Tasmota/tasmota/xsns_82_wiegand.ino

648 lines
26 KiB
C++

/*
xsns_82_wiegand.ino - Support for Wiegand Interface 125kHz Rfid Tag Reader for Tasmota
Copyright (C) 2021 Sigurd Leuther and Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_WIEGAND
/*********************************************************************************************\
* Wiegand 24, 26, 32, 34 bit Rfid reader 125 kHz
*
* Wire connections for https://www.benselectronics.nl/wiegand-2634-bit-rfid-reader-125khze248d29925d602d.html
* Red Vdc
* Black Gnd
* Green D0
* White D1
* Yellow/Grey Sound Buzzer if connected to Gnd
* Blue Light Led if connected to Gnd
* Grey/Purple 34-bit if connected to Gnd
*
* MQTT:
* %prefix%/%topic%/SENSOR = {"Time":"2021-01-21T16:04:12","Wiegand":{"UID":7748328,"Size":26}}
* %prefix%/%topic%/SENSOR = {"Time":"2021-01-21T15:48:49","Wiegand":{"UID":4302741608,"Size":34}}
*
* Rule:
* on wiegand#uid=4302741608 do publish cmnd/ailight/power 2 endon
*
* contains:
* - fix for #11047 Wiegand 26/34 missed some key press if they are press at normal speed
* - removed testing code for tests without attached hardware
* - added SetOption123 0-Wiegand UID decimal (default) 1-Wiegand UID hexadecimal
* - added SetOption124 0-all keys up to ending char (# or *) send as one tag by MQTT (default) 1-Keypad every key a single tag
* - added a new realtime testing option emulating a Wiegang reader output on same GPIOs where normally reader is attached. Details below
* - fix timing issue when fast glitches are detected on one on the datalines. The interbitgab was too short in that case
\*********************************************************************************************/
#pragma message("**** Wiegand interface enabled ****")
#define XSNS_82 82
#define WIEGAND_CODE_GAP_FACTOR 3 // Gap between 2 complete RFID codes send by the device. (WIEGAND_CODE_GAP_FACTOR * bitTime) to detect the end of a code
#define WIEGAND_BIT_TIME_DEFAULT 1250 // period time (µs) of one bit (impluse + impulse_gap time) 1250µs measured by oscilloscope on my RFID Reader
#define WIEGAND_RFID_ARRAY_SIZE 11 // storage of rfids found between 2 calls of FUNC_EVERY_100_MSECOND
#define WIEGAND_OPTION_HEX 123 // Index of option to switch output between hex (1) an decimal (0) (default)
#define WIEGAND_OPTION_HEX_POSTFIX "h" // will be added after UID output nothing = ""
#define WIEGAND_OPTION_KEYPAD_TO_TAG 124 //Index of option to switch output of key pad strokes between every single stroke one single char (0) (default)
// or all strokes until detecting ending char (WIEGAND_OPTION_KEYPAD_END_CHAR) as one tag (1)
#define DEV_WIEGAND_TEST_MODE 0
// using #define will save some space in the final code
// DEV_WIEGAND_TEST_MODE 1 : Use only without Wiegand reader device attache. On a second ESP to simulate reader output!
// DEV_WIEGAND_TEST_MODE 2 : testing with hardware correctly connected.
#ifdef DEV_WIEGAND_TEST_MODE
#if (DEV_WIEGAND_TEST_MODE==0)
#elif (DEV_WIEGAND_TEST_MODE==1)
#pragma message("\nWiegand Interface code generator (testing purpose only!) compiled with 'DEV_WIEGAND_TEST_MODE' 1 \nUse only on esp WITHOUT Wiegand reader hardware attached! GPIOS will be configured as OUTPUT!" )
// use on own risk for testing purpose only.
// please don't attach your reader to the ESP when you use this option. The GPIOS will be defined as OUTPUT
// the interrupts will be enabled and normally recognize the generated code, that's the idea behind for testing.
// Commands:
// WieBitTime [time] : get or set the bit impuls length
// WieInterBitTime [time]: get or set the length of the gap between 2 bits
// WieTagGap [tagGap]: get or set the current used gap time between 2 tags send in µs minimal WIEGAND_BIT_TIME_DEFAULT µs default WIEGAND_BIT_TIME_DEFAULT * WIEGAND_CODE_GAP_FACTOR
// WieTagSize [tagsize]: get or set the tagsize (4,8,24,26,32,34) default 26.
