Tasmota/lib/lib_audio/ESP8266SAM/src/sam.c

1478 lines
37 KiB
C
Raw Blame History

#include <stdio.h> // define printf()
#include <string.h> // strlen()
//#include <stdlib.h>
#include <stddef.h> // define NULL
#include "esp8266sam_debug.h"
#include "sam.h"
#include "render.h"
#include "SamTabs.h"
#include "SamData.h"
//standard sam sound
unsigned char speed = 72;
unsigned char pitch = 64;
static unsigned char mouth = 128;
static unsigned char throat = 128;
int singmode = 0;
unsigned char mem39;
unsigned char mem44;
unsigned char mem47;
unsigned char mem49;
unsigned char mem50;
unsigned char mem51;
unsigned char mem53;
unsigned char mem56;
unsigned char mem59=0;
static unsigned char A, X, Y;
#define input (samdata->sam.input)
#define stress (samdata->sam.stress)
#define phonemeLength (samdata->sam.phonemeLength)
#define phonemeindex (samdata->sam.phonemeindex)
#define phonemeIndexOutput (samdata->sam.phonemeIndexOutput)
#define stressOutput (samdata->sam.stressOutput)
#define phonemeLengthOutput (samdata->sam.phonemeLengthOutput)
// contains the final soundbuffer
int bufferpos=0;
//char *buffer = NULL;
void SetInput(char *_input)
{
int i, l;
l = strlen(_input);
if (l > 254) l = 254;
for(i=0; i<l; i++)
input[i] = _input[i];
input[l] = 0;
}
void SetSpeed(unsigned char _speed) {speed = _speed;};
void SetPitch(unsigned char _pitch) {pitch = _pitch;};
void SetMouth(unsigned char _mouth) {mouth = _mouth;};
void SetThroat(unsigned char _throat) {throat = _throat;};
void EnableSingmode(int x) {singmode = x;};
//char* GetBuffer(){return buffer;};
int GetBufferLength(){return bufferpos;};
void Init();
int Parser1();
void Parser2();
int SAMMain();
void CopyStress();
void SetPhonemeLength();
void AdjustLengths();
void Code41240();
void Insert(unsigned char position, unsigned char mem60, unsigned char mem59, unsigned char mem58);
void InsertBreath();
void PrepareOutput();
void SetMouthThroat(unsigned char mouth, unsigned char throat);
// 168=pitches
// 169=frequency1
// 170=frequency2
// 171=frequency3
// 172=amplitude1
// 173=amplitude2
// 174=amplitude3
void Init()
{
int i;
SetMouthThroat( mouth, throat);
bufferpos = 0;
// TODO, check for free the memory, 10 seconds of output should be more than enough
// buffer = malloc(22050*10);
/*
freq2data = &mem[45136];
freq1data = &mem[45056];
freq3data = &mem[45216];
*/
//pitches = &mem[43008];
/*
frequency1 = &mem[43264];
frequency2 = &mem[43520];
frequency3 = &mem[43776];
*/
/*
amplitude1 = &mem[44032];
amplitude2 = &mem[44288];
amplitude3 = &mem[44544];
*/
//phoneme = &mem[39904];
/*
ampl1data = &mem[45296];
ampl2data = &mem[45376];
ampl3data = &mem[45456];
*/
for(i=0; i<256; i++)
{
stress[i] = 0;
phonemeLength[i] = 0;
}
for(i=0; i<60; i++)
{
phonemeIndexOutput[i] = 0;
stressOutput[i] = 0;
phonemeLengthOutput[i] = 0;
}
phonemeindex[255] = 255; //to prevent buffer overflow // ML : changed from 32 to 255 to stop freezing with long inputs
}
void (*outcb)(void *, unsigned char) = NULL;
void *outcbdata = NULL;
//int Code39771()
int SAMMain( void (*cb)(void *, unsigned char), void *cbd )
{
outcb = cb;
outcbdata = cbd;
Init();
phonemeindex[255] = 32; //to prevent buffer overflow
if (!Parser1()) return 0;
if (DEBUG_ESP8266SAM_LIB)
PrintPhonemes(phonemeindex, phonemeLength, stress);
Parser2();
CopyStress();
SetPhonemeLength();
AdjustLengths();
Code41240();
do
{
A = phonemeindex[X];
if (A > 80)
{
phonemeindex[X] = 255;
break; // error: delete all behind it
}
X++;
} while (X != 0);
//pos39848:
InsertBreath();
//mem[40158] = 255;
if (DEBUG_ESP8266SAM_LIB)
{
PrintPhonemes(phonemeindex, phonemeLength, stress);
}
PrepareOutput();
return 1;
}
int SAMPrepare()
{
Init();
phonemeindex[255] = 32; //to prevent buffer overflow
if (!Parser1()) return 0;
Parser2();
CopyStress();
SetPhonemeLength();
AdjustLengths();
Code41240();
do
{
A = phonemeindex[X];
if (A > 80)
{
phonemeindex[X] = 255;
break; // error: delete all behind it
}
X++;
} while (X != 0);
InsertBreath();
return 1;
}
//void Code48547()
void PrepareOutput()
{
A = 0;
X = 0;
Y = 0;
//pos48551:
while(1)
{
A = phonemeindex[X];
if (A == 255)
{
A = 255;
phonemeIndexOutput[Y] = 255;
Render();
return;
}
if (A == 254)
{
X++;
int temp = X;
//mem[48546] = X;
phonemeIndexOutput[Y] = 255;
Render();
//X = mem[48546];
X=temp;
Y = 0;
continue;
}
if (A == 0)
{
X++;
continue;
}
phonemeIndexOutput[Y] = A;
phonemeLengthOutput[Y] = phonemeLength[X];
stressOutput[Y] = stress[X];
X++;
Y++;
}
}
//void Code48431()
void InsertBreath()
{
unsigned char mem54;
unsigned char mem55;
unsigned char index; //variable Y
mem54 = 255;
X++;
mem55 = 0;
unsigned char mem66 = 0;
while(1)
{
//pos48440:
X = mem66;
index = phonemeindex[X];
if (index == 255) return;
mem55 += phonemeLength[X];
if (mem55 < 232)
{
if (index != 254) // ML : Prevents an index out of bounds problem
{
A = flags2[index]&1;
if(A != 0)
{
X++;
mem55 = 0;
Insert(X, 254, mem59, 0);
mem66++;
mem66++;
continue;
}
}
if (index == 0) mem54 = X;
mem66++;
continue;
}
X = mem54;
phonemeindex[X] = 31; // 'Q*' glottal stop
phonemeLength[X] = 4;
stress[X] = 0;
X++;
mem55 = 0;
Insert(X, 254, mem59, 0);
X++;
mem66 = X;
}
}
// Iterates through the phoneme buffer, copying the stress value from
// the following phoneme under the following circumstance:
// 1. The current phoneme is voiced, excluding plosives and fricatives
// 2. The following phoneme is voiced, excluding plosives and fricatives, and
// 3. The following phoneme is stressed
//
// In those cases, the stress value+1 from the following phoneme is copied.
