USE_WS2812_DMA
#ifdef USE_KNX
bool knx_started = false;
#endif // USE_KNX
void OsWatchTicker(void)
{
uint32_t t = millis();
uint32_t last_run = t - oswatch_last_loop_time;
#ifdef DEBUG_THEO
int32_t rssi = WiFi.RSSI();
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_OSWATCH " FreeRam %d, rssi %d %% (%d dBm), last_run %d"), ESP_getFreeHeap(), WifiGetRssiAsQuality(rssi), rssi, last_run);
#endif // DEBUG_THEO
if (last_run >= (OSWATCH_RESET_TIME * 1000)) {
// AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_OSWATCH " " D_BLOCKED_LOOP ". " D_RESTARTING)); // Save iram space
RtcSettings.oswatch_blocked_loop = 1;
RtcSettingsSave();
// ESP.restart(); // normal reboot
// ESP.reset(); // hard reset
// Force an exception to get a stackdump
// ESP32: Guru Meditation Error: Core 0 panic'ed (LoadProhibited). Exception was unhandled.
volatile uint32_t dummy;
dummy = *((uint32_t*) 0x00000000);
(void)dummy; // avoid compiler warning
}
}
void OsWatchInit(void)
{
oswatch_blocked_loop = RtcSettings.oswatch_blocked_loop;
RtcSettings.oswatch_blocked_loop = 0;
oswatch_last_loop_time = millis();
tickerOSWatch.attach_ms(((OSWATCH_RESET_TIME / 3) * 1000), OsWatchTicker);
}
void OsWatchLoop(void)
{
oswatch_last_loop_time = millis();
// while(1) delay(1000); // this will trigger the os watch
}
bool OsWatchBlockedLoop(void)
{
return oswatch_blocked_loop;
}
uint32_t ResetReason(void)
{
/*
user_interface.h
REASON_DEFAULT_RST = 0, // "Power on" normal startup by power on
REASON_WDT_RST = 1, // "Hardware Watchdog" hardware watch dog reset
REASON_EXCEPTION_RST = 2, // "Exception" exception reset, GPIO status wont change
REASON_SOFT_WDT_RST = 3, // "Software Watchdog" software watch dog reset, GPIO status wont change
REASON_SOFT_RESTART = 4, // "Software/System restart" software restart ,system_restart , GPIO status wont change
REASON_DEEP_SLEEP_AWAKE = 5, // "Deep-Sleep Wake" wake up from deep-sleep
REASON_EXT_SYS_RST = 6 // "External System" external system reset
*/
return ESP_ResetInfoReason();
}
String GetResetReason(void)
{
if (oswatch_blocked_loop) {
char buff[32];
strncpy_P(buff, PSTR(D_JSON_BLOCKED_LOOP), sizeof(buff));
return String(buff);
} else {
return ESP_getResetReason();
}
}
#ifdef ESP32
/*********************************************************************************************\
* ESP32 AutoMutex
\*********************************************************************************************/
//////////////////////////////////////////
// automutex.
// create a mute in your driver with:
// void *mutex = nullptr;
//
// then protect any function with
// TasAutoMutex m(&mutex, "somename");
// - mutex is automatically initialised if not already intialised.
// - it will be automagically released when the function is over.
// - the same thread can take multiple times (recursive).
// - advanced options m.give() and m.take() allow you fine control within a function.
// - if take=false at creat, it will not be initially taken.
// - name is used in serial log of mutex deadlock.
// - maxWait in ticks is how long it will wait before failing in a deadlock scenario (and then emitting on serial)
class TasAutoMutex {
SemaphoreHandle_t mutex;
bool taken;
int maxWait;
const char *name;
public:
TasAutoMutex(void ** mutex, const char *name = "", int maxWait = 40, bool take=true);
~TasAutoMutex();
void give();
void take();
static void init(void ** ptr);
};
//////////////////////////////////////////
TasAutoMutex::TasAutoMutex(void **mutex, const char *name, int maxWait, bool take) {
if (mutex) {
if (!(*mutex)){
TasAutoMutex::init(mutex);
}
this->mutex = (SemaphoreHandle_t)*mutex;
this->maxWait = maxWait;
this->name = name;
if (take) {
this->taken = xSemaphoreTakeRecursive(this->mutex, this->maxWait);
if (!this->taken){
Serial.printf("\r\nMutexfail %s\r\n", this->name);
}
}
} else {
this->mutex = (SemaphoreHandle_t)nullptr;
}
}
TasAutoMutex::~TasAutoMutex() {
if (this->mutex) {
if (this->taken) {
xSemaphoreGiveRecursive(this->mutex);
this->taken = false;
}
}
}
void TasAutoMutex::init(void ** ptr) {
SemaphoreHandle_t mutex = xSemaphoreCreateRecursiveMutex();
(*ptr) = (void *) mutex;
// needed, else for ESP8266 as we will initialis more than once in logging
// (*ptr) = (void *) 1;
}
void TasAutoMutex::give() {
if (this->mutex) {
if (this->taken) {
xSemaphoreGiveRecursive(this->mutex);
this->taken= false;
}
}
}
void TasAutoMutex::take() {
if (this->mutex) {
if (!this->taken) {
this->taken = xSemaphoreTakeRecursive(this->mutex, this->maxWait);
if (!this->taken){
Serial.printf("\r\nMutexfail %s\r\n", this->name);
}
}
}
}
#endif // ESP32
/*********************************************************************************************\
* Miscellaneous
\*********************************************************************************************/
/*
String GetBinary(const void* ptr, size_t count) {
uint32_t value = *(uint32_t*)ptr;
value <<= (32 - count);
String result;
result.reserve(count + 1);
for (uint32_t i = 0; i < count; i++) {
result += (value &0x80000000) ? '1' : '0';
value <<= 1;
}
return result;
}
*/
String GetBinary8(uint8_t value, size_t count) {
if (count > 8) { count = 8; }
value <<= (8 - count);
String result;
result.reserve(count + 1);
for (uint32_t i = 0; i < count; i++) {
result += (value &0x80) ? '1' : '0';
value <<= 1;
}
return result;
}
// Get span until single character in string
size_t strchrspn(const char *str1, int character)
{
size_t ret = 0;
char *start = (char*)str1;
char *end = strchr(str1, character);
if (end) ret = end - start;
return ret;
}
uint32_t ChrCount(const char *str, const char *delim) {
uint32_t count = 0;
char* read = (char*)str;
char ch = '.';
while (ch != '\0') {
ch = *read++;
if (ch == *delim) { count++; }
}
return count;
}
uint32_t ArgC(void) {
return (XdrvMailbox.data_len > 0) ? ChrCount(XdrvMailbox.data, ",") +1 : 0;
}
// Function to return a substring defined by a delimiter at an index
char* subStr(char* dest, char* str, const char *delim, int index) {
char* write = dest;
char* read = str;
char ch = '.';
while (index && (ch != '\0')) {
ch = *read++;
if (strchr(delim, ch)) {
index--;
if (index) { write = dest; }
} else {
*write++ = ch;
}
}
*write = '\0';
dest = Trim(dest);
return dest;
}
char* ArgV(char* dest, int index) {
return subStr(dest, XdrvMailbox.data, ",", index);
}
uint32_t ArgVul(uint32_t *args, uint32_t count) {
uint32_t argc = ArgC();
if (argc > count) { argc = count; }
count = argc;
if (argc) {
char argument[XdrvMailbox.data_len];
for (uint32_t i = 0; i < argc; i++) {
if (strlen(ArgV(argument, i +1))) {
args[i] = strtoul(argument, nullptr, 0);
} else {
count--;
}
}
}
return count;
}
uint32_t ParseParameters(uint32_t count, uint32_t *params) {
// Destroys XdrvMailbox.data
char *p;
uint32_t i = 0;
for (char *str = strtok_r(XdrvMailbox.data, ", ", &p); str && i < count; str = strtok_r(nullptr, ", ", &p), i++) {
params[i] = strtoul(str, nullptr, 0);
}
return i;
}
float CharToFloat(const char *str)
{
// simple ascii to double, because atof or strtod are too large
char strbuf[24];
strlcpy(strbuf, str, sizeof(strbuf));
char *pt = strbuf;
if (*pt == '\0') { return 0.0; }
while ((*pt != '\0') && isblank(*pt)) { pt++; } // Trim leading spaces
signed char sign = 1;
if (*pt == '-') { sign = -1; }
if (*pt == '-' || *pt == '+') { pt++; } // Skip any sign
float left = 0;
if (*pt != '.') {
left = atoi(pt); // Get left part
while (isdigit(*pt)) { pt++; } // Skip number
}
float right = 0;
if (*pt == '.') {
pt++;
uint32_t max_decimals = 0;
while ((max_decimals < 8) && isdigit(pt[max_decimals])) { max_decimals++; }
pt[max_decimals] = '\0'; // Limit decimals to float max of 8
right = atoi(pt); // Decimal part
while (isdigit(*pt)) {