// WieTag [tag]: get or set the current used tag. For tagsize 4,8 only one char will be used.
// WieSend [tag[:tagsize];tag[:tagsize];...] : Generate the current Tag with current TagSize to GPIOs if the paramters are used
// tags and tagsize from commandline are used as current values. If tagsize is omitted always last value will be used
// WieSend 4:4;5:8; will send 4 in 4 bit mode and 5 in 8 bit mode with a pause of current TagGab between the chars
// WieSend will send the last used tag with last used tagsize
#elif (DEV_WIEGAND_TEST_MODE==2)
#pragma message("\nWiegand Interface compiled with 'DEV_WIEGAND_TEST_MODE' 2 (Hardware connected)")
#else
#pragma message("\nWiegand Interface compiled with unknown mode")
#endif
#endif
typedef struct rfid_store { uint64_t RFID; uint16_t bitCount; } RFID_store;
class Wiegand {
public:
Wiegand(void);
void Init(void);
void ScanForTag(void);
#ifdef USE_WEBSERVER
void Show(void);
#endif // USE_WEBSERVER
bool isInit = false;
#if (DEV_WIEGAND_TEST_MODE!=1)
private:
#endif //(DEV_WIEGAND_TEST_MODE==1)
uint64_t CheckAndConvertRfid(uint64_t,uint16_t);
uint8_t CalculateParities(uint64_t, int);
bool WiegandConversion (uint64_t , uint16_t );
void setOutputFormat(void); // fix output HEX format
void HandleKeyPad(void); //handle one tag for multi key strokes
static void handleD0Interrupt(void);
static void handleD1Interrupt(void);
static void handleDxInterrupt(int in); // fix #11047
static void ClearRFIDBuffer(int);
uint64_t rfid;
uint32_t tagSize;
const char* outFormat;
uint64_t mqttRFIDKeypadBuffer;
uint64_t webRFIDKeypadBuffer;
static volatile uint64_t rfidBuffer;
static volatile uint16_t bitCount;
static volatile uint32_t lastFoundTime;
// fix #11047
static volatile uint32_t bitTime;
static volatile uint32_t FirstBitTimeStamp;
static volatile uint32_t CodeGapTime;
static volatile bool CodeComplete;
static volatile RFID_store rfid_found[];
static volatile int currentFoundRFIDcount;
};
Wiegand* oWiegand = new Wiegand();
volatile uint64_t Wiegand::rfidBuffer;
volatile uint16_t Wiegand::bitCount;
volatile uint32_t Wiegand::lastFoundTime;
// fix for #11047
volatile uint32_t Wiegand::bitTime;
volatile uint32_t Wiegand::FirstBitTimeStamp;
volatile uint32_t Wiegand::CodeGapTime;
volatile bool Wiegand::CodeComplete;
volatile RFID_store Wiegand::rfid_found[WIEGAND_RFID_ARRAY_SIZE];
volatile int Wiegand::currentFoundRFIDcount;
void IRAM_ATTR Wiegand::ClearRFIDBuffer(int endIndex = WIEGAND_RFID_ARRAY_SIZE) {
currentFoundRFIDcount=WIEGAND_RFID_ARRAY_SIZE-endIndex; // clear all buffers
for (int i= 0; i < endIndex; i++) {
rfid_found[i].RFID=0;
rfid_found[i].bitCount=0;
}
}
void IRAM_ATTR Wiegand::handleD1Interrupt() { // Receive a 1 bit. (D0=high & D1=low)
handleDxInterrupt(1);
}
void IRAM_ATTR Wiegand::handleD0Interrupt() { // Receive a 0 bit. (D0=low & D1=high)
handleDxInterrupt(0);
}
void IRAM_ATTR Wiegand::handleDxInterrupt(int in) {
unsigned long curTime = micros(); // to be sure I will use micros() instead of millis() overflow is handle by using the minus operator to compare
unsigned long diffTime= curTime - lastFoundTime;
if ( (diffTime > CodeGapTime) && (bitCount > 0)) {
// previous RFID tag (key pad numer)is complete. Will be detected by the code ending gap
// one bit will take the time of impulse_time + impulse_gap_time. it (bitTime) will be recalculated each time an impulse is detected
// the devices will add some inter_code_gap_time to separate codes this will be much longer than the bit_time. (WIEGAND_CODE_GAP_FACTOR)
// unfortunately there's no timing defined for Wiegand. On my test reader the impulse time = 125 µs impulse gap time = 950 µs.