//
// For example, the word LOITER is represented as LOY5TER, with as stress
// of 5 on the diphtong OY. This routine will copy the stress value of 6 (5+1)
// to the L that precedes it.
//void Code41883()
void CopyStress()
{
// loop thought all the phonemes to be output
unsigned char pos=0; //mem66
while(1)
{
// get the phomene
Y = phonemeindex[pos];
// exit at end of buffer
if (Y == 255) return;
// if CONSONANT_FLAG set, skip - only vowels get stress
if ((flags[Y] & 64) == 0) {pos++; continue;}
// get the next phoneme
Y = phonemeindex[pos+1];
if (Y == 255) //prevent buffer overflow
{
pos++; continue;
} else
// if the following phoneme is a vowel, skip
if ((flags[Y] & 128) == 0) {pos++; continue;}
// get the stress value at the next position
Y = stress[pos+1];
// if next phoneme is not stressed, skip
if (Y == 0) {pos++; continue;}
// if next phoneme is not a VOWEL OR ER, skip
if ((Y & 128) != 0) {pos++; continue;}
// copy stress from prior phoneme to this one
stress[pos] = Y+1;
// advance pointer
pos++;
}
}
//void Code41014()
void Insert(unsigned char position/*var57*/, unsigned char mem60, unsigned char mem59, unsigned char mem58)
{
int i;
for(i=253; i >= position; i--) // ML : always keep last safe-guarding 255
{
phonemeindex[i+1] = phonemeindex[i];
phonemeLength[i+1] = phonemeLength[i];
stress[i+1] = stress[i];
}
phonemeindex[position] = mem60;
phonemeLength[position] = mem59;
stress[position] = mem58;
return;
}
// The input[] buffer contains a string of phonemes and stress markers along
// the lines of:
//
// DHAX KAET IHZ AH5GLIY. <0x9B>
//
// The byte 0x9B marks the end of the buffer. Some phonemes are 2 bytes
// long, such as "DH" and "AX". Others are 1 byte long, such as "T" and "Z".
// There are also stress markers, such as "5" and ".".
//
// The first character of the phonemes are stored in the table signInputTable1[].
// The second character of the phonemes are stored in the table signInputTable2[].
// The stress characters are arranged in low to high stress order in stressInputTable[].
//
// The following process is used to parse the input[] buffer:
//
// Repeat until the <0x9B> character is reached:
//
// First, a search is made for a 2 character match for phonemes that do not
// end with the '*' (wildcard) character. On a match, the index of the phoneme
// is added to phonemeIndex[] and the buffer position is advanced 2 bytes.
//
// If this fails, a search is made for a 1 character match against all
// phoneme names ending with a '*' (wildcard). If this succeeds, the
// phoneme is added to phonemeIndex[] and the buffer position is advanced
// 1 byte.
//
// If this fails, search for a 1 character match in the stressInputTable[].
// If this succeeds, the stress value is placed in the last stress[] table
// at the same index of the last added phoneme, and the buffer position is
// advanced by 1 byte.
//
// If this fails, return a 0.
//
// On success:
//
// 1. phonemeIndex[] will contain the index of all the phonemes.
// 2. The last index in phonemeIndex[] will be 255.
// 3. stress[] will contain the stress value for each phoneme
// input[] holds the string of phonemes, each two bytes wide
// signInputTable1[] holds the first character of each phoneme
// signInputTable2[] holds te second character of each phoneme
// phonemeIndex[] holds the indexes of the phonemes after parsing input[]
//
// The parser scans through the input[], finding the names of the phonemes
// by searching signInputTable1[] and signInputTable2[]. On a match, it
// copies the index of the phoneme into the phonemeIndexTable[].