pt++;
right /= 10.0f;
}
}
float result = left + right;
if (sign < 0) {
return -result; // Add negative sign
}
return result;
}
int TextToInt(char *str)
{
char *p;
uint8_t radix = 10;
if ('#' == str[0]) {
radix = 16;
str++;
}
return strtol(str, &p, radix);
}
char* dtostrfd(double number, unsigned char prec, char *s)
{
if ((isnan(number)) || (isinf(number))) { // Fix for JSON output (https://stackoverflow.com/questions/1423081/json-left-out-infinity-and-nan-json-status-in-ecmascript)
strcpy_P(s, PSTR("null"));
return s;
} else {
return dtostrf(number, 1, prec, s);
}
}
char* Unescape(char* buffer, uint32_t* size)
{
uint8_t* read = (uint8_t*)buffer;
uint8_t* write = (uint8_t*)buffer;
int32_t start_size = *size;
int32_t end_size = *size;
uint8_t che = 0;
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t*)buffer, *size);
while (start_size > 0) {
uint8_t ch = *read++;
start_size--;
if (ch != '\\') {
*write++ = ch;
} else {
if (start_size > 0) {
uint8_t chi = *read++;
start_size--;
end_size--;
switch (chi) {
case '\\': che = '\\'; break; // 5C Backslash
case 'a': che = '\a'; break; // 07 Bell (Alert)
case 'b': che = '\b'; break; // 08 Backspace
case 'e': che = '\e'; break; // 1B Escape
case 'f': che = '\f'; break; // 0C Formfeed
case 'n': che = '\n'; break; // 0A Linefeed (Newline)
case 'r': che = '\r'; break; // 0D Carriage return
case 's': che = ' '; break; // 20 Space
case 't': che = '\t'; break; // 09 Horizontal tab
case 'v': che = '\v'; break; // 0B Vertical tab
case 'x': {
uint8_t* start = read;
che = (uint8_t)strtol((const char*)read, (char**)&read, 16);
start_size -= (uint16_t)(read - start);
end_size -= (uint16_t)(read - start);
break;
}
case '"': che = '\"'; break; // 22 Quotation mark
// case '?': che = '\?'; break; // 3F Question mark
default : {
che = chi;
*write++ = ch;
end_size++;
}
}
*write++ = che;
}
}
}
*size = end_size;
*write++ = 0; // add the end string pointer reference
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t*)buffer, *size);
return buffer;
}
char* RemoveSpace(char* p) {
// Remove white-space character (' ','\t','\n','\v','\f','\r')
char* write = p;
char* read = p;
char ch = '.';
while (ch != '\0') {
ch = *read++;
if (!isspace(ch)) {
*write++ = ch;
}
}
return p;
}
char* RemoveControlCharacter(char* p) {
// Remove control character (0x00 .. 0x1F and 0x7F)
char* write = p;
char* read = p;
char ch = '.';
while (ch != '\0') {
ch = *read++;
if (!iscntrl(ch)) {
*write++ = ch;
}
}
*write++ = '\0';
return p;
}
char* ReplaceChar(char* p, char find, char replace) {
char* write = (char*)p;
char* read = (char*)p;
char ch = '.';
while (ch != '\0') {
ch = *read++;
if (ch == find) {
ch = replace;
}
*write++ = ch;
}
return p;
}
char* ReplaceCommaWithDot(char* p) {
return ReplaceChar(p, ',', '.');
}
char* LowerCase(char* dest, const char* source)
{
char* write = dest;
const char* read = source;
char ch = '.';
while (ch != '\0') {
ch = *read++;
*write++ = tolower(ch);
}
return dest;
}
char* UpperCase(char* dest, const char* source)
{
char* write = dest;
const char* read = source;
char ch = '.';
while (ch != '\0') {
ch = *read++;
*write++ = toupper(ch);
}
return dest;
}
char* UpperCase_P(char* dest, const char* source)
{
char* write = dest;
const char* read = source;
char ch = '.';
while (ch != '\0') {
ch = pgm_read_byte(read++);
*write++ = toupper(ch);
}
return dest;
}
char* Trim(char* p)
{
if (*p != '\0') {
while ((*p != '\0') && isblank(*p)) { p++; } // Trim leading spaces
char* q = p + strlen(p) -1;
while ((q >= p) && isblank(*q)) { q--; } // Trim trailing spaces
q++;
*q = '\0';
}
return p;
}
String UrlEncode(const String& text) {
const char hex[] = "0123456789ABCDEF";
String encoded = "";
int len = text.length();
int i = 0;
while (i < len) {
char decodedChar = text.charAt(i++);
/*
if (('a' <= decodedChar && decodedChar <= 'z') ||
('A' <= decodedChar && decodedChar <= 'Z') ||
('0' <= decodedChar && decodedChar <= '9') ||
('=' == decodedChar)) {
encoded += decodedChar;
} else {
encoded += '%';
encoded += hex[decodedChar >> 4];
encoded += hex[decodedChar & 0xF];
}
*/
if ((' ' == decodedChar) || ('+' == decodedChar)) {
encoded += '%';
encoded += hex[decodedChar >> 4];
encoded += hex[decodedChar & 0xF];
} else {
encoded += decodedChar;
}
}
return encoded;
}
/*
char* RemoveAllSpaces(char* p)
{
// remove any white space from the base64
char *cursor = p;
uint32_t offset = 0;
while (1) {
*cursor = *(cursor + offset);
if ((' ' == *cursor) || ('\t' == *cursor) || ('\n' == *cursor)) { // if space found, remove this char until end of string
offset++;
} else {
if (0 == *cursor) { break; }
cursor++;
}
}
return p;
}
*/
char* NoAlNumToUnderscore(char* dest, const char* source)
{
char* write = dest;
const char* read = source;
char ch = '.';
while (ch != '\0') {
ch = *read++;
*write++ = (isalnum(ch) || ('\0' == ch)) ? ch : '_';
}
return dest;
}
char IndexSeparator(void)
{
/*
// 20 bytes more costly !?!
const char separators[] = { "-_" };
return separators[Settings.flag3.use_underscore];
*/
if (Settings.flag3.use_underscore) { // SetOption64 - Enable "_" instead of "-" as sensor index separator
return '_';
} else {
return '-';
}
}
void SetShortcutDefault(void)
{
if ('\0' != XdrvMailbox.data[0]) { // There must be at least one character in the buffer
XdrvMailbox.data[0] = '0' + SC_DEFAULT; // SC_CLEAR, SC_DEFAULT, SC_USER
XdrvMailbox.data[1] = '\0';
}
}
uint8_t Shortcut(void)
{
uint8_t result = 10;
if ('\0' == XdrvMailbox.data[1]) { // Only allow single character input for shortcut
if (('"' == XdrvMailbox.data[0]) || ('0' == XdrvMailbox.data[0])) {
result = SC_CLEAR;
} else {
result = atoi(XdrvMailbox.data); // 1 = SC_DEFAULT, 2 = SC_USER
if (0 == result) {
result = 10;
}
}
}
return result;
}
bool ValidIpAddress(const char* str)
{
IPAddress ip_address;
return ip_address.fromString(str);
}
bool ParseIPv4(uint32_t* addr, const char* str_p)
{
uint8_t *part = (uint8_t*)addr;
uint8_t i;
char str_r[strlen_P(str_p)+1];
char * str = &str_r[0];
strcpy_P(str, str_p);
*addr = 0;
for (i = 0; i < 4; i++) {
part[i] = strtoul(str, nullptr, 10); // Convert byte
str = strchr(str, '.');
if (str == nullptr || *str == '\0') {
break; // No more separators, exit
}
str++; // Point to next character after separator
}
return (3 == i);
}
// Function to parse & check if version_str is newer than our currently installed version.
bool NewerVersion(char* version_str)
{
uint32_t version = 0;
uint32_t i = 0;
char *str_ptr;
char version_dup[strlen(version_str) +1];
strncpy(version_dup, version_str, sizeof(version_dup)); // Duplicate the version_str as strtok_r will modify it.
// Loop through the version string, splitting on '.' seperators.
for (char *str = strtok_r(version_dup, ".", &str_ptr); str && i < sizeof(VERSION); str = strtok_r(nullptr, ".", &str_ptr), i++) {
int field = atoi(str);
// The fields in a version string can only range from 0-255.
if ((field < 0) || (field > 255)) {
return false;
}
// Shuffle the accumulated bytes across, and add the new byte.
version = (version << 8) + field;
// Check alpha delimiter after 1.2.3 only
if ((2 == i) && isalpha(str[strlen(str)-1])) {
field = str[strlen(str)-1] & 0x1f;
version = (version << 8) + field;
i++;
}
}
// A version string should have 2-4 fields. e.g. 1.2, 1.2.3, or 1.2.3a (= 1.2.3.1).
// If not, then don't consider it a valid version string.
if ((i < 2) || (i > sizeof(VERSION))) {
return false;
}
// Keep shifting the parsed version until we hit the maximum number of tokens.
// VERSION stores the major number of the version in the most significant byte of the uint32_t.
while (i < sizeof(VERSION)) {
version <<= 8;
i++;
}
// Now we should have a fully constructed version number in uint32_t form.