if (currentFoundRFIDcount < WIEGAND_RFID_ARRAY_SIZE) { // when reaching the end of rfid buffer we will overwrite the last one.
currentFoundRFIDcount++;
}
// start a new tag
rfidBuffer = 0;
bitCount = 0;
FirstBitTimeStamp = 0;
}
if (in == 0) { rfidBuffer = rfidBuffer << 1; } // Receive a 0 bit. (D0=low & D1=high): Leftshift the 0 bit is now at the end of rfidBuffer
else if (in == 1) {rfidBuffer = (rfidBuffer << 1) | 1; } // Receive a 1 bit. (D0=high & D1=low): Leftshift + 1 bit
else { return; } // (in==3) called by ScanForTag to get the last tag, because the interrupt handler is no longer called after receiving the last bit
bitCount++;
if (bitCount == 1) { // first bit was detected
FirstBitTimeStamp = (curTime != 0) ? curTime : 1; // accept 1µs differenct to avoid a miss the first timestamp if curTime is 0.
}
else if (bitCount == 2) { // only calculate once per RFID tag, but restrict to values, which are in within a plausible range
bitTime = ((diffTime > (WIEGAND_BIT_TIME_DEFAULT/4)) && (diffTime < (4*WIEGAND_BIT_TIME_DEFAULT))) ? diffTime : WIEGAND_BIT_TIME_DEFAULT;
CodeGapTime = WIEGAND_CODE_GAP_FACTOR * bitTime;
}
//save current rfid in array otherwise we will never see the last found tag
rfid_found[currentFoundRFIDcount].RFID=rfidBuffer;
rfid_found[currentFoundRFIDcount].bitCount= bitCount;
lastFoundTime = curTime; // Last time a bit was detected
}
Wiegand::Wiegand() {
rfid = 0;
lastFoundTime = 0;
tagSize = 0;
rfidBuffer = 0;
bitCount = 0 ;
isInit = false;
// fix #11047
bitTime = WIEGAND_BIT_TIME_DEFAULT;
FirstBitTimeStamp = 0;
CodeGapTime = WIEGAND_CODE_GAP_FACTOR * bitTime;
CodeComplete = false;
ClearRFIDBuffer();
outFormat="u"; // standard output format decimal
mqttRFIDKeypadBuffer = 0;
webRFIDKeypadBuffer = 0;
}
void Wiegand::Init() {
isInit = false;
if (PinUsed(GPIO_WIEGAND_D0) && PinUsed(GPIO_WIEGAND_D1)) { // Only start, if the Wiegang pins are selected
#if (DEV_WIEGAND_TEST_MODE)>0
AddLog(LOG_LEVEL_INFO, PSTR("WIE: Init()"));
#endif // DEV_WIEGAND_TEST_MODE>0
pinMode(Pin(GPIO_WIEGAND_D0), INPUT_PULLUP);
pinMode(Pin(GPIO_WIEGAND_D1), INPUT_PULLUP);
#if (DEV_WIEGAND_TEST_MODE==1) // overwrite the setting
pinMode(Pin(GPIO_WIEGAND_D0), OUTPUT);
pinMode(Pin(GPIO_WIEGAND_D1), OUTPUT);
#endif //(DEV_WIEGAND_TEST_MODE==1)
attachInterrupt(Pin(GPIO_WIEGAND_D0), handleD0Interrupt, FALLING);
attachInterrupt(Pin(GPIO_WIEGAND_D1), handleD1Interrupt, FALLING);
isInit = true; // Helps to run only if correctly setup
#if (DEV_WIEGAND_TEST_MODE)>0
AddLog(LOG_LEVEL_INFO, PSTR("WIE: Testmode, D0:%u, D1:%u"), Pin(GPIO_WIEGAND_D0), Pin(GPIO_WIEGAND_D1)); // For tests without reader attaiched
#else
AddLog(LOG_LEVEL_INFO, PSTR("WIE: Wiegand Rfid Reader detected"));
#endif // DEV_WIEGAND_TEST_MODE>0
}
#if (DEV_WIEGAND_TEST_MODE)>0
else {
AddLog(LOG_LEVEL_INFO, PSTR("WIE: no GPIOs."));
}
#endif // DEV_WIEGAND_TEST_MODE>0
}
uint64_t Wiegand::CheckAndConvertRfid(uint64_t rfidIn, uint16_t bitCount) {
uint8_t evenParityBit = 0;
uint8_t oddParityBit = (uint8_t) (rfidIn & 0x1); // Last bit = odd parity
uint8_t calcParity = 0;