//
// The character <0x9B> marks the end of text in input[]. When it is reached,
// the index 255 is placed at the end of the phonemeIndexTable[], and the
// function returns with a 1 indicating success.
int Parser1()
{
int i;
unsigned char sign1;
unsigned char sign2;
unsigned char position = 0;
X = 0;
A = 0;
Y = 0;
// CLEAR THE STRESS TABLE
for(i=0; i<256; i++)
stress[i] = 0;
// THIS CODE MATCHES THE PHONEME LETTERS TO THE TABLE
// pos41078:
while(1)
{
// GET THE FIRST CHARACTER FROM THE PHONEME BUFFER
sign1 = input[X];
// TEST FOR 155 (<28>) END OF LINE MARKER
if (sign1 == 155)
{
// MARK ENDPOINT AND RETURN
phonemeindex[position] = 255; //mark endpoint
// REACHED END OF PHONEMES, SO EXIT
return 1; //all ok
}
// GET THE NEXT CHARACTER FROM THE BUFFER
X++;
sign2 = input[X];
// NOW sign1 = FIRST CHARACTER OF PHONEME, AND sign2 = SECOND CHARACTER OF PHONEME
// TRY TO MATCH PHONEMES ON TWO TWO-CHARACTER NAME
// IGNORE PHONEMES IN TABLE ENDING WITH WILDCARDS
// SET INDEX TO 0
Y = 0;
pos41095:
// GET FIRST CHARACTER AT POSITION Y IN signInputTable
// --> should change name to PhonemeNameTable1
A = pgm_read_byte(signInputTable1+Y);//signInputTable1[Y];
// FIRST CHARACTER MATCHES?
if (A == sign1)
{
// GET THE CHARACTER FROM THE PhonemeSecondLetterTable
A = pgm_read_byte(signInputTable2+Y);//signInputTable2[Y];
// NOT A SPECIAL AND MATCHES SECOND CHARACTER?
if ((A != '*') && (A == sign2))
{
// STORE THE INDEX OF THE PHONEME INTO THE phomeneIndexTable
phonemeindex[position] = Y;
// ADVANCE THE POINTER TO THE phonemeIndexTable
position++;
// ADVANCE THE POINTER TO THE phonemeInputBuffer
X++;
// CONTINUE PARSING
continue;
}
}
// NO MATCH, TRY TO MATCH ON FIRST CHARACTER TO WILDCARD NAMES (ENDING WITH '*')
// ADVANCE TO THE NEXT POSITION
Y++;
// IF NOT END OF TABLE, CONTINUE
if (Y != 81) goto pos41095;
// REACHED END OF TABLE WITHOUT AN EXACT (2 CHARACTER) MATCH.
// THIS TIME, SEARCH FOR A 1 CHARACTER MATCH AGAINST THE WILDCARDS
// RESET THE INDEX TO POINT TO THE START OF THE PHONEME NAME TABLE
Y = 0;
pos41134:
// DOES THE PHONEME IN THE TABLE END WITH '*'?
if (pgm_read_byte(signInputTable2+Y)/*signInputTable2[Y]*/ == '*')
{
// DOES THE FIRST CHARACTER MATCH THE FIRST LETTER OF THE PHONEME
if (pgm_read_byte(signInputTable1+Y)/*]signInputTable1[Y]*/ == sign1)
{
// SAVE THE POSITION AND MOVE AHEAD
phonemeindex[position] = Y;
// ADVANCE THE POINTER
position++;
// CONTINUE THROUGH THE LOOP
continue;
}
}
Y++;
if (Y != 81) goto pos41134; //81 is size of PHONEME NAME table
// FAILED TO MATCH WITH A WILDCARD. ASSUME THIS IS A STRESS
// CHARACTER. SEARCH THROUGH THE STRESS TABLE
// SET INDEX TO POSITION 8 (END OF STRESS TABLE)
Y = 8;
// WALK BACK THROUGH TABLE LOOKING FOR A MATCH
while( (sign1 != pgm_read_byte(stressInputTable+Y)/*stressInputTable[Y]*/) && (Y>0))
{
// DECREMENT INDEX
Y--;
}
// REACHED THE END OF THE SEARCH WITHOUT BREAKING OUT OF LOOP?
if (Y == 0)
{
//mem[39444] = X;
//41181: JSR 42043 //Error
// FAILED TO MATCH ANYTHING, RETURN 0 ON FAILURE
return 0;
}
// SET THE STRESS FOR THE PRIOR PHONEME
stress[position-1] = Y;
} //while
}
//change phonemelength depedendent on stress
//void Code41203()
void SetPhonemeLength()
{
unsigned char A;
int position = 0;
while(phonemeindex[position] != 255 )
{
A = stress[position];
//41218: BMI 41229
if ((A == 0) || ((A&128) != 0))
{
phonemeLength[position] = pgm_read_byte(&phonemeLengthTable[phonemeindex[position]]);
} else
{
phonemeLength[position] = pgm_read_byte(&phonemeStressedLengthTable[phonemeindex[position]]);
}
position++;
}
}
void Code41240()
{
unsigned char pos=0;
while(phonemeindex[pos] != 255)
{
unsigned char index; //register AC
X = pos;
index = phonemeindex[pos];
if ((flags[index]&2) == 0)
{
pos++;
continue;
} else
if ((flags[index]&1) == 0)
{
Insert(pos+1, index+1, pgm_read_byte(&phonemeLengthTable[index+1]), stress[pos]);
Insert(pos+2, index+2, pgm_read_byte(&phonemeLengthTable[index+2]), stress[pos]);
pos += 3;
continue;
}
do
{
X++;
A = phonemeindex[X];
} while(A==0);
if (A != 255)
{
if ((flags[A] & 8) != 0) {pos++; continue;}
if ((A == 36) || (A == 37)) {pos++; continue;} // '/H' '/X'
}
Insert(pos+1, index+1, pgm_read_byte(&phonemeLengthTable[index+1]), stress[pos]);
Insert(pos+2, index+2, pgm_read_byte(&phonemeLengthTable[index+2]), stress[pos]);
pos += 3;
};
}
// Rewrites the phonemes using the following rules:
//
// <DIPHTONG ENDING WITH WX> -> <DIPHTONG ENDING WITH WX> WX
// <DIPHTONG NOT ENDING WITH WX> -> <DIPHTONG NOT ENDING WITH WX> YX
// UL -> AX L
// UM -> AX M
// <STRESSED VOWEL> <SILENCE> <STRESSED VOWEL> -> <STRESSED VOWEL> <SILENCE> Q <VOWEL>
