Tasmota/lib/IRremoteESP8266-2.5.2.03/test/IRutils_test.cpp

353 lines
14 KiB
C++

// Copyright 2017 David Conran
#include "IRutils.h"
#include <stdint.h>
#include "IRrecv.h"
#include "IRsend.h"
#include "IRsend_test.h"
#include "gtest/gtest.h"
// Tests reverseBits().
// Tests reverseBits for typical use.
TEST(ReverseBitsTest, TypicalUse) {
EXPECT_EQ(0xF, reverseBits(0xF0, 8));
EXPECT_EQ(0xFFFF, reverseBits(0xFFFF0000, 32));
EXPECT_EQ(0x555500005555FFFF, reverseBits(0xFFFFAAAA0000AAAA, 64));
EXPECT_EQ(0, reverseBits(0, 64));
EXPECT_EQ(0xFFFFFFFFFFFFFFFF, reverseBits(0xFFFFFFFFFFFFFFFF, 64));
}
// Tests reverseBits for bit size values <= 1
TEST(ReverseBitsTest, LessThanTwoBitsReversed) {
EXPECT_EQ(0x12345678, reverseBits(0x12345678, 1));
EXPECT_EQ(1234, reverseBits(1234, 0));
}
// Tests reverseBits for bit size larger than a uint64_t.
TEST(ReverseBitsTest, LargerThan64BitsReversed) {
EXPECT_EQ(0, reverseBits(0, 65));
EXPECT_EQ(0xFFFFFFFFFFFFFFFF, reverseBits(0xFFFFFFFFFFFFFFFF, 100));
EXPECT_EQ(0x555500005555FFFF, reverseBits(0xFFFFAAAA0000AAAA, 3000));
}
// Tests reverseBits for bit sizes less than all the data stored.
TEST(ReverseBitsTest, LessBitsReversedThanInputHasSet) {
EXPECT_EQ(0xF8, reverseBits(0xF1, 4));
EXPECT_EQ(0xF5, reverseBits(0xFA, 4));
EXPECT_EQ(0x12345678FFFF0000, reverseBits(0x123456780000FFFF, 32));
}
// Tests for uint64ToString()
TEST(TestUint64ToString, TrivialCases) {
EXPECT_EQ("0", uint64ToString(0)); // Default base (10)
EXPECT_EQ("0", uint64ToString(0, 2)); // Base-2
EXPECT_EQ("0", uint64ToString(0, 8)); // Base-8
EXPECT_EQ("0", uint64ToString(0, 10)); // Base-10
EXPECT_EQ("0", uint64ToString(0, 16)); // Base-16
EXPECT_EQ("1", uint64ToString(1, 2)); // Base-2
EXPECT_EQ("2", uint64ToString(2, 8)); // Base-8
EXPECT_EQ("3", uint64ToString(3, 10)); // Base-10
EXPECT_EQ("4", uint64ToString(4, 16)); // Base-16
}
TEST(TestUint64ToString, NormalUse) {
EXPECT_EQ("12345", uint64ToString(12345));
EXPECT_EQ("100", uint64ToString(4, 2));
EXPECT_EQ("3039", uint64ToString(12345, 16));
EXPECT_EQ("123456", uint64ToString(123456));
EXPECT_EQ("1E240", uint64ToString(123456, 16));
EXPECT_EQ("FEEDDEADBEEF", uint64ToString(0xfeeddeadbeef, 16));
}
TEST(TestUint64ToString, Max64Bit) {
EXPECT_EQ("18446744073709551615", uint64ToString(UINT64_MAX)); // Default
EXPECT_EQ("1111111111111111111111111111111111111111111111111111111111111111",
uint64ToString(UINT64_MAX, 2)); // Base-2
EXPECT_EQ("1777777777777777777777", uint64ToString(UINT64_MAX, 8)); // Base-8
EXPECT_EQ("18446744073709551615", uint64ToString(UINT64_MAX, 10)); // Base-10
EXPECT_EQ("FFFFFFFFFFFFFFFF", uint64ToString(UINT64_MAX, 16)); // Base-16
}
TEST(TestUint64ToString, Max32Bit) {
EXPECT_EQ("4294967295", uint64ToString(UINT32_MAX)); // Default
EXPECT_EQ("37777777777", uint64ToString(UINT32_MAX, 8)); // Base-8
EXPECT_EQ("4294967295", uint64ToString(UINT32_MAX, 10)); // Base-10
EXPECT_EQ("FFFFFFFF", uint64ToString(UINT32_MAX, 16)); // Base-16
}
TEST(TestUint64ToString, InterestingCases) {
// Previous hacky-code didn't handle leading zeros in the lower 32 bits.
EXPECT_EQ("100000000", uint64ToString(0x100000000, 16));
EXPECT_EQ("100000001", uint64ToString(0x100000001, 16));
}
TEST(TestUint64ToString, SillyBases) {
// If we are given a silly base, we should defer to Base-10.
EXPECT_EQ("12345", uint64ToString(12345, 0)); // Super silly, makes no sense.
EXPECT_EQ("12345", uint64ToString(12345, 1)); // We don't do unary.
EXPECT_EQ("12345", uint64ToString(12345, 100)); // We can't print base-100.
EXPECT_EQ("12345", uint64ToString(12345, 37)); // Base-37 is one to far.
EXPECT_EQ("9IX", uint64ToString(12345, 36)); // But we *can* do base-36.
}
TEST(TestGetCorrectedRawLength, NoLargeValues) {
IRsendTest irsend(0);
IRrecv irrecv(1);
uint16_t test_data[7] = {1, 2, 3, 4, 5, 6, 7};
irsend.begin();
irsend.reset();
irsend.sendRaw(test_data, 7, 38000);
irsend.makeDecodeResult();
irrecv.decode(&irsend.capture);
EXPECT_EQ(7, getCorrectedRawLength(&irsend.capture));
}
TEST(TestGetCorrectedRawLength, WithLargeValues) {
IRsendTest irsend(0);
IRrecv irrecv(1);
uint16_t test_data[7] = {10, 20, 30, 40, 50, 60, 70};
irsend.begin();
irsend.reset();
irsend.sendRaw(test_data, 7, 38000);
irsend.makeDecodeResult();
irrecv.decode(&irsend.capture);
irsend.capture.rawbuf[