switch (bitCount) {
case 24:
evenParityBit = (rfidIn & 0x800000) ? 0x80 : 0;
rfidIn = (rfidIn & 0x7FFFFE) >>1;
break;
case 26:
evenParityBit = (rfidIn & 0x2000000) ? 0x80 : 0;
rfidIn = (rfidIn & 0x1FFFFFE) >>1;
break;
case 32:
evenParityBit = (rfidIn & 0x80000000) ? 0x80 : 0;
rfidIn = (rfidIn & 0x7FFFFFFE) >>1;
break;
case 34:
evenParityBit = (rfidIn & 0x400000000) ? 0x80 : 0;
rfidIn = (rfidIn & 0x3FFFFFFFE) >>1;
break;
default:
break;
}
calcParity = CalculateParities(rfidIn, bitCount); // Check result on http://www.ccdesignworks.com/wiegand_calc.htm with raw tag as input
if (calcParity != (evenParityBit | oddParityBit)) { // Parity bit is wrong
rfidIn=0;
AddLog(LOG_LEVEL_DEBUG, PSTR("WIE: %llu parity error"), rfidIn);
}
#if (DEV_WIEGAND_TEST_MODE)>0
AddLog(LOG_LEVEL_INFO, PSTR("WIE: even (left) parity: %u "), (evenParityBit>>7));
AddLog(LOG_LEVEL_INFO, PSTR("WIE: even (calc) parity: %u "), (calcParity & 0x80)>>7);
AddLog(LOG_LEVEL_INFO, PSTR("WIE: odd (right) parity: %u "), oddParityBit);
AddLog(LOG_LEVEL_INFO, PSTR("WIE: odd (calc) parity: %u "), (calcParity & 0x01));
#endif // DEV_WIEGAND_TEST_MODE>0
return rfidIn;
}
uint8_t Wiegand::CalculateParities(uint64_t tagWithoutParities, int tag_size=26) {
// tag_size is the size of the final tag including the 2 parity bits
// So length if the tagWithoutParities should be (tag_size-2) !! That will be not profed and
// lead to wrong results if the input value is larger!
// Calculated start parity (even) will be returned as bit 8
// calculated end parity (odd) will be returned as bit 1
uint8_t retValue=0;
tag_size -= 2;
if (tag_size <= 0) { return retValue; } // Prohibit div zero exception and other wrong inputs
uint8_t parity = 1; // Check for odd parity on LSB
for (uint8_t i = 0; i < (tag_size / 2); i++) {
parity ^= (tagWithoutParities & 1);
tagWithoutParities >>= 1;
}
retValue |= parity;
parity = 0; // Check for even parity on MSB
while (tagWithoutParities) {
parity ^= (tagWithoutParities & 1);
tagWithoutParities >>= 1;
}
retValue |= (parity << 7);
return retValue;
}
bool Wiegand::WiegandConversion (uint64_t rfidBuffer, uint16_t bitCount) {
bool bRet = false;
#if (DEV_WIEGAND_TEST_MODE)>0
AddLog(LOG_LEVEL_INFO, PSTR("WIE: Raw tag %llu, Bit count %u"), rfidBuffer, bitCount);
#endif // DEV_WIEGAND_TEST_MODE>0
if ((24 == bitCount) || (26 == bitCount) || (32 == bitCount) || (34 == bitCount)) {
// 24, 26, 32, 34-bit Wiegand codes
rfid = CheckAndConvertRfid(rfidBuffer, bitCount);
tagSize = bitCount;
bRet = true;
}
else if (4 == bitCount) {
// 4-bit Wiegand codes for keypads
rfid = (int)(rfidBuffer & 0x0000000F);
tagSize = bitCount;
bRet = true;
}
else if (8 == bitCount) {
// 8-bit Wiegand codes for keypads with integrity
// 8-bit Wiegand keyboard data, high nibble is the "NOT" of low nibble
// eg if key 1 pressed, data=E1 in binary 11100001 , high nibble=1110 , low nibble = 0001
char highNibble = (rfidBuffer & 0xf0) >>4;
char lowNibble = (rfidBuffer & 0x0f);
if (lowNibble == (~highNibble & 0x0f)) { // Check if low nibble matches the "NOT" of high nibble.