// T R -> CH R
// D R -> J R
// <VOWEL> R -> <VOWEL> RX
// <VOWEL> L -> <VOWEL> LX
// G S -> G Z
// K <VOWEL OR DIPHTONG NOT ENDING WITH IY> -> KX <VOWEL OR DIPHTONG NOT ENDING WITH IY>
// G <VOWEL OR DIPHTONG NOT ENDING WITH IY> -> GX <VOWEL OR DIPHTONG NOT ENDING WITH IY>
// S P -> S B
// S T -> S D
// S K -> S G
// S KX -> S GX
// <ALVEOLAR> UW -> <ALVEOLAR> UX
// CH -> CH CH' (CH requires two phonemes to represent it)
// J -> J J' (J requires two phonemes to represent it)
// <UNSTRESSED VOWEL> T <PAUSE> -> <UNSTRESSED VOWEL> DX <PAUSE>
// <UNSTRESSED VOWEL> D <PAUSE> -> <UNSTRESSED VOWEL> DX <PAUSE>
//void Code41397()
void Parser2()
{
if (DEBUG_ESP8266SAM_LIB) printf("Parser2\n");
unsigned char pos = 0; //mem66;
unsigned char mem58 = 0;
// Loop through phonemes
while(1)
{
// SET X TO THE CURRENT POSITION
X = pos;
// GET THE PHONEME AT THE CURRENT POSITION
A = phonemeindex[pos];
// DEBUG: Print phoneme and index
if (DEBUG_ESP8266SAM_LIB && A != 255) printf("%d: %c%c\n", X, signInputTable1[A], signInputTable2[A]);
// Is phoneme pause?
if (A == 0)
{
// Move ahead to the
pos++;
continue;
}
// If end of phonemes flag reached, exit routine
if (A == 255) return;
// Copy the current phoneme index to Y
Y = A;
// RULE:
// <DIPHTONG ENDING WITH WX> -> <DIPHTONG ENDING WITH WX> WX
// <DIPHTONG NOT ENDING WITH WX> -> <DIPHTONG NOT ENDING WITH WX> YX
// Example: OIL, COW
// Check for DIPHTONG
if ((flags[A] & 16) == 0) goto pos41457;
// Not a diphthong. Get the stress
mem58 = stress[pos];
// End in IY sound?
A = flags[Y] & 32;
// If ends with IY, use YX, else use WX
if (A == 0) A = 20; else A = 21; // 'WX' = 20 'YX' = 21
//pos41443:
// Insert at WX or YX following, copying the stress
if (DEBUG_ESP8266SAM_LIB) if (A==20) printf("RULE: insert WX following diphtong NOT ending in IY sound\n");
if (DEBUG_ESP8266SAM_LIB) if (A==21) printf("RULE: insert YX following diphtong ending in IY sound\n");
Insert(pos+1, A, mem59, mem58);
X = pos;
// Jump to ???
goto pos41749;
pos41457:
// RULE:
// UL -> AX L
// Example: MEDDLE
// Get phoneme
A = phonemeindex[X];
// Skip this rule if phoneme is not UL
if (A != 78) goto pos41487; // 'UL'
A = 24; // 'L' //change 'UL' to 'AX L'
if (DEBUG_ESP8266SAM_LIB) printf("RULE: UL -> AX L\n");
pos41466:
// Get current phoneme stress
mem58 = stress[X];
// Change UL to AX
phonemeindex[X] = 13; // 'AX'
// Perform insert. Note code below may jump up here with different values
Insert(X+1, A, mem59, mem58);
pos++;
// Move to next phoneme
continue;
pos41487:
// RULE:
// UM -> AX M
// Example: ASTRONOMY
// Skip rule if phoneme != UM
if (A != 79) goto pos41495; // 'UM'
// Jump up to branch - replaces current phoneme with AX and continues
A = 27; // 'M' //change 'UM' to 'AX M'
if (DEBUG_ESP8266SAM_LIB) printf("RULE: UM -> AX M\n");
goto pos41466;
pos41495:
// RULE:
// UN -> AX N
// Example: FUNCTION
// Skip rule if phoneme != UN
if (A != 80) goto pos41503; // 'UN'
// Jump up to branch - replaces current phoneme with AX and continues
A = 28; // 'N' //change UN to 'AX N'
if (DEBUG_ESP8266SAM_LIB) printf("RULE: UN -> AX N\n");
goto pos41466;
pos41503:
// RULE:
// <STRESSED VOWEL> <SILENCE> <STRESSED VOWEL> -> <STRESSED VOWEL> <SILENCE> Q <VOWEL>
// EXAMPLE: AWAY EIGHT
Y = A;
// VOWEL set?
A = flags[A] & 128;
// Skip if not a vowel
if (A != 0)
{
// Get the stress
A = stress[X];
// If stressed...
if (A != 0)
{
// Get the following phoneme
X++;
A = phonemeindex[X];
// If following phoneme is a pause
if (A == 0)
{
// Get the phoneme following pause
X++;
Y = phonemeindex[X];
// Check for end of buffer flag
if (Y == 255) //buffer overflow
// ??? Not sure about these flags
A = 65&128;
else
// And VOWEL flag to current phoneme's flags
A = flags[Y] & 128;
// If following phonemes is not a pause
if (A != 0)
{
// If the following phoneme is not stressed
A = stress[X];
if (A != 0)
{
// Insert a glottal stop and move forward
if (DEBUG_ESP8266SAM_LIB) printf("RULE: Insert glottal stop between two stressed vowels with space between them\n");
// 31 = 'Q'
Insert(X, 31, mem59, 0);
pos++;
continue;
}
}
}
}
}
// RULES FOR PHONEMES BEFORE R
// T R -> CH R
// Example: TRACK
// Get current position and phoneme
X = pos;
A = phonemeindex[pos];
if (A != 23) goto pos41611; // 'R'
// Look at prior phoneme
X--;
A = phonemeindex[pos-1];
//pos41567:
if (A == 69) // 'T'
{
// Change T to CH
if (DEBUG_ESP8266SAM_LIB) printf("RULE: T R -> CH R\n");
phonemeindex[pos-1] = 42;
goto pos41779;
}
// RULES FOR PHONEMES BEFORE R
// D R -> J R
// Example: DRY
// Prior phonemes D?