return (version > VERSION);
}
char* GetPowerDevice(char* dest, uint32_t idx, size_t size, uint32_t option)
{
strncpy_P(dest, S_RSLT_POWER, size); // POWER
if ((TasmotaGlobal.devices_present + option) > 1) {
char sidx[8];
snprintf_P(sidx, sizeof(sidx), PSTR("%d"), idx); // x
strncat(dest, sidx, size - strlen(dest) -1); // POWERx
}
return dest;
}
char* GetPowerDevice(char* dest, uint32_t idx, size_t size)
{
return GetPowerDevice(dest, idx, size, 0);
}
float ConvertTemp(float c)
{
float result = c;
TasmotaGlobal.global_update = TasmotaGlobal.uptime;
TasmotaGlobal.temperature_celsius = c;
if (!isnan(c) && Settings.flag.temperature_conversion) { // SetOption8 - Switch between Celsius or Fahrenheit
result = c * 1.8 + 32; // Fahrenheit
}
result = result + (0.1 * Settings.temp_comp);
return result;
}
float ConvertTempToCelsius(float c)
{
float result = c;
if (!isnan(c) && Settings.flag.temperature_conversion) { // SetOption8 - Switch between Celsius or Fahrenheit
result = (c - 32) / 1.8; // Celsius
}
result = result + (0.1 * Settings.temp_comp);
return result;
}
char TempUnit(void)
{
// SetOption8 - Switch between Celsius or Fahrenheit
return (Settings.flag.temperature_conversion) ? D_UNIT_FAHRENHEIT[0] : D_UNIT_CELSIUS[0];
}
float ConvertHumidity(float h)
{
float result = h;
TasmotaGlobal.global_update = TasmotaGlobal.uptime;
TasmotaGlobal.humidity = h;
result = result + (0.1 * Settings.hum_comp);
return result;
}
float CalcTempHumToDew(float t, float h)
{
if (isnan(h) || isnan(t)) { return NAN; }
if (Settings.flag.temperature_conversion) { // SetOption8 - Switch between Celsius or Fahrenheit
t = (t - 32) / 1.8; // Celsius
}
float gamma = TaylorLog(h / 100) + 17.62 * t / (243.5 + t);
float result = (243.5 * gamma / (17.62 - gamma));
if (Settings.flag.temperature_conversion) { // SetOption8 - Switch between Celsius or Fahrenheit
result = result * 1.8 + 32; // Fahrenheit
}
return result;
}
float ConvertPressure(float p)
{
float result = p;
TasmotaGlobal.global_update = TasmotaGlobal.uptime;
TasmotaGlobal.pressure_hpa = p;
if (!isnan(p) && Settings.flag.pressure_conversion) { // SetOption24 - Switch between hPa or mmHg pressure unit
result = p * 0.75006375541921; // mmHg
}
return result;
}
float ConvertPressureForSeaLevel(float pressure)
{
if (pressure == 0.0f)
return pressure;
return ConvertPressure((pressure / FastPrecisePow(1.0 - ((float)Settings.altitude / 44330.0f), 5.255f)) - 21.6f);
}
String PressureUnit(void)
{
return (Settings.flag.pressure_conversion) ? String(F(D_UNIT_MILLIMETER_MERCURY)) : String(F(D_UNIT_PRESSURE));
}
float ConvertSpeed(float s)
{
// Entry in m/s
return s * kSpeedConversionFactor[Settings.flag2.speed_conversion];
}
String SpeedUnit(void)
{
char speed[8];
return String(GetTextIndexed(speed, sizeof(speed), Settings.flag2.speed_conversion, kSpeedUnit));
}
void ResetGlobalValues(void)
{
if ((TasmotaGlobal.uptime - TasmotaGlobal.global_update) > GLOBAL_VALUES_VALID) { // Reset after 5 minutes
TasmotaGlobal.global_update = 0;
TasmotaGlobal.temperature_celsius = NAN;
TasmotaGlobal.humidity = 0.0f;
TasmotaGlobal.pressure_hpa = 0.0f;
}
}
uint32_t SqrtInt(uint32_t num)
{
if (num <= 1) {
return num;
}
uint32_t x = num / 2;
uint32_t y;
do {
y = (x + num / x) / 2;
if (y >= x) {
return x;
}
x = y;
} while (true);
}
uint32_t RoundSqrtInt(uint32_t num)
{
uint32_t s = SqrtInt(4 * num);
if (s & 1) {
s++;
}
return s / 2;
}
char* GetTextIndexed(char* destination, size_t destination_size, uint32_t index, const char* haystack)
{
// Returns empty string if not found
// Returns text of found
char* write = destination;
const char* read = haystack;
index++;
while (index--) {
size_t size = destination_size -1;
write = destination;
char ch = '.';
while ((ch != '\0') && (ch != '|')) {
ch = pgm_read_byte(read++);
if (size && (ch != '|')) {
*write++ = ch;
size--;
}
}
if (0 == ch) {
if (index) {
write = destination;
}
break;
}
}
*write = '\0';
return destination;
}
int GetCommandCode(char* destination, size_t destination_size, const char* needle, const char* haystack)
{
// Returns -1 of not found
// Returns index and command if found
int result = -1;
const char* read = haystack;
char* write = destination;
while (true) {
result++;
size_t size = destination_size -1;
write = destination;
char ch = '.';
while ((ch != '\0') && (ch != '|')) {
ch = pgm_read_byte(read++);
if (size && (ch != '|')) {
*write++ = ch;
size--;
}
}
*write = '\0';
if (!strcasecmp(needle, destination)) {
break;
}
if (0 == ch) {
result = -1;
break;
}
}
return result;
}
bool DecodeCommand(const char* haystack, void (* const MyCommand[])(void), const uint8_t *synonyms = nullptr);
bool DecodeCommand(const char* haystack, void (* const MyCommand[])(void), const uint8_t *synonyms) {
GetTextIndexed(XdrvMailbox.command, CMDSZ, 0, haystack); // Get prefix if available
int prefix_length = strlen(XdrvMailbox.command);
if (prefix_length) {
char prefix[prefix_length +1];
snprintf_P(prefix, sizeof(prefix), XdrvMailbox.topic); // Copy prefix part only
if (strcasecmp(prefix, XdrvMailbox.command)) {
return false; // Prefix not in command
}
}
size_t syn_count = synonyms ? pgm_read_byte(synonyms) : 0;
int command_code = GetCommandCode(XdrvMailbox.command + prefix_length, CMDSZ, XdrvMailbox.topic + prefix_length, haystack);
if (command_code > 0) { // Skip prefix
if (command_code > syn_count) {
// We passed the synonyms zone, it's a regular command
XdrvMailbox.command_code = command_code - 1 - syn_count;
MyCommand[XdrvMailbox.command_code]();
} else {
// We have a SetOption synonym
XdrvMailbox.index = pgm_read_byte(synonyms + command_code);
CmndSetoptionBase(0);
}
return true;
}
return false;
}
const char kOptions[] PROGMEM = "OFF|" D_OFF "|FALSE|" D_FALSE "|STOP|" D_STOP "|" D_CELSIUS "|" // 0
"ON|" D_ON "|TRUE|" D_TRUE "|START|" D_START "|" D_FAHRENHEIT "|" D_USER "|" // 1
"TOGGLE|" D_TOGGLE "|" D_ADMIN "|" // 2
"BLINK|" D_BLINK "|" // 3
"BLINKOFF|" D_BLINKOFF "|" // 4
"ALL" ; // 255
const uint8_t sNumbers[] PROGMEM = { 0,0,0,0,0,0,0,
1,1,1,1,1,1,1,1,
2,2,2,
3,3,
4,4,
255 };
int GetStateNumber(char *state_text)
{
char command[CMDSZ];
int state_number = GetCommandCode(command, sizeof(command), state_text, kOptions);
if (state_number >= 0) {
state_number = pgm_read_byte(sNumbers + state_number);
}
return state_number;
}
String GetSerialConfig(void) {
// Settings.serial_config layout
// b000000xx - 5, 6, 7 or 8 data bits
// b00000x00 - 1 or 2 stop bits
// b000xx000 - None, Even or Odd parity
const static char kParity[] PROGMEM = "NEOI";
char config[4];
config[0] = '5' + (Settings.serial_config & 0x3);
config[1] = pgm_read_byte(&kParity[(Settings.serial_config >> 3) & 0x3]);
config[2] = '1' + ((Settings.serial_config >> 2) & 0x1);
config[3] = '\0';
return String(config);
}
uint32_t GetSerialBaudrate(void) {
return (Serial.baudRate() / 300) * 300; // Fix ESP32 strange results like 115201
}
void SetSerialBegin(void) {
TasmotaGlobal.baudrate = Settings.baudrate * 300;
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_SERIAL "Set to %s %d bit/s"), GetSerialConfig().c_str(), TasmotaGlobal.baudrate);
Serial.flush();
#ifdef ESP8266
Serial.begin(TasmotaGlobal.baudrate, (SerialConfig)pgm_read_byte(kTasmotaSerialConfig + Settings.serial_config));
#endif // ESP8266
#ifdef ESP32
delay(10); // Allow time to cleanup queues - if not used hangs ESP32
Serial.end();
delay(10); // Allow time to cleanup queues - if not used hangs ESP32
uint32_t config = pgm_read_dword(kTasmotaSerialConfig + Settings.serial_config);
Serial.begin(TasmotaGlobal.baudrate, config);
#endif // ESP32
}
void SetSerialConfig(uint32_t serial_config) {
if (serial_config > TS_SERIAL_8O2) {
serial_config = TS_SERIAL_8N1;
}
if (serial_config != Settings.serial_config) {
Settings.serial_config = serial_config;
SetSerialBegin();
}
}
void SetSerialBaudrate(uint32_t baudrate) {
TasmotaGlobal.baudrate = baudrate;
Settings.baudrate = TasmotaGlobal.baudrate / 300;
if (GetSerialBaudrate() != TasmotaGlobal.baudrate) {
SetSerialBegin();
}
}
void SetSerial(uint32_t baudrate, uint32_t serial_config) {
Settings.flag.mqtt_serial = 0; // CMND_SERIALSEND and CMND_SERIALLOG
Settings.serial_config = serial_config;
TasmotaGlobal.baudrate = baudrate;
Settings.baudrate = TasmotaGlobal.baudrate / 300;
SetSeriallog(LOG_LEVEL_NONE);
SetSerialBegin();
}
void ClaimSerial(void) {
TasmotaGlobal.serial_local = true;
AddLog(LOG_LEVEL_INFO, PSTR("SNS: Hardware Serial"));
SetSeriallog(LOG_LEVEL_NONE);
TasmotaGlobal.baudrate = GetSerialBaudrate();
Settings.baudrate = TasmotaGlobal.baudrate / 300;
}
void SerialSendRaw(char *codes)
{
char *p;
char stemp[3];
uint8_t code;
int size = strlen(codes);
while (size > 1) {