rfid = (int)(lowNibble);
bRet = true;
} else {
bRet = false;
}
tagSize = bitCount;
} else {
// Time reached but unknown bitCount, clear and start again
tagSize = 0;
bRet = false;
}
#if (DEV_WIEGAND_TEST_MODE)>0
AddLog(LOG_LEVEL_INFO, PSTR("WIE: Tag out %llu, tag size %u "), rfid, tagSize);
#endif // DEV_WIEGAND_TEST_MODE>0
return bRet;
}
void Wiegand::setOutputFormat(void)
{
if (GetOption(WIEGAND_OPTION_HEX) == 0) { outFormat = "u"; }
else { outFormat = "X" WIEGAND_OPTION_HEX_POSTFIX ; }
}
void Wiegand::HandleKeyPad(void) { // will be called if a valid key pad input was recognized
if (GetOption(WIEGAND_OPTION_KEYPAD_TO_TAG) == 0) { // handle all key pad inputs as ONE Tag until # is recognized
if ( (tagSize == 4) || (tagSize == 8) ) {
//only handle Keypad strokes if it is requested
if (rfid >= 0x0a) { // # * as end of input detected -> all key values which are larger than 9
rfid = mqttRFIDKeypadBuffer; // original tagsize of 4 or 8 will be kept.
webRFIDKeypadBuffer = 0; // can be resetted, because now rfid > 0 will be used at web interface
mqttRFIDKeypadBuffer = 0;
}
else {
mqttRFIDKeypadBuffer = (mqttRFIDKeypadBuffer*10)+rfid; //left shift + new key
webRFIDKeypadBuffer = mqttRFIDKeypadBuffer; // visualising the current typed keys
rfid = 0;
tagSize = 0;
}
}
else { //it's not a key pad entry, so another key come in, we will reset the buffer, if it is not finished yet
webRFIDKeypadBuffer = 0;
mqttRFIDKeypadBuffer = 0;
}
}
}
void Wiegand::ScanForTag() {
unsigned long startTime = micros();
handleDxInterrupt(3);
if (currentFoundRFIDcount > 0) {
unsigned int lastFoundRFIDcount = currentFoundRFIDcount;
#if (DEV_WIEGAND_TEST_MODE)>0
AddLog(LOG_LEVEL_INFO, PSTR("WIE: ScanForTag(). bitTime: %0lu lastFoundTime: %0lu RFIDS in buffer: %lu"), bitTime, lastFoundTime, currentFoundRFIDcount);
#endif
// format MQTT output
setOutputFormat();
char sFormat[50];
snprintf( sFormat, 50, PSTR(",\"Wiegand\":{\"UID\":%%0ll%s,\"" D_JSON_SIZE "\":%%%s}}"), outFormat, outFormat);
for (int i= 0; i < WIEGAND_RFID_ARRAY_SIZE; i++)
{
if (rfid_found[i].RFID != 0) {
uint64_t oldTag = rfid;
bool validKey = WiegandConversion(rfid_found[i].RFID, rfid_found[i].bitCount);
#if (DEV_WIEGAND_TEST_MODE)>0
AddLog(LOG_LEVEL_INFO, PSTR("WIE: ValidKey: %d Previous tag %llu"), validKey, oldTag);
#endif // DEV_WIEGAND_TEST_MODE>0
if (validKey) { // Only in case of valid key do action. Issue#10585
HandleKeyPad(); //support one tag for multi key input
if (tagSize>0) { //do output only for rfids which are complete
if (oldTag == rfid) {
AddLog(LOG_LEVEL_DEBUG, PSTR("WIE: Old tag"));
}
ResponseTime_P(sFormat, rfid, tagSize);
MqttPublishTeleSensor();
}
}
}
}
if (currentFoundRFIDcount > lastFoundRFIDcount) {
// if that happens: we need to move the id found during the loop to top of the array
// and correct the currentFoundRFIDcount
AddLog(LOG_LEVEL_INFO, PSTR("WIE: ScanForTag() %lu tags added while working on buffer"), (currentFoundRFIDcount-lastFoundRFIDcount));
}
ClearRFIDBuffer(); //reset array