if (A == 57) // 'D'
{
// Change D to J
phonemeindex[pos-1] = 44;
if (DEBUG_ESP8266SAM_LIB) printf("RULE: D R -> J R\n");
goto pos41788;
}
// RULES FOR PHONEMES BEFORE R
// <VOWEL> R -> <VOWEL> RX
// Example: ART
// If vowel flag is set change R to RX
A = flags[A] & 128;
if (DEBUG_ESP8266SAM_LIB) printf("RULE: R -> RX\n");
if (A != 0) phonemeindex[pos] = 18; // 'RX'
// continue to next phoneme
pos++;
continue;
pos41611:
// RULE:
// <VOWEL> L -> <VOWEL> LX
// Example: ALL
// Is phoneme L?
if (A == 24) // 'L'
{
// If prior phoneme does not have VOWEL flag set, move to next phoneme
if ((flags[phonemeindex[pos-1]] & 128) == 0) {pos++; continue;}
// Prior phoneme has VOWEL flag set, so change L to LX and move to next phoneme
if (DEBUG_ESP8266SAM_LIB) printf("RULE: <VOWEL> L -> <VOWEL> LX\n");
phonemeindex[X] = 19; // 'LX'
pos++;
continue;
}
// RULE:
// G S -> G Z
//
// Can't get to fire -
// 1. The G -> GX rule intervenes
// 2. Reciter already replaces GS -> GZ
// Is current phoneme S?
if (A == 32) // 'S'
{
// If prior phoneme is not G, move to next phoneme
if (phonemeindex[pos-1] != 60) {pos++; continue;}
// Replace S with Z and move on
if (DEBUG_ESP8266SAM_LIB) printf("RULE: G S -> G Z\n");
phonemeindex[pos] = 38; // 'Z'
pos++;
continue;
}
// RULE:
// K <VOWEL OR DIPHTONG NOT ENDING WITH IY> -> KX <VOWEL OR DIPHTONG NOT ENDING WITH IY>
// Example: COW
// Is current phoneme K?
if (A == 72) // 'K'
{
// Get next phoneme
Y = phonemeindex[pos+1];
// If at end, replace current phoneme with KX
if (Y == 255) phonemeindex[pos] = 75; // ML : prevents an index out of bounds problem
else
{
// VOWELS AND DIPHTONGS ENDING WITH IY SOUND flag set?
A = flags[Y] & 32;
if (DEBUG_ESP8266SAM_LIB) if (A==0) printf("RULE: K <VOWEL OR DIPHTONG NOT ENDING WITH IY> -> KX <VOWEL OR DIPHTONG NOT ENDING WITH IY>\n");
// Replace with KX
if (A == 0) phonemeindex[pos] = 75; // 'KX'
}
}
else
// RULE:
// G <VOWEL OR DIPHTONG NOT ENDING WITH IY> -> GX <VOWEL OR DIPHTONG NOT ENDING WITH IY>
// Example: GO
// Is character a G?
if (A == 60) // 'G'
{
// Get the following character
unsigned char index = phonemeindex[pos+1];
// At end of buffer?
if (index == 255) //prevent buffer overflow
{
pos++; continue;
}
else
// If diphtong ending with YX, move continue processing next phoneme
if ((flags[index] & 32) != 0) {pos++; continue;}
// replace G with GX and continue processing next phoneme
if (DEBUG_ESP8266SAM_LIB) printf("RULE: G <VOWEL OR DIPHTONG NOT ENDING WITH IY> -> GX <VOWEL OR DIPHTONG NOT ENDING WITH IY>\n");
phonemeindex[pos] = 63; // 'GX'
pos++;
continue;
}
// RULE:
// S P -> S B
// S T -> S D
// S K -> S G
// S KX -> S GX
// Examples: SPY, STY, SKY, SCOWL
Y = phonemeindex[pos];
//pos41719:
// Replace with softer version?
A = flags[Y] & 1;
if (A == 0) goto pos41749;
A = phonemeindex[pos-1];
if (A != 32) // 'S'
{
A = Y;
goto pos41812;
}
// Replace with softer version
if (DEBUG_ESP8266SAM_LIB) printf("RULE: S* %c%c -> S* %c%c\n", signInputTable1[Y], signInputTable2[Y],signInputTable1[Y-12], signInputTable2[Y-12]);
phonemeindex[pos] = Y-12;
pos++;
continue;
pos41749:
// RULE:
// <ALVEOLAR> UW -> <ALVEOLAR> UX
//
// Example: NEW, DEW, SUE, ZOO, THOO, TOO
// UW -> UX
A = phonemeindex[X];
if (A == 53) // 'UW'
{
// ALVEOLAR flag set?