strlcpy(stemp, codes, sizeof(stemp));
code = strtol(stemp, &p, 16);
Serial.write(code);
size -= 2;
codes += 2;
}
}
// values is a comma-delimited string: e.g. "72,101,108,108,111,32,87,111,114,108,100,33,10"
void SerialSendDecimal(char *values)
{
char *p;
uint8_t code;
for (char* str = strtok_r(values, ",", &p); str; str = strtok_r(nullptr, ",", &p)) {
code = (uint8_t)atoi(str);
Serial.write(code);
}
}
uint32_t GetHash(const char *buffer, size_t size)
{
uint32_t hash = 0;
for (uint32_t i = 0; i <= size; i++) {
hash += (uint8_t)*buffer++ * (i +1);
}
return hash;
}
void ShowSource(uint32_t source)
{
if ((source > 0) && (source < SRC_MAX)) {
char stemp1[20];
AddLog(LOG_LEVEL_DEBUG, PSTR("SRC: %s"), GetTextIndexed(stemp1, sizeof(stemp1), source, kCommandSource));
}
}
void WebHexCode(uint32_t i, const char* code)
{
char scolor[10];
strlcpy(scolor, code, sizeof(scolor));
char* p = scolor;
if ('#' == p[0]) { p++; } // Skip
if (3 == strlen(p)) { // Convert 3 character to 6 character color code
p[6] = p[3]; // \0
p[5] = p[2]; // 3
p[4] = p[2]; // 3
p[3] = p[1]; // 2
p[2] = p[1]; // 2
p[1] = p[0]; // 1
}
uint32_t color = strtol(p, nullptr, 16);
/*
if (3 == strlen(p)) { // Convert 3 character to 6 character color code
uint32_t w = ((color & 0xF00) << 8) | ((color & 0x0F0) << 4) | (color & 0x00F); // 00010203
color = w | (w << 4); // 00112233
}
*/
uint32_t j = sizeof(Settings.web_color) / 3; // First area contains j = 18 colors
/*
if (i < j) {
Settings.web_color[i][0] = (color >> 16) & 0xFF; // Red
Settings.web_color[i][1] = (color >> 8) & 0xFF; // Green
Settings.web_color[i][2] = color & 0xFF; // Blue
} else {
Settings.web_color2[i-j][0] = (color >> 16) & 0xFF; // Red
Settings.web_color2[i-j][1] = (color >> 8) & 0xFF; // Green
Settings.web_color2[i-j][2] = color & 0xFF; // Blue
}
*/
if (i >= j) {
// Calculate i to index in Settings.web_color2 - Dirty(!) but saves 128 bytes code
i += ((((uint8_t*)&Settings.web_color2 - (uint8_t*)&Settings.web_color) / 3) - j);
}
Settings.web_color[i][0] = (color >> 16) & 0xFF; // Red
Settings.web_color[i][1] = (color >> 8) & 0xFF; // Green
Settings.web_color[i][2] = color & 0xFF; // Blue
}
uint32_t WebColor(uint32_t i)
{
uint32_t j = sizeof(Settings.web_color) / 3; // First area contains j = 18 colors
/*
uint32_t tcolor = (i<j)? (Settings.web_color[i][0] << 16) | (Settings.web_color[i][1] << 8) | Settings.web_color[i][2] :
(Settings.web_color2[i-j][0] << 16) | (Settings.web_color2[i-j][1] << 8) | Settings.web_color2[i-j][2];
*/
if (i >= j) {
// Calculate i to index in Settings.web_color2 - Dirty(!) but saves 128 bytes code
i += ((((uint8_t*)&Settings.web_color2 - (uint8_t*)&Settings.web_color) / 3) - j);
}
uint32_t tcolor = (Settings.web_color[i][0] << 16) | (Settings.web_color[i][1] << 8) | Settings.web_color[i][2];
return tcolor;
}
/*********************************************************************************************\
* Response data handling
\*********************************************************************************************/
const uint16_t TIMESZ = 100; // Max number of characters in time string
char* ResponseGetTime(uint32_t format, char* time_str)
{
switch (format) {
case 1:
snprintf_P(time_str, TIMESZ, PSTR("{\"" D_JSON_TIME "\":\"%s\",\"Epoch\":%u"), GetDateAndTime(DT_LOCAL).c_str(), UtcTime());
break;
case 2:
snprintf_P(time_str, TIMESZ, PSTR("{\"" D_JSON_TIME "\":%u"), UtcTime());
break;
case 3:
snprintf_P(time_str, TIMESZ, PSTR("{\"" D_JSON_TIME "\":\"%s\""), GetDateAndTime(DT_LOCAL_MILLIS).c_str());
break;
default:
snprintf_P(time_str, TIMESZ, PSTR("{\"" D_JSON_TIME "\":\"%s\""), GetDateAndTime(DT_LOCAL).c_str());
}
return time_str;
}
void ResponseClear(void) {
TasmotaGlobal.mqtt_data[0] = '\0';
}
int Response_P(const char* format, ...) // Content send snprintf_P char data
{
// This uses char strings. Be aware of sending %% if % is needed
va_list args;
va_start(args, format);
int len = ext_vsnprintf_P(TasmotaGlobal.mqtt_data, sizeof(TasmotaGlobal.mqtt_data), format, args);
va_end(args);
return len;
}
int ResponseTime_P(const char* format, ...) // Content send snprintf_P char data
{
// This uses char strings. Be aware of sending %% if % is needed
va_list args;
va_start(args, format);
ResponseGetTime(Settings.flag2.time_format, TasmotaGlobal.mqtt_data);
int mlen = strlen(TasmotaGlobal.mqtt_data);
int len = ext_vsnprintf_P(TasmotaGlobal.mqtt_data + mlen, sizeof(TasmotaGlobal.mqtt_data) - mlen, format, args);
va_end(args);
return len + mlen;
}
int ResponseAppend_P(const char* format, ...) // Content send snprintf_P char data
{
// This uses char strings. Be aware of sending %% if % is needed
va_list args;
va_start(args, format);
int mlen = strlen(TasmotaGlobal.mqtt_data);
int len = ext_vsnprintf_P(TasmotaGlobal.mqtt_data + mlen, sizeof(TasmotaGlobal.mqtt_data) - mlen, format, args);
va_end(args);
return len + mlen;
}
int ResponseAppendTimeFormat(uint32_t format)
{
char time_str[TIMESZ];
return ResponseAppend_P(ResponseGetTime(format, time_str));
}
int ResponseAppendTime(void)
{
return ResponseAppendTimeFormat(Settings.flag2.time_format);
}
int ResponseAppendTHD(float f_temperature, float f_humidity)
{
float dewpoint = CalcTempHumToDew(f_temperature, f_humidity);
return ResponseAppend_P(PSTR("\"" D_JSON_TEMPERATURE "\":%*_f,\"" D_JSON_HUMIDITY "\":%*_f,\"" D_JSON_DEWPOINT "\":%*_f"),
Settings.flag2.temperature_resolution, &f_temperature,
Settings.flag2.humidity_resolution, &f_humidity,
Settings.flag2.temperature_resolution, &dewpoint);
}
int ResponseJsonEnd(void)
{
return ResponseAppend_P(PSTR("}"));
}
int ResponseJsonEndEnd(void)
{
return ResponseAppend_P(PSTR("}}"));
}
/*********************************************************************************************\
* GPIO Module and Template management
\*********************************************************************************************/
#ifdef ESP8266
uint16_t GpioConvert(uint8_t gpio) {
if (gpio >= nitems(kGpioConvert)) {
return AGPIO(GPIO_USER);
}
return pgm_read_word(kGpioConvert + gpio);
}
uint16_t Adc0Convert(uint8_t adc0) {
if (adc0 > 7) {
return AGPIO(GPIO_USER);
}
else if (0 == adc0) {
return GPIO_NONE;
}
return AGPIO(GPIO_ADC_INPUT + adc0 -1);
}
void TemplateConvert(uint8_t template8[], uint16_t template16[]) {
for (uint32_t i = 0; i < (sizeof(mytmplt) / 2) -2; i++) {
template16[i] = GpioConvert(template8[i]);
}
template16[(sizeof(mytmplt) / 2) -2] = Adc0Convert(template8[sizeof(mytmplt8285) -1]);
// AddLog(LOG_LEVEL_DEBUG, PSTR("FNC: TemplateConvert"));
// AddLogBuffer(LOG_LEVEL_DEBUG, template8, sizeof(mytmplt8285));
// AddLogBufferSize(LOG_LEVEL_DEBUG, (uint8_t*)template16, sizeof(mytmplt) / 2, 2);
}
void ConvertGpios(void) {
if (Settings.gpio16_converted != 0xF5A0) {
// Convert 8-bit user template
TemplateConvert((uint8_t*)&Settings.ex_user_template8, (uint16_t*)&Settings.user_template);
for (uint32_t i = 0; i < sizeof(Settings.ex_my_gp8.io); i++) {
Settings.my_gp.io[i] = GpioConvert(Settings.ex_my_gp8.io[i]);
}
Settings.my_gp.io[(sizeof(myio) / 2) -1] = Adc0Convert(Settings.ex_my_adc0);
Settings.gpio16_converted = 0xF5A0;
// AddLog(LOG_LEVEL_DEBUG, PSTR("FNC: ConvertGpios"));
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t *)&Settings.ex_my_gp8.io, sizeof(myio8));
// AddLogBufferSize(LOG_LEVEL_DEBUG, (uint8_t *)&Settings.my_gp.io, sizeof(myio) / 2, 2);
}
}
/*
void DumpConvertTable(void) {
bool jsflg = false;
uint32_t lines = 1;
for (uint32_t i = 0; i < nitems(kGpioConvert); i++) {
uint32_t data = pgm_read_word(kGpioConvert + i);
if (!jsflg) {
Response_P(PSTR("{\"GPIOConversion%d\":{"), lines);
} else {
ResponseAppend_P(PSTR(","));
}
jsflg = true;
if ((ResponseAppend_P(PSTR("\"%d\":\"%d\""), i, data) > (MAX_LOGSZ - TOPSZ)) || (i == nitems(kGpioConvert) -1)) {
ResponseJsonEndEnd();
MqttPublishPrefixTopic_P(RESULT_OR_STAT, XdrvMailbox.command);
jsflg = false;
lines++;
}
}
for (uint32_t i = 0; i < nitems(kAdcNiceList); i++) {
uint32_t data = pgm_read_word(kAdcNiceList + i);
if (!jsflg) {
Response_P(PSTR("{\"ADC0Conversion%d\":{"), lines);
} else {
ResponseAppend_P(PSTR(","));
}
jsflg = true;
if ((ResponseAppend_P(PSTR("\"%d\":\"%d\""), i, data) > (MAX_LOGSZ - TOPSZ)) || (i == nitems(kAdcNiceList) -1)) {
ResponseJsonEndEnd();
MqttPublishPrefixTopic_P(RESULT_OR_STAT, XdrvMailbox.command);
jsflg = false;
lines++;
}
}
ResponseClear();
}
*/
#endif // ESP8266
int IRAM_ATTR Pin(uint32_t gpio, uint32_t index = 0);
int IRAM_ATTR Pin(uint32_t gpio, uint32_t index) {
uint16_t real_gpio = gpio << 5;
uint16_t mask = 0xFFE0;
if (index < GPIO_ANY) {
real_gpio += index;
mask = 0xFFFF;
}
for (uint32_t i = 0; i < nitems(TasmotaGlobal.gpio_pin); i++) {