#if (DEV_WIEGAND_TEST_MODE)>0
AddLog(LOG_LEVEL_INFO, PSTR("WIE: ScanForTag() time elapsed %lu"), (micros() - startTime));
#endif
}
}
#ifdef USE_WEBSERVER
void Wiegand::Show(void) {
setOutputFormat();
char sFormat [30];
snprintf( sFormat, 30,PSTR("{s}Wiegand UID{m}%%ll%s {e}"), outFormat);
if (tagSize>0) { WSContentSend_PD(sFormat, rfid); }
else { WSContentSend_PD(sFormat, webRFIDKeypadBuffer); }
#if (DEV_WIEGAND_TEST_MODE)>0
AddLog(LOG_LEVEL_INFO, PSTR("WIE: Tag %llu, Bits %u"), rfid, bitCount);
#endif // DEV_WIEGAND_TEST_MODE>0
}
#endif // USE_WEBSERVER
#if (DEV_WIEGAND_TEST_MODE==1)
void CmndTag(void);
void CmndTagSize(void);
void CmndTagGap(void);
void CmndTimeReset(void);
void CmndAllReset(void);
void CmndSend(void);
void CmndBitTime(void);
void CmndInterBitTime(void);
unsigned int setTagSize( char *);
unsigned int setTag ( char * );
void sendBit(unsigned int b);
void sendTag(uint32_t Tag, uint32_t TagSize);
uint32_t currTag = 0;
uint32_t currTagSize = 26; //default value 26 Wiegand
uint32_t currBitTime=(WIEGAND_BIT_TIME_DEFAULT/10); //length of the bit impluse in µs
uint32_t currInterBitTime = ((WIEGAND_BIT_TIME_DEFAULT/10)*9); //time to wait before next bit is send in µs
uint32_t currTagGabTime = (WIEGAND_BIT_TIME_DEFAULT * WIEGAND_CODE_GAP_FACTOR) ; //time to wait before next tag is send in µs
void CmndTag(void){
if (XdrvMailbox.data_len > 0) {
currTag= strtoul(XdrvMailbox.data, nullptr, 0);
}
ResponseCmndNumber(currTag);
}
void CmndTagSize(void){
if (XdrvMailbox.data_len > 0) {
currTagSize = setTagSize(XdrvMailbox.data);
}
ResponseCmndNumber(currTagSize);
}
void CmndTagGap(void){
if (XdrvMailbox.data_len > 0) {
currTagGabTime = strtoul(XdrvMailbox.data, nullptr, 0);
if (currTagGabTime < (currBitTime+currInterBitTime) ) // doesn't make sense
{ currTagGabTime = (currBitTime+currInterBitTime) * WIEGAND_CODE_GAP_FACTOR; }
}
ResponseCmndNumber(currTagGabTime);
}
void CmndBitTime(void){
if (XdrvMailbox.data_len > 0) {
uint32_t newBitTime = strtoul(XdrvMailbox.data, nullptr, 0);
if ( (newBitTime >= 100) && (newBitTime <= 500000) ) // accept only values between 100µs and 5s
{ currBitTime = newBitTime; }
}
ResponseCmndNumber(currBitTime);
}
void CmndInterBitTime(void){
if (XdrvMailbox.data_len > 0) {
uint32_t newInterBitTime = strtoul(XdrvMailbox.data, nullptr, 0);
if ( (newInterBitTime >= currBitTime) && (newInterBitTime <= (100 * currBitTime)) ) // accept only values between 100µs and 5s
{ currInterBitTime = newInterBitTime; }
}
ResponseCmndNumber(currInterBitTime);
}
void CmndTimeReset(void){
currBitTime=(WIEGAND_BIT_TIME_DEFAULT/10);
currInterBitTime = ((WIEGAND_BIT_TIME_DEFAULT/10)*9);
currTagGabTime = (WIEGAND_BIT_TIME_DEFAULT * WIEGAND_CODE_GAP_FACTOR) ;
ResponseCmndChar_P(PSTR("All timings reset to default!"));
}
void CmndAllReset(void){
CmndTimeReset();
currTagSize = 26;
ResponseCmndChar_P(PSTR("All timings and tag size reset to default"));
}
void CmndSend(void){
if (XdrvMailbox.data_len > 0) { // parameter [tag[:tagsize];tag[:tagsize];...]