Y = phonemeindex[X-1];
A = flags2[Y] & 4;
// If not set, continue processing next phoneme
if (A == 0) {pos++; continue;}
if (DEBUG_ESP8266SAM_LIB) printf("RULE: <ALVEOLAR> UW -> <ALVEOLAR> UX\n");
phonemeindex[X] = 16;
pos++;
continue;
}
pos41779:
// RULE:
// CH -> CH CH' (CH requires two phonemes to represent it)
// Example: CHEW
if (A == 42) // 'CH'
{
// pos41783:
if (DEBUG_ESP8266SAM_LIB) printf("CH -> CH CH+1\n");
Insert(X+1, A+1, mem59, stress[X]);
pos++;
continue;
}
pos41788:
// RULE:
// J -> J J' (J requires two phonemes to represent it)
// Example: JAY
if (A == 44) // 'J'
{
if (DEBUG_ESP8266SAM_LIB) printf("J -> J J+1\n");
Insert(X+1, A+1, mem59, stress[X]);
pos++;
continue;
}
// Jump here to continue
pos41812:
// RULE: Soften T following vowel
// NOTE: This rule fails for cases such as "ODD"
// <UNSTRESSED VOWEL> T <PAUSE> -> <UNSTRESSED VOWEL> DX <PAUSE>
// <UNSTRESSED VOWEL> D <PAUSE> -> <UNSTRESSED VOWEL> DX <PAUSE>
// Example: PARTY, TARDY
// Past this point, only process if phoneme is T or D
if (A != 69) // 'T'
if (A != 57) {pos++; continue;} // 'D'
//pos41825:
// If prior phoneme is not a vowel, continue processing phonemes
if ((flags[phonemeindex[X-1]] & 128) == 0) {pos++; continue;}
// Get next phoneme
X++;
A = phonemeindex[X];
//pos41841
// Is the next phoneme a pause?
if (A != 0)
{
// If next phoneme is not a pause, continue processing phonemes
if ((flags[A] & 128) == 0) {pos++; continue;}
// If next phoneme is stressed, continue processing phonemes
// FIXME: How does a pause get stressed?
if (stress[X] != 0) {pos++; continue;}
//pos41856:
// Set phonemes to DX
if (DEBUG_ESP8266SAM_LIB) printf("RULE: Soften T or D following vowel or ER and preceding a pause -> DX\n");
phonemeindex[pos] = 30; // 'DX'
} else
{
A = phonemeindex[X+1];
if (A == 255) //prevent buffer overflow
A = 65 & 128;
else
// Is next phoneme a vowel or ER?
A = flags[A] & 128;
if (DEBUG_ESP8266SAM_LIB) if (A != 0) printf("RULE: Soften T or D following vowel or ER and preceding a pause -> DX\n");
if (A != 0) phonemeindex[pos] = 30; // 'DX'
}
pos++;
} // while
}
// Applies various rules that adjust the lengths of phonemes
//
// Lengthen <FRICATIVE> or <VOICED> between <VOWEL> and <PUNCTUATION> by 1.5
// <VOWEL> <RX | LX> <CONSONANT> - decrease <VOWEL> length by 1
// <VOWEL> <UNVOICED PLOSIVE> - decrease vowel by 1/8th
// <VOWEL> <UNVOICED CONSONANT> - increase vowel by 1/2 + 1
// <NASAL> <STOP CONSONANT> - set nasal = 5, consonant = 6
// <VOICED STOP CONSONANT> {optional silence} <STOP CONSONANT> - shorten both to 1/2 + 1
// <LIQUID CONSONANT> <DIPHTONG> - decrease by 2
//void Code48619()
void AdjustLengths()
{
// LENGTHEN VOWELS PRECEDING PUNCTUATION
//
// Search for punctuation. If found, back up to the first vowel, then
// process all phonemes between there and up to (but not including) the punctuation.
// If any phoneme is found that is a either a fricative or voiced, the duration is
// increased by (length * 1.5) + 1
// loop index
X = 0;
unsigned char index;
// iterate through the phoneme list
unsigned char loopIndex=0;
while(1)
{
// get a phoneme
index = phonemeindex[X];
// exit loop if end on buffer token
if (index == 255) break;
// not punctuation?
if((flags2[index] & 1) == 0)
{
// skip
X++;
continue;
}
// hold index
loopIndex = X;
// Loop backwards from this point
pos48644:
// back up one phoneme
X--;
// stop once the beginning is reached
if(X == 0) break;
// get the preceding phoneme
index = phonemeindex[X];
if (index != 255) //inserted to prevent access overrun
if((flags[index] & 128) == 0) goto pos48644; // if not a vowel, continue looping
//pos48657:
do
{
// test for vowel
index = phonemeindex[X];
if (index != 255)//inserted to prevent access overrun
// test for fricative/unvoiced or not voiced
if(((flags2[index] & 32) == 0) || ((flags[index] & 4) != 0)) //nochmal <20>berpr<70>fen
{
//A = flags[Y] & 4;
//if(A == 0) goto pos48688;
// get the phoneme length
A = phonemeLength[X];
// change phoneme length to (length * 1.5) + 1
A = (A >> 1) + A + 1;
if (DEBUG_ESP8266SAM_LIB) printf("RULE: Lengthen <FRICATIVE> or <VOICED> between <VOWEL> and <PUNCTUATION> by 1.5\n");
if (DEBUG_ESP8266SAM_LIB) printf("PRE\n");
if (DEBUG_ESP8266SAM_LIB) printf("phoneme %d (%c%c) length %d\n", X, signInputTable1[phonemeindex[X]], signInputTable2[phonemeindex[X]], phonemeLength[X]);
phonemeLength[X] = A;
if (DEBUG_ESP8266SAM_LIB) printf("POST\n");
if (DEBUG_ESP8266SAM_LIB) printf("phoneme %d (%c%c) length %d\n", X, signInputTable1[phonemeindex[X]], signInputTable2[phonemeindex[X]], phonemeLength[X]);
}
// keep moving forward
X++;
} while (X != loopIndex);
// if (X != loopIndex) goto pos48657;
X++;
} // while
// Similar to the above routine, but shorten vowels under some circumstances
// Loop throught all phonemes
loopIndex = 0;
//pos48697
while(1)
{
// get a phoneme
X = loopIndex;
index = phonemeindex[X];
// exit routine at end token
if (index == 255) return;
// vowel?