if ((TasmotaGlobal.gpio_pin[i] & mask) == real_gpio) {
return i; // Pin number configured for gpio
}
}
return -1; // No pin used for gpio
}
bool PinUsed(uint32_t gpio, uint32_t index = 0);
bool PinUsed(uint32_t gpio, uint32_t index) {
return (Pin(gpio, index) >= 0);
}
uint32_t GetPin(uint32_t lpin) {
if (lpin < nitems(TasmotaGlobal.gpio_pin)) {
return TasmotaGlobal.gpio_pin[lpin];
} else {
return GPIO_NONE;
}
}
void SetPin(uint32_t lpin, uint32_t gpio) {
TasmotaGlobal.gpio_pin[lpin] = gpio;
}
void DigitalWrite(uint32_t gpio_pin, uint32_t index, uint32_t state)
{
if (PinUsed(gpio_pin, index)) {
digitalWrite(Pin(gpio_pin, index), state &1);
}
}
uint8_t ModuleNr(void)
{
// 0 = User module (255)
// 1 up = Template module 0 up
return (USER_MODULE == Settings.module) ? 0 : Settings.module +1;
}
uint32_t ModuleTemplate(uint32_t module) {
uint32_t i = 0;
for (i = 0; i < sizeof(kModuleNiceList); i++) {
if (module == pgm_read_byte(kModuleNiceList + i)) {
break;
}
}
if (i == sizeof(kModuleNiceList)) { i = 0; }
return i;
}
bool ValidTemplateModule(uint32_t index)
{
for (uint32_t i = 0; i < sizeof(kModuleNiceList); i++) {
if (index == pgm_read_byte(kModuleNiceList + i)) {
return true;
}
}
return false;
}
bool ValidModule(uint32_t index)
{
if (index == USER_MODULE) { return true; }
return ValidTemplateModule(index);
}
bool ValidTemplate(const char *search) {
char template_name[strlen(SettingsText(SET_TEMPLATE_NAME)) +1];
char search_name[strlen(search) +1];
LowerCase(template_name, SettingsText(SET_TEMPLATE_NAME));
LowerCase(search_name, search);
return (strstr(template_name, search_name) != nullptr);
}
String AnyModuleName(uint32_t index)
{
if (USER_MODULE == index) {
return String(SettingsText(SET_TEMPLATE_NAME));
} else {
#ifdef ESP32
index = ModuleTemplate(index);
#endif
char name[TOPSZ];
return String(GetTextIndexed(name, sizeof(name), index, kModuleNames));
}
}
String ModuleName(void)
{
return AnyModuleName(Settings.module);
}
#ifdef ESP8266
void GetInternalTemplate(void* ptr, uint32_t module, uint32_t option) {
uint8_t module_template = pgm_read_byte(kModuleTemplateList + module);
// AddLog(LOG_LEVEL_DEBUG, PSTR("DBG: Template %d, Option %d"), module_template, option);
// template8 = GPIO 0,1,2,3,4,5,9,10,12,13,14,15,16,Adc
uint8_t template8[sizeof(mytmplt8285)] = { GPIO_NONE };
if (module_template < TMP_WEMOS) {
memcpy_P(&template8, &kModules8266[module_template], 6);
memcpy_P(&template8[8], &kModules8266[module_template].gp.io[6], 6);
} else {
memcpy_P(&template8, &kModules8285[module_template - TMP_WEMOS], sizeof(template8));
}
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t *)&template8, sizeof(mytmplt8285));
// template16 = GPIO 0,1,2,3,4,5,9,10,12,13,14,15,16,Adc,Flg
uint16_t template16[(sizeof(mytmplt) / 2)] = { GPIO_NONE };
TemplateConvert(template8, template16);
uint32_t index = 0;
uint32_t size = sizeof(mycfgio); // template16[module_template].gp
switch (option) {
case 2: {
index = (sizeof(mytmplt) / 2) -1; // template16[module_template].flag
size = 2;
break;
}
case 3: {
size = sizeof(mytmplt); // template16[module_template]
break;
}
}
memcpy(ptr, &template16[index], size);
// AddLog(LOG_LEVEL_DEBUG, PSTR("FNC: GetInternalTemplate option %d"), option);
// AddLogBufferSize(LOG_LEVEL_DEBUG, (uint8_t *)ptr, size / 2, 2);
}
#endif // ESP8266
void TemplateGpios(myio *gp)
{
uint16_t *dest = (uint16_t *)gp;
uint16_t src[nitems(Settings.user_template.gp.io)];
memset(dest, GPIO_NONE, sizeof(myio));
if (USER_MODULE == Settings.module) {
memcpy(&src, &Settings.user_template.gp, sizeof(mycfgio));
} else {
#ifdef ESP8266
GetInternalTemplate(&src, Settings.module, 1);
#endif // ESP8266
#ifdef ESP32
memcpy_P(&src, &kModules[ModuleTemplate(Settings.module)].gp, sizeof(mycfgio));
#endif // ESP32
}
// 11 85 00 85 85 00 00 00 15 38 85 00 00 81
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t *)&src, sizeof(mycfgio));
uint32_t j = 0;
for (uint32_t i = 0; i < nitems(Settings.user_template.gp.io); i++) {
if (6 == i) { j = 9; }
if (8 == i) { j = 12; }
dest[j] = src[i];
j++;
}
// 11 85 00 85 85 00 00 00 00 00 00 00 15 38 85 00 00 81
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t *)gp, sizeof(myio));
}
gpio_flag ModuleFlag(void)
{
gpio_flag flag;
if (USER_MODULE == Settings.module) {
flag = Settings.user_template.flag;
} else {
#ifdef ESP8266
GetInternalTemplate(&flag, Settings.module, 2);
#endif // ESP8266
#ifdef ESP32
memcpy_P(&flag, &kModules[ModuleTemplate(Settings.module)].flag, sizeof(gpio_flag));
#endif // ESP32
}
return flag;
}
void ModuleDefault(uint32_t module)
{
if (USER_MODULE == module) { module = WEMOS; } // Generic
Settings.user_template_base = module;
#ifdef ESP32
module = ModuleTemplate(module);
#endif
char name[TOPSZ];
SettingsUpdateText(SET_TEMPLATE_NAME, GetTextIndexed(name, sizeof(name), module, kModuleNames));
#ifdef ESP8266
GetInternalTemplate(&Settings.user_template, module, 3);
#endif // ESP8266
#ifdef ESP32
memcpy_P(&Settings.user_template, &kModules[module], sizeof(mytmplt));
#endif // ESP32
}
void SetModuleType(void)
{
TasmotaGlobal.module_type = (USER_MODULE == Settings.module) ? Settings.user_template_base : Settings.module;
}
bool FlashPin(uint32_t pin)
{
return (((pin > 5) && (pin < 9)) || (11 == pin));
}
uint32_t ValidPin(uint32_t pin, uint32_t gpio) {
if (FlashPin(pin)) {
return GPIO_NONE; // Disable flash pins GPIO6, GPIO7, GPIO8 and GPIO11
}
if ((WEMOS == Settings.module) && !Settings.flag3.user_esp8285_enable) { // SetOption51 - Enable ESP8285 user GPIO's
if ((9 == pin) || (10 == pin)) {
return GPIO_NONE; // Disable possible flash GPIO9 and GPIO10
}
}
return gpio;
}
bool ValidGPIO(uint32_t pin, uint32_t gpio) {
#ifdef ESP8266
#ifdef USE_ADC_VCC
if (ADC0_PIN == pin) { return false; } // ADC0 = GPIO17
#endif
#endif
return (GPIO_USER == ValidPin(pin, BGPIO(gpio))); // Only allow GPIO_USER pins
}
bool ValidSpiPinUsed(uint32_t gpio) {
// ESP8266: If SPI pin selected chk if it's not one of the three Hardware SPI pins (12..14)
bool result = false;
if (PinUsed(gpio)) {
int pin = Pin(gpio);
result = ((pin < 12) || (pin > 14));
}
return result;
}
bool JsonTemplate(char* dataBuf)
{
// Old: {"NAME":"Shelly 2.5","GPIO":[56,0,17,0,21,83,0,0,6,82,5,22,156],"FLAG":2,"BASE":18}
// New: {"NAME":"Shelly 2.5","GPIO":[320,0,32,0,224,193,0,0,640,192,608,225,3456,4736],"FLAG":0,"BASE":18}
// AddLog_P(LOG_LEVEL_DEBUG, PSTR("TPL: |%s|"), dataBuf);
if (strlen(dataBuf) < 9) { return false; } // Workaround exception if empty JSON like {} - Needs checks
JsonParser parser((char*) dataBuf);
JsonParserObject root = parser.getRootObject();
if (!root) { return false; }
// All parameters are optional allowing for partial changes
JsonParserToken val = root[PSTR(D_JSON_NAME)];
if (val) {
SettingsUpdateText(SET_TEMPLATE_NAME, val.getStr());
}
JsonParserArray arr = root[PSTR(D_JSON_GPIO)];
if (arr) {
#ifdef ESP8266
bool old_template = false;
uint8_t template8[sizeof(mytmplt8285)] = { GPIO_NONE };
if (13 == arr.size()) { // Possible old template
uint32_t gpio = 0;
for (uint32_t i = 0; i < nitems(template8) -1; i++) {
gpio = arr[i].getUInt();
if (gpio > 255) { // New templates might have values above 255
break;
}
template8[i] = gpio;
}
old_template = (gpio < 256);
}
if (old_template) {
AddLog(LOG_LEVEL_DEBUG, PSTR("TPL: Converting template ..."));
val = root[PSTR(D_JSON_FLAG)];
if (val) {
template8[nitems(template8) -1] = val.getUInt() & 0x0F;
}
TemplateConvert(template8, Settings.user_template.gp.io);
Settings.user_template.flag.data = 0;
} else {
#endif
for (uint32_t i = 0; i < nitems(Settings.user_template.gp.io); i++) {
JsonParserToken val = arr[i];
if (!val) { break; }
uint16_t gpio = val.getUInt();
if (gpio == (AGPIO(GPIO_NONE) +1)) {
gpio = AGPIO(GPIO_USER);
}
Settings.user_template.gp.io[i] = gpio;
}
val = root[PSTR(D_JSON_FLAG)];
if (val) {
Settings.user_template.flag.data = val.getUInt();
}
}
#ifdef ESP8266
}
#endif
val = root[PSTR(D_JSON_BASE)];
if (val) {
uint32_t base = val.getUInt();
if ((0 == base) || !ValidTemplateModule(base -1)) { base = 18; }
Settings.user_template_base = base -1; // Default WEMOS
}
// AddLog(LOG_LEVEL_DEBUG, PSTR("TPL: Converted"));
// AddLogBufferSize(LOG_LEVEL_DEBUG, (uint8_t*)&Settings.user_template, sizeof(Settings.user_template) / 2, 2);
return true;
}
void TemplateJson(void)
{
// AddLog(LOG_LEVEL_DEBUG, PSTR("TPL: Show"));
// AddLogBufferSize(LOG_LEVEL_DEBUG, (uint8_t*)&Settings.user_template, sizeof(Settings.user_template) / 2, 2);
Response_P(PSTR("{\"" D_JSON_NAME "\":\"%s\",\"" D_JSON_GPIO "\":["), SettingsText(SET_TEMPLATE_NAME));
for (uint32_t i = 0; i < nitems(Settings.user_template.gp.io); i++) {
uint16_t gpio = Settings.user_template.gp.io[i];