char *parameter = strtok(XdrvMailbox.data, ";");
while (parameter != nullptr) {
char* pTagSize = strchr(parameter,':'); // find optional tagsizes
if (pTagSize != 0) { // 2 parameters found tag:tagsize
*pTagSize = 0; //replace separator ':' by \0 string end
currTag = setTag(parameter); // is now ending before tagsize
pTagSize++; //set the starting char of tagsize correctly
currTagSize = setTagSize(pTagSize);
ResponseCmndChar(pTagSize);
}
else {//only one parameter (tag) found
currTag = setTag(parameter);
}
ResponseCmndChar(parameter);
sendTag(currTag, currTagSize);
ResponseCmndNumber(currTag);
parameter = strtok(nullptr, ";");
}
}
else { // send last used values again
sendTag(currTag, currTagSize);
ResponseCmndNumber(currTag);
}
}
unsigned int setTag ( char * newTag) {
unsigned int retValue = strtoul(newTag, nullptr, 0);
if ( (currTagSize == 4) || (currTagSize == 8) ) //key pad input simulation requested
{ retValue &= 0x0F; }
return retValue;
}
unsigned int setTagSize ( char * newTagSize) {
unsigned int retValue = strtoul(newTagSize, nullptr, 0);
// accept only supported TagSize
if ( retValue <= 4) { retValue = 4;}
else if ( retValue <= 8) { retValue = 8;}
else if ( retValue <= 24) { retValue = 24;}
else if ( retValue <= 26) { retValue = 26;}
else if ( retValue <= 32) { retValue = 32;}
else if ( retValue <= 34) { retValue = 34;}
else { retValue = 26;} //default value
return retValue;
}
void sendBit(unsigned int b) {
int sel = (b == 0) ? Pin(GPIO_WIEGAND_D0) : Pin(GPIO_WIEGAND_D1);
digitalWrite(sel, 0);
delayMicroseconds(currBitTime); // bit impuls time
digitalWrite(sel, 1);
delayMicroseconds(currBitTime+currInterBitTime); // bit + inter bit gap time
}
void sendPlainTag( uint32_t pTag, uint32_t pTagSize){ // send tag without parity
for (int i=1; i<=pTagSize; ++i)
{
sendBit((pTag >> (pTagSize-i)) & 1);
}
}
void sendTag(uint32_t Tag, uint32_t TagSize) {
// TagSize is the requested output tagSize. means b.e. 24 bit == 24 Tag without parity 26 bit = 24 bit with parity bits
// supported tag sizes 4/8 for key pad simulation 24/26 and 32/34 for RFID tags
switch (TagSize){
case 24:
case 32:
case 4:
sendPlainTag( Tag, TagSize);
break;
case 26:
case 34:
uint8_t parity;
parity = oWiegand->CalculateParities(Tag, TagSize);
sendBit(parity & 0x01); //even parity (starting parity)
sendPlainTag( Tag, TagSize-2);
sendBit(parity & 0x80); //odd parity (ending parity)
break;
case 8: // high nibble is ~ low nibble
Tag = Tag & 0x0F; // low nibble in case of more the one char input it will be cut here
Tag = Tag | ((~Tag) << 4);
sendPlainTag ( Tag, TagSize);
break;
}
//delay to simulate end of tag
delayMicroseconds(currTagGabTime); // inter code gap
return;
}
const char kWiegandCommands[] PROGMEM = "Wie|" // No prefix
"Tag|"
"TagSize|"
"TagGap|"
"BitTime|"
"InterBitTime|"
"TimeReset|"
"AllReset|"
"Send";
void (* const WiegandCommand[])(void) PROGMEM = {
&CmndTag,
&CmndTagSize,
&CmndTagGap,
&CmndBitTime,
&CmndInterBitTime,
&CmndTimeReset,
&CmndAllReset,
&CmndSend
};
#endif //(DEV_WIEGAND_TEST_MODE==1)
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns82(byte function) {
bool result = false;
if (FUNC_INIT == function) {
oWiegand->Init();
}
else if (oWiegand->isInit) {
switch (function) {
case FUNC_EVERY_100_MSECOND: // fix for #11047 Wiegand 26/34 missed some key press
oWiegand->ScanForTag();
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
oWiegand->Show();
break;
#endif // USE_WEBSERVER
#if (DEV_WIEGAND_TEST_MODE==1)
case FUNC_COMMAND:
result = DecodeCommand(kWiegandCommands, WiegandCommand);
break;
#endif //(DEV_WIEGAND_TEST_MODE==1)
}
}
return result;
}
#endif // USE_WIEGAND