A = flags[index] & 128;
if (A != 0)
{
// get next phoneme
X++;
index = phonemeindex[X];
// get flags
if (index == 255)
mem56 = 65; // use if end marker
else
mem56 = flags[index];
// not a consonant
if ((flags[index] & 64) == 0)
{
// RX or LX?
if ((index == 18) || (index == 19)) // 'RX' & 'LX'
{
// get the next phoneme
X++;
index = phonemeindex[X];
// next phoneme a consonant?
if ((flags[index] & 64) != 0) {
// RULE: <VOWEL> RX | LX <CONSONANT>
if (DEBUG_ESP8266SAM_LIB) printf("RULE: <VOWEL> <RX | LX> <CONSONANT> - decrease length by 1\n");
if (DEBUG_ESP8266SAM_LIB) printf("PRE\n");
if (DEBUG_ESP8266SAM_LIB) printf("phoneme %d (%c%c) length %d\n", loopIndex, signInputTable1[phonemeindex[loopIndex]], signInputTable2[phonemeindex[loopIndex]], phonemeLength[loopIndex]);
// decrease length of vowel by 1 frame
phonemeLength[loopIndex]--;
if (DEBUG_ESP8266SAM_LIB) printf("POST\n");
if (DEBUG_ESP8266SAM_LIB) printf("phoneme %d (%c%c) length %d\n", loopIndex, signInputTable1[phonemeindex[loopIndex]], signInputTable2[phonemeindex[loopIndex]], phonemeLength[loopIndex]);
}
// move ahead
loopIndex++;
continue;
}
// move ahead
loopIndex++;
continue;
}
// Got here if not <VOWEL>
// not voiced
if ((mem56 & 4) == 0)
{
// Unvoiced
// *, .*, ?*, ,*, -*, DX, S*, SH, F*, TH, /H, /X, CH, P*, T*, K*, KX
// not an unvoiced plosive?
if((mem56 & 1) == 0) {
// move ahead
loopIndex++;
continue;
}
// P*, T*, K*, KX
// RULE: <VOWEL> <UNVOICED PLOSIVE>
// <VOWEL> <P*, T*, K*, KX>
// move back
X--;
if (DEBUG_ESP8266SAM_LIB) printf("RULE: <VOWEL> <UNVOICED PLOSIVE> - decrease vowel by 1/8th\n");
if (DEBUG_ESP8266SAM_LIB) printf("PRE\n");
if (DEBUG_ESP8266SAM_LIB) printf("phoneme %d (%c%c) length %d\n", X, signInputTable1[phonemeindex[X]], signInputTable2[phonemeindex[X]], phonemeLength[X]);
// decrease length by 1/8th
mem56 = phonemeLength[X] >> 3;
phonemeLength[X] -= mem56;
if (DEBUG_ESP8266SAM_LIB) printf("POST\n");
if (DEBUG_ESP8266SAM_LIB) printf("phoneme %d (%c%c) length %d\n", X, signInputTable1[phonemeindex[X]], signInputTable2[phonemeindex[X]], phonemeLength[X]);
// move ahead
loopIndex++;
continue;
}
// RULE: <VOWEL> <VOICED CONSONANT>
// <VOWEL> <WH, R*, L*, W*, Y*, M*, N*, NX, DX, Q*, Z*, ZH, V*, DH, J*, B*, D*, G*, GX>
if (DEBUG_ESP8266SAM_LIB) printf("RULE: <VOWEL> <VOICED CONSONANT> - increase vowel by 1/2 + 1\n");
if (DEBUG_ESP8266SAM_LIB) printf("PRE\n");
if (DEBUG_ESP8266SAM_LIB) printf("phoneme %d (%c%c) length %d\n", X-1, signInputTable1[phonemeindex[X-1]], signInputTable2[phonemeindex[X-1]], phonemeLength[X-1]);
// decrease length
A = phonemeLength[X-1];
phonemeLength[X-1] = (A >> 2) + A + 1; // 5/4*A + 1
if (DEBUG_ESP8266SAM_LIB) printf("POST\n");
if (DEBUG_ESP8266SAM_LIB) printf("phoneme %d (%c%c) length %d\n", X-1, signInputTable1[phonemeindex[X-1]], signInputTable2[phonemeindex[X-1]], phonemeLength[X-1]);
// move ahead
loopIndex++;
continue;
}
// WH, R*, L*, W*, Y*, M*, N*, NX, Q*, Z*, ZH, V*, DH, J*, B*, D*, G*, GX
//pos48821:
// RULE: <NASAL> <STOP CONSONANT>
// Set punctuation length to 6
// Set stop consonant length to 5
// nasal?
if((flags2[index] & 8) != 0)
{
// M*, N*, NX,
// get the next phoneme
X++;
index = phonemeindex[X];
// end of buffer?
if (index == 255)
A = 65&2; //prevent buffer overflow
else
A = flags[index] & 2; // check for stop consonant
// is next phoneme a stop consonant?