if (gpio == AGPIO(GPIO_USER)) {
gpio = AGPIO(GPIO_NONE) +1;
}
ResponseAppend_P(PSTR("%s%d"), (i>0)?",":"", gpio);
}
ResponseAppend_P(PSTR("],\"" D_JSON_FLAG "\":%d,\"" D_JSON_BASE "\":%d}"), Settings.user_template.flag, Settings.user_template_base +1);
}
#if ( defined(USE_SCRIPT) && defined(SUPPORT_MQTT_EVENT) ) || defined (USE_DT_VARS)
/*********************************************************************************************\
* Parse json paylod with path
\*********************************************************************************************/
// parser object, source keys, delimiter, float result or NULL, string result or NULL, string size
// return 1 if numeric 2 if string, else 0 = not found
uint32_t JsonParsePath(JsonParserObject *jobj, const char *spath, char delim, float *nres, char *sres, uint32_t slen) {
uint32_t res = 0;
const char *cp = spath;
#ifdef DEBUG_JSON_PARSE_PATH
AddLog(LOG_LEVEL_INFO, PSTR("JSON: parsing json key: %s from json: %s"), cp, jpath);
#endif
JsonParserObject obj = *jobj;
JsonParserObject lastobj = obj;
char selem[32];
uint8_t aindex = 0;
String value = "";
while (1) {
// read next element
for (uint32_t sp=0; sp<sizeof(selem)-1; sp++) {
if (!*cp || *cp==delim) {
selem[sp] = 0;
cp++;
break;
}
selem[sp] = *cp++;
}
#ifdef DEBUG_JSON_PARSE_PATH
AddLog(LOG_LEVEL_INFO, PSTR("JSON: cmp current key: %s"), selem);
#endif
// check for array
char *sp = strchr(selem,'[');
if (sp) {
*sp = 0;
aindex = atoi(sp+1);
}
// now check element
obj = obj[selem];
if (!obj.isValid()) {
#ifdef DEBUG_JSON_PARSE_PATH
AddLog(LOG_LEVEL_INFO, PSTR("JSON: obj invalid: %s"), selem);
#endif
JsonParserToken tok = lastobj[selem];
if (tok.isValid()) {
if (tok.isArray()) {
JsonParserArray array = JsonParserArray(tok);
value = array[aindex].getStr();
if (array.isNum()) {
if (nres) *nres=tok.getFloat();
res = 1;
} else {
res = 2;
}
} else {
value = tok.getStr();
if (tok.isNum()) {
if (nres) *nres=tok.getFloat();
res = 1;
} else {
res = 2;
}
}
}
#ifdef DEBUG_JSON_PARSE_PATH
AddLog(LOG_LEVEL_INFO, PSTR("JSON: token invalid: %s"), selem);
#endif
break;
}
if (obj.isObject()) {
lastobj = obj;
continue;
}
if (!*cp) break;
}
if (sres) {
strlcpy(sres,value.c_str(), slen);
}
return res;
}
#endif // USE_SCRIPT
/*********************************************************************************************\
* Sleep aware time scheduler functions borrowed from ESPEasy
\*********************************************************************************************/
inline int32_t TimeDifference(uint32_t prev, uint32_t next)
{
return ((int32_t) (next - prev));
}
int32_t TimePassedSince(uint32_t timestamp)
{
// Compute the number of milliSeconds passed since timestamp given.
// Note: value can be negative if the timestamp has not yet been reached.
return TimeDifference(timestamp, millis());
}
bool TimeReached(uint32_t timer)
{
// Check if a certain timeout has been reached.
const long passed = TimePassedSince(timer);
return (passed >= 0);
}
void SetNextTimeInterval(uint32_t& timer, const uint32_t step)
{
timer += step;
const long passed = TimePassedSince(timer);
if (passed < 0) { return; } // Event has not yet happened, which is fine.
if (static_cast<unsigned long>(passed) > step) {
// No need to keep running behind, start again.
timer = millis() + step;
return;
}
// Try to get in sync again.
timer = millis() + (step - passed);
}
int32_t TimePassedSinceUsec(uint32_t timestamp)
{
return TimeDifference(timestamp, micros());
}
bool TimeReachedUsec(uint32_t timer)
{
// Check if a certain timeout has been reached.
const long passed = TimePassedSinceUsec(timer);
return (passed >= 0);
}
/*********************************************************************************************\
* Basic I2C routines
\*********************************************************************************************/
#ifdef USE_I2C
const uint8_t I2C_RETRY_COUNTER = 3;
uint32_t i2c_active[4] = { 0 };
uint32_t i2c_buffer = 0;
#ifdef ESP32
bool I2cValidRead(uint8_t addr, uint8_t reg, uint8_t size, uint32_t bus = 0);
bool I2cValidRead(uint8_t addr, uint8_t reg, uint8_t size, uint32_t bus)
#else
bool I2cValidRead(uint8_t addr, uint8_t reg, uint8_t size)
#endif
{
uint8_t retry = I2C_RETRY_COUNTER;
bool status = false;
#ifdef ESP32
TwoWire & myWire = (bus == 0) ? Wire : Wire1;
#else
TwoWire & myWire = Wire;
#endif
i2c_buffer = 0;
while (!status && retry) {
myWire.beginTransmission(addr); // start transmission to device
myWire.write(reg); // sends register address to read from
if (0 == myWire.endTransmission(false)) { // Try to become I2C Master, send data and collect bytes, keep master status for next request...
myWire.requestFrom((int)addr, (int)size); // send data n-bytes read
if (myWire.available() == size) {
for (uint32_t i = 0; i < size; i++) {
i2c_buffer = i2c_buffer << 8 | myWire.read(); // receive DATA
}
status = true;
}
}
retry--;
}
if (!retry) myWire.endTransmission();
return status;
}
bool I2cValidRead8(uint8_t *data, uint8_t addr, uint8_t reg)
{
bool status = I2cValidRead(addr, reg, 1);
*data = (uint8_t)i2c_buffer;
return status;
}
bool I2cValidRead16(uint16_t *data, uint8_t addr, uint8_t reg)
{
bool status = I2cValidRead(addr, reg, 2);
*data = (uint16_t)i2c_buffer;
return status;
}
bool I2cValidReadS16(int16_t *data, uint8_t addr, uint8_t reg)
{
bool status = I2cValidRead(addr, reg, 2);
*data = (int16_t)i2c_buffer;
return status;
}
bool I2cValidRead16LE(uint16_t *data, uint8_t addr, uint8_t reg)
{
uint16_t ldata;
bool status = I2cValidRead16(&ldata, addr, reg);
*data = (ldata >> 8) | (ldata << 8);
return status;
}
bool I2cValidReadS16_LE(int16_t *data, uint8_t addr, uint8_t reg)
{
uint16_t ldata;
bool status = I2cValidRead16LE(&ldata, addr, reg);
*data = (int16_t)ldata;
return status;
}
bool I2cValidRead24(int32_t *data, uint8_t addr, uint8_t reg)
{
bool status = I2cValidRead(addr, reg, 3);
*data = i2c_buffer;
return status;
}
uint8_t I2cRead8(uint8_t addr, uint8_t reg)
{
I2cValidRead(addr, reg, 1);
return (uint8_t)i2c_buffer;
}
uint16_t I2cRead16(uint8_t addr, uint8_t reg)
{
I2cValidRead(addr, reg, 2);
return (uint16_t)i2c_buffer;
}
int16_t I2cReadS16(uint8_t addr, uint8_t reg)
{
I2cValidRead(addr, reg, 2);
return (int16_t)i2c_buffer;
}
uint16_t I2cRead16LE(uint8_t addr, uint8_t reg)
{
I2cValidRead(addr, reg, 2);
uint16_t temp = (uint16_t)i2c_buffer;
return (temp >> 8) | (temp << 8);
}
int16_t I2cReadS16_LE(uint8_t addr, uint8_t reg)
{
return (int16_t)I2cRead16LE(addr, reg);
}
int32_t I2cRead24(uint8_t addr, uint8_t reg)
{
I2cValidRead(addr, reg, 3);
return i2c_buffer;
}
#ifdef ESP32
bool I2cWrite(uint8_t addr, uint8_t reg, uint32_t val, uint8_t size, uint32_t bus = 0);
bool I2cWrite(uint8_t addr, uint8_t reg, uint32_t val, uint8_t size, uint32_t bus)
#else
bool I2cWrite(uint8_t addr, uint8_t reg, uint32_t val, uint8_t size)
#endif
{
uint8_t x = I2C_RETRY_COUNTER;
#ifdef ESP32
TwoWire & myWire = (bus == 0) ? Wire : Wire1;
#else
TwoWire & myWire = Wire;
#endif
do {
myWire.beginTransmission((uint8_t)addr); // start transmission to device
myWire.write(reg); // sends register address to write to
uint8_t bytes = size;
while (bytes--) {
myWire.write((val >> (8 * bytes)) & 0xFF); // write data
}
x--;
} while (myWire.endTransmission(true) != 0 && x != 0); // end transmission
return (x);
}
bool I2cWrite8(uint8_t addr, uint8_t reg, uint16_t val)
{
return I2cWrite(addr, reg, val, 1);
}
bool I2cWrite16(uint8_t addr, uint8_t reg, uint16_t val)
{
return I2cWrite(addr, reg, val, 2);
}
int8_t I2cReadBuffer(uint8_t addr, uint8_t reg, uint8_t *reg_data, uint16_t len)
{
Wire.beginTransmission((uint8_t)addr);
Wire.write((uint8_t)reg);
Wire.endTransmission();
if (len != Wire.requestFrom((uint8_t)addr, (uint8_t)len)) {
return 1;
}
while (len--) {
*reg_data = (uint8_t)Wire.read();
reg_data++;
}
return 0;
}
int8_t I2cWriteBuffer(uint8_t addr, uint8_t reg, uint8_t *reg_data, uint16_t len)
{
Wire.beginTransmission((uint8_t)addr);
Wire.write((uint8_t)reg);
while (len--) {
Wire.write(*reg_data);
reg_data++;
}
Wire.endTransmission();
return 0;
}
void I2cScan(char *devs, unsigned int devs_len, uint32_t bus = 0);
void I2cScan(char *devs, unsigned int devs_len, uint32_t bus)
{
// Return error codes defined in twi.h and core_esp8266_si2c.c
// I2C_OK 0
// I2C_SCL_HELD_LOW 1 = SCL held low by another device, no procedure available to recover
// I2C_SCL_HELD_LOW_AFTER_READ 2 = I2C bus error. SCL held low beyond client clock stretch time
// I2C_SDA_HELD_LOW 3 = I2C bus error. SDA line held low by client/another_master after n bits
// I2C_SDA_HELD_LOW_AFTER_INIT 4 = line busy. SDA again held low by another device. 2nd master?
uint8_t error = 0;
uint8_t address = 0;
uint8_t any = 0;
snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"" D_JSON_I2CSCAN_DEVICES_FOUND_AT));
for (address = 1; address <= 127; address++) {
#ifdef ESP32
TwoWire & myWire = (bus == 0) ? Wire : Wire1;
#else
TwoWire & myWire = Wire;
#endif
myWire.beginTransmission(address);
error = myWire.endTransmission();
if (0 == error) {
any = 1;
snprintf_P(devs, devs_len, PSTR("%s 0x%02x"), devs, address);
}
else if (error != 2) { // Seems to happen anyway using this scan
any = 2;
snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"Error %d at 0x%02x"), error, address);
break;
}
}
if (any) {
strncat(devs, "\"}", devs_len - strlen(devs) -1);
}
else {
snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"" D_JSON_I2CSCAN_NO_DEVICES_FOUND "\"}"));
}
}
void I2cResetActive(uint32_t addr, uint32_t count = 1)
{
addr &= 0x7F; // Max I2C address is 127
count &= 0x7F; // Max 4 x 32 bits available
while (count-- && (addr < 128)) {
i2c_active[addr / 32] &= ~(1 << (addr % 32));
addr++;
}
// AddLog(LOG_LEVEL_DEBUG, PSTR("I2C: Active %08X,%08X,%08X,%08X"), i2c_active[0], i2c_active[1], i2c_active[2], i2c_active[3]);
}
void I2cSetActive(uint32_t addr, uint32_t count = 1)
{
addr &= 0x7F; // Max I2C address is 127
count &= 0x7F; // Max 4 x 32 bits available
while (count-- && (addr < 128)) {
i2c_active[addr / 32] |= (1 << (addr % 32));
addr++;
}
// AddLog(LOG_LEVEL_DEBUG, PSTR("I2C: Active %08X,%08X,%08X,%08X"), i2c_active[0], i2c_active[1], i2c_active[2], i2c_active[3]);
}
void I2cSetActiveFound(uint32_t addr, const char *types, uint32_t bus = 0);
void I2cSetActiveFound(uint32_t addr, const char *types, uint32_t bus)
{
I2cSetActive(addr);
#ifdef ESP32
if (0 == bus) {
AddLog(LOG_LEVEL_INFO, S_LOG_I2C_FOUND_AT, types, addr);
} else {
AddLog(LOG_LEVEL_INFO, S_LOG_I2C_FOUND_AT_PORT, types, addr, bus);
}
#else
AddLog(LOG_LEVEL_INFO, S_LOG_I2C_FOUND_AT, types, addr);
#endif // ESP32
}
bool I2cActive(uint32_t addr)
{
addr &= 0x7F; // Max I2C address is 127
if (i2c_active[addr / 32] & (1 << (addr % 32))) {
return true;
}
return false;
}
#ifdef ESP32
bool I2cSetDevice(uint32_t addr, uint32_t bus = 0);
bool I2cSetDevice(uint32_t addr, uint32_t bus)
#else
bool I2cSetDevice(uint32_t addr)
#endif
{
#ifdef ESP32
TwoWire & myWire = (bus == 0) ? Wire : Wire1;
#else
TwoWire & myWire = Wire;
#endif
addr &= 0x7F; // Max I2C address is 127
if (I2cActive(addr)) {
return false; // If already active report as not present;
}
myWire.beginTransmission((uint8_t)addr);
return (0 == myWire.endTransmission());
}
#endif // USE_I2C
/*********************************************************************************************\
* Syslog
*
* Example:
* AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_LOG "Any value %d"), value);
*
\*********************************************************************************************/
void SetSeriallog(uint32_t loglevel)
{
Settings.seriallog_level = loglevel;
TasmotaGlobal.seriallog_level = loglevel;
TasmotaGlobal.seriallog_timer = 0;
}
void SetSyslog(uint32_t loglevel)
{
Settings.syslog_level = loglevel;
TasmotaGlobal.syslog_level = loglevel;
TasmotaGlobal.syslog_timer = 0;
}
void SyslogAsync(bool refresh) {
static IPAddress syslog_host_addr; // Syslog host IP address
static uint32_t syslog_host_hash = 0; // Syslog host name hash
static uint32_t index = 1;
if (!TasmotaGlobal.syslog_level || TasmotaGlobal.global_state.network_down) { return; }
if (refresh && !NeedLogRefresh(TasmotaGlobal.syslog_level, index)) { return; }
char* line;
size_t len;
while (GetLog(TasmotaGlobal.syslog_level, &index, &line, &len)) {
// 00:00:02.096 HTP: Web server active on wemos5 with IP address 192.168.2.172
// HTP: Web server active on wemos5 with IP address 192.168.2.172
uint32_t mxtime = strchr(line, ' ') - line +1; // Remove mxtime
if (mxtime > 0) {
uint32_t current_hash = GetHash(SettingsText(SET_SYSLOG_HOST), strlen(SettingsText(SET_SYSLOG_HOST)));
if (syslog_host_hash != current_hash) {
IPAddress temp_syslog_host_addr;
int ok = WiFi.hostByName(SettingsText(SET_SYSLOG_HOST), temp_syslog_host_addr); // If sleep enabled this might result in exception so try to do it once using hash
if (!ok || (0xFFFFFFFF == (uint32_t)temp_syslog_host_addr)) { // 255.255.255.255 is assumed a DNS problem
TasmotaGlobal.syslog_level = 0;
TasmotaGlobal.syslog_timer = SYSLOG_TIMER;
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION "Loghost DNS resolve failed (%s). " D_RETRY_IN " %d " D_UNIT_SECOND), SettingsText(SET_SYSLOG_HOST), SYSLOG_TIMER);
return;
}
syslog_host_hash = current_hash;
syslog_host_addr = temp_syslog_host_addr;
}
if (!PortUdp.beginPacket(syslog_host_addr, Settings.syslog_port)) {
TasmotaGlobal.syslog_level = 0;
TasmotaGlobal.syslog_timer = SYSLOG_TIMER;
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_SYSLOG_HOST_NOT_FOUND ". " D_RETRY_IN " %d " D_UNIT_SECOND), SYSLOG_TIMER);
return;
}
char log_data[len +72]; // Hostname + Id + log data
snprintf_P(log_data, sizeof(log_data), PSTR("%s ESP-"), NetworkHostname());
uint32_t preamble_len = strlen(log_data);
len -= mxtime;
strlcpy(log_data +preamble_len, line +mxtime, len);
// wemos5 ESP-HTP: Web server active on wemos5 with IP address 192.168.2.172
PortUdp_write(log_data, preamble_len + len);
PortUdp.endPacket();
delay(1); // Add time for UDP handling (#5512)
}
}
}
bool NeedLogRefresh(uint32_t req_loglevel, uint32_t index) {
#ifdef ESP32
// this takes the mutex, and will be release when the class is destroyed -
// i.e. when the functon leaves You CAN call mutex.give() to leave early.
TasAutoMutex mutex(&TasmotaGlobal.log_buffer_mutex);
#endif // ESP32
// Skip initial buffer fill
if (strlen(TasmotaGlobal.log_buffer) < LOG_BUFFER_SIZE - MAX_LOGSZ) { return false; }
char* line;
size_t len;
if (!GetLog(req_loglevel, &index, &line, &len)) { return false; }
return ((line - TasmotaGlobal.log_buffer) < LOG_BUFFER_SIZE / 4);
}
bool GetLog(uint32_t req_loglevel, uint32_t* index_p, char** entry_pp, size_t* len_p) {
uint32_t index = *index_p;
if (TasmotaGlobal.uptime < 3) { return false; } // Allow time to setup correct log level
if (!req_loglevel || (index == TasmotaGlobal.log_buffer_pointer)) { return false; }
#ifdef ESP32
// this takes the mutex, and will be release when the class is destroyed -
// i.e. when the functon leaves You CAN call mutex.give() to leave early.
TasAutoMutex mutex(&TasmotaGlobal.log_buffer_mutex);
#endif // ESP32
if (!index) { // Dump all
index = TasmotaGlobal.log_buffer_pointer +1;
if (index > 255) { index = 1; }
}
do {
size_t len = 0;
uint32_t loglevel = 0;
char* entry_p = TasmotaGlobal.log_buffer;
do {
uint32_t cur_idx = *entry_p;
entry_p++;
size_t tmp = strchrspn(entry_p, '\1');
tmp++; // Skip terminating '\1'
if (cur_idx == index) { // Found the requested entry
loglevel = *entry_p - '0';
entry_p++; // Skip loglevel
len = tmp -1;
break;
}
entry_p += tmp;
} while (entry_p < TasmotaGlobal.log_buffer + LOG_BUFFER_SIZE && *entry_p != '\0');
index++;
if (index > 255) { index = 1; } // Skip 0 as it is not allowed
*index_p = index;
if ((len > 0) &&
(loglevel <= req_loglevel) &&
(TasmotaGlobal.masterlog_level <= req_loglevel)) {
*entry_pp = entry_p;
*len_p = len;
return true;
}
delay(0);
} while (index != TasmotaGlobal.log_buffer_pointer);
return false;
}
void AddLogData(uint32_t loglevel, const char* log_data) {
#ifdef ESP32
// this takes the mutex, and will be release when the class is destroyed -
// i.e. when the functon leaves You CAN call mutex.give() to leave early.
TasAutoMutex mutex(&TasmotaGlobal.log_buffer_mutex);
#endif // ESP32
char mxtime[14]; // "13:45:21.999 "
snprintf_P(mxtime, sizeof(mxtime), PSTR("%02d" D_HOUR_MINUTE_SEPARATOR "%02d" D_MINUTE_SECOND_SEPARATOR "%02d.%03d "), RtcTime.hour, RtcTime.minute, RtcTime.second, RtcMillis());
if ((loglevel <= TasmotaGlobal.seriallog_level) &&
(TasmotaGlobal.masterlog_level <= TasmotaGlobal.seriallog_level)) {
Serial.printf("%s%s\r\n", mxtime, log_data);
}
uint32_t highest_loglevel = Settings.weblog_level;
if (Settings.mqttlog_level > highest_loglevel) { highest_loglevel = Settings.mqttlog_level; }
if (TasmotaGlobal.syslog_level > highest_loglevel) { highest_loglevel = TasmotaGlobal.syslog_level; }
if (TasmotaGlobal.templog_level > highest_loglevel) { highest_loglevel = TasmotaGlobal.templog_level; }
if (TasmotaGlobal.uptime < 3) { highest_loglevel = LOG_LEVEL_DEBUG_MORE; } // Log all before setup correct log level
if ((loglevel <= highest_loglevel) && // Log only when needed
(TasmotaGlobal.masterlog_level <= highest_loglevel)) {
// Delimited, zero-terminated buffer of log lines.
// Each entry has this format: [index][loglevel][log data]['\1']
TasmotaGlobal.log_buffer_pointer &= 0xFF;
if (!TasmotaGlobal.log_buffer_pointer) {
TasmotaGlobal.log_buffer_pointer++; // Index 0 is not allowed as it is the end of char string
}
while (TasmotaGlobal.log_buffer_pointer == TasmotaGlobal.log_buffer[0] || // If log already holds the next index, remove it
strlen(TasmotaGlobal.log_buffer) + strlen(log_data) + strlen(mxtime) + 4 > LOG_BUFFER_SIZE) // 4 = log_buffer_pointer + '\1' + '\0'
{
char* it = TasmotaGlobal.log_buffer;
it++; // Skip log_buffer_pointer
it += strchrspn(it, '\1'); // Skip log line
it++; // Skip delimiting "\1"
memmove(TasmotaGlobal.log_buffer, it, LOG_BUFFER_SIZE -(it-TasmotaGlobal.log_buffer)); // Move buffer forward to remove oldest log line
}
snprintf_P(TasmotaGlobal.log_buffer, sizeof(TasmotaGlobal.log_buffer), PSTR("%s%c%c%s%s\1"),
TasmotaGlobal.log_buffer, TasmotaGlobal.log_buffer_pointer++, '0'+loglevel, mxtime, log_data);
TasmotaGlobal.log_buffer_pointer &= 0xFF;
if (!TasmotaGlobal.log_buffer_pointer) {
TasmotaGlobal.log_buffer_pointer++; // Index 0 is not allowed as it is the end of char string
}
}
}
void AddLog(uint32_t loglevel, PGM_P formatP, ...) {
// To save stack space support logging for max text length of 128 characters
char log_data[LOGSZ +4];
va_list arg;
va_start(arg, formatP);
uint32_t len = ext_vsnprintf_P(log_data, LOGSZ +1, formatP, arg);
va_end(arg);
if (len > LOGSZ) { strcat(log_data, "..."); } // Actual data is more
#ifdef DEBUG_TASMOTA_CORE
// Profile max_len
static uint32_t max_len = 0;
if (len > max_len) {
max_len = len;
Serial.printf("PRF: AddLog %d\n", max_len);
}
#endif
AddLogData(loglevel, log_data);
}
void AddLog_P(uint32_t loglevel, PGM_P formatP, ...) {
// Use more stack space to support logging for max text length of 700 characters
char log_data[MAX_LOGSZ];
va_list arg;
va_start(arg, formatP);
uint32_t len = ext_vsnprintf_P(log_data, sizeof(log_data), formatP, arg);
va_end(arg);
AddLogData(loglevel, log_data);
}
void AddLog_Debug(PGM_P formatP, ...)
{
char log_data[MAX_LOGSZ];
va_list arg;
va_start(arg, formatP);
uint32_t len = ext_vsnprintf_P(log_data, sizeof(log_data), formatP, arg);
va_end(arg);
AddLogData(LOG_LEVEL_DEBUG, log_data);
}
void AddLogBuffer(uint32_t loglevel, uint8_t *buffer, uint32_t count)
{
char hex_char[(count * 3) + 2];
AddLog_P(loglevel, PSTR("DMP: %s"), ToHex_P(buffer, count, hex_char, sizeof(hex_char), ' '));
}
void AddLogSerial(uint32_t loglevel)
{
AddLogBuffer(loglevel, (uint8_t*)TasmotaGlobal.serial_in_buffer, TasmotaGlobal.serial_in_byte_counter);
}
void AddLogMissed(const char *sensor, uint32_t misses)
{
AddLog(LOG_LEVEL_DEBUG, PSTR("SNS: %s missed %d"), sensor, SENSOR_MAX_MISS - misses);
}
void AddLogBufferSize(uint32_t loglevel, uint8_t *buffer, uint32_t count, uint32_t size) {
char log_data[4 + (count * size * 3)];
snprintf_P(log_data, sizeof(log_data), PSTR("DMP:"));
for (uint32_t i = 0; i < count; i++) {
if (1 == size) { // uint8_t
snprintf_P(log_data, sizeof(log_data), PSTR("%s %02X"), log_data, *(buffer));
} else { // uint16_t
snprintf_P(log_data, sizeof(log_data), PSTR("%s %02X%02X"), log_data, *(buffer +1), *(buffer));
}
buffer += size;
}
AddLogData(loglevel, log_data);
}
void AddLogSpi(bool hardware, uint32_t clk, uint32_t mosi, uint32_t miso) {
// Needs optimization
uint32_t enabled = (hardware) ? TasmotaGlobal.spi_enabled : TasmotaGlobal.soft_spi_enabled;
switch(enabled) {
case SPI_MOSI:
AddLog(LOG_LEVEL_INFO, PSTR("SPI: %s using GPIO%02d(CLK) and GPIO%02d(MOSI)"),
(hardware) ? PSTR("Hardware") : PSTR("Software"), clk, mosi);
break;
case SPI_MISO:
AddLog(LOG_LEVEL_INFO, PSTR("SPI: %s using GPIO%02d(CLK) and GPIO%02d(MISO)"),
(hardware) ? PSTR("Hardware") : PSTR("Software"), clk, miso);
break;
case SPI_MOSI_MISO:
AddLog(LOG_LEVEL_INFO, PSTR("SPI: %s using GPIO%02d(CLK), GPIO%02d(MOSI) and GPIO%02d(MISO)"),
(hardware) ? PSTR("Hardware") : PSTR("Software"), clk, mosi, miso);
break;
}
}
/*********************************************************************************************\
* Uncompress static PROGMEM strings
\*********************************************************************************************/
#ifdef USE_UNISHOX_COMPRESSION
#include <unishox.h>
Unishox compressor;
// New variant where you provide the String object yourself
int32_t DecompressNoAlloc(const char * compressed, size_t uncompressed_size, String & content) {
uncompressed_size += 2; // take a security margin
// We use a nasty trick here. To avoid allocating twice the buffer,
// we first extend the buffer of the String object to the target size (maybe overshooting by 7 bytes)
// then we decompress in this buffer,
// and finally assign the raw string to the String, which happens to work: String uses memmove(), so overlapping works
content.reserve(uncompressed_size);
char * buffer = content.begin();
int32_t len = compressor.unishox_decompress(compressed, strlen_P(compressed), buffer, uncompressed_size);
if (len > 0) {
buffer[len] = 0; // terminate string with NULL
content = buffer; // copy in place
}
return len;
}
String Decompress(const char * compressed, size_t uncompressed_size) {
String content("");
DecompressNoAlloc(compressed, uncompressed_size, content);
return content;
}
#endif // USE_UNISHOX_COMPRESSION