if (A != 0)
// B*, D*, G*, GX, P*, T*, K*, KX
{
if (DEBUG_ESP8266SAM_LIB) printf("RULE: <NASAL> <STOP CONSONANT> - set nasal = 5, consonant = 6\n");
if (DEBUG_ESP8266SAM_LIB) printf("POST\n");
if (DEBUG_ESP8266SAM_LIB) printf("phoneme %d (%c%c) length %d\n", X, signInputTable1[phonemeindex[X]], signInputTable2[phonemeindex[X]], phonemeLength[X]);
if (DEBUG_ESP8266SAM_LIB) printf("phoneme %d (%c%c) length %d\n", X-1, signInputTable1[phonemeindex[X-1]], signInputTable2[phonemeindex[X-1]], phonemeLength[X-1]);
// set stop consonant length to 6
phonemeLength[X] = 6;
// set nasal length to 5
phonemeLength[X-1] = 5;
if (DEBUG_ESP8266SAM_LIB) printf("POST\n");
if (DEBUG_ESP8266SAM_LIB) printf("phoneme %d (%c%c) length %d\n", X, signInputTable1[phonemeindex[X]], signInputTable2[phonemeindex[X]], phonemeLength[X]);
if (DEBUG_ESP8266SAM_LIB) printf("phoneme %d (%c%c) length %d\n", X-1, signInputTable1[phonemeindex[X-1]], signInputTable2[phonemeindex[X-1]], phonemeLength[X-1]);
}
// move to next phoneme
loopIndex++;
continue;
}
// WH, R*, L*, W*, Y*, Q*, Z*, ZH, V*, DH, J*, B*, D*, G*, GX
// RULE: <VOICED STOP CONSONANT> {optional silence} <STOP CONSONANT>
// Shorten both to (length/2 + 1)
// (voiced) stop consonant?
if((flags[index] & 2) != 0)
{
// B*, D*, G*, GX
// move past silence
do
{
// move ahead
X++;
index = phonemeindex[X];
} while(index == 0);
// check for end of buffer
if (index == 255) //buffer overflow
{
// ignore, overflow code
if ((65 & 2) == 0) {loopIndex++; continue;}
} else if ((flags[index] & 2) == 0) {
// if another stop consonant, move ahead
loopIndex++;
continue;
}
// RULE: <UNVOICED STOP CONSONANT> {optional silence} <STOP CONSONANT>
if (DEBUG_ESP8266SAM_LIB) printf("RULE: <UNVOICED STOP CONSONANT> {optional silence} <STOP CONSONANT> - shorten both to 1/2 + 1\n");
if (DEBUG_ESP8266SAM_LIB) printf("PRE\n");
if (DEBUG_ESP8266SAM_LIB) printf("phoneme %d (%c%c) length %d\n", X, signInputTable1[phonemeindex[X]], signInputTable2[phonemeindex[X]], phonemeLength[X]);
if (DEBUG_ESP8266SAM_LIB) printf("phoneme %d (%c%c) length %d\n", X-1, signInputTable1[phonemeindex[X-1]], signInputTable2[phonemeindex[X-1]], phonemeLength[X-1]);
// X gets overwritten, so hold prior X value for debug statement
int debugX = X;
// shorten the prior phoneme length to (length/2 + 1)
phonemeLength[X] = (phonemeLength[X] >> 1) + 1;
X = loopIndex;
// also shorten this phoneme length to (length/2 +1)
phonemeLength[loopIndex] = (phonemeLength[loopIndex] >> 1) + 1;
if (DEBUG_ESP8266SAM_LIB) printf("POST\n");
if (DEBUG_ESP8266SAM_LIB) printf("phoneme %d (%c%c) length %d\n", debugX, signInputTable1[phonemeindex[debugX]], signInputTable2[phonemeindex[debugX]], phonemeLength[debugX]);
if (DEBUG_ESP8266SAM_LIB) printf("phoneme %d (%c%c) length %d\n", debugX-1, signInputTable1[phonemeindex[debugX-1]], signInputTable2[phonemeindex[debugX-1]], phonemeLength[debugX-1]);
// move ahead
loopIndex++;
continue;
}
// WH, R*, L*, W*, Y*, Q*, Z*, ZH, V*, DH, J*, **,
// RULE: <VOICED NON-VOWEL> <DIPHTONG>
// Decrease <DIPHTONG> by 2
// liquic consonant?
if ((flags2[index] & 16) != 0)
{
// R*, L*, W*, Y*
// get the prior phoneme
index = phonemeindex[X-1];
// prior phoneme a stop consonant>
if((flags[index] & 2) != 0)
// Rule: <LIQUID CONSONANT> <DIPHTONG>
if (DEBUG_ESP8266SAM_LIB) printf("RULE: <LIQUID CONSONANT> <DIPHTONG> - decrease by 2\n");
if (DEBUG_ESP8266SAM_LIB) printf("PRE\n");
if (DEBUG_ESP8266SAM_LIB) printf("phoneme %d (%c%c) length %d\n", X, signInputTable1[phonemeindex[X]], signInputTable2[phonemeindex[X]], phonemeLength[X]);
// decrease the phoneme length by 2 frames (20 ms)
phonemeLength[X] -= 2;
if (DEBUG_ESP8266SAM_LIB) printf("POST\n");
if (DEBUG_ESP8266SAM_LIB) printf("phoneme %d (%c%c) length %d\n", X, signInputTable1[phonemeindex[X]], signInputTable2[phonemeindex[X]], phonemeLength[X]);
}
// move to next phoneme
loopIndex++;
continue;
}
// goto pos48701;
}
// -------------------------------------------------------------------------
// ML : Code47503 is division with remainder, and mem50 gets the sign
void Code47503(unsigned char mem52)
{
Y = 0;
if ((mem53 & 128) != 0)
{
mem53 = -mem53;
Y = 128;
}
mem50 = Y;
A = 0;
for(X=8; X > 0; X--)
{
int temp = mem53;
mem53 = mem53 << 1;
A = A << 1;
if (temp >= 128) A++;
if (A >= mem52)
{
A = A - mem52;
mem53++;
}
}
mem51 = A;
if ((mem50 & 128) != 0) mem53 = -mem53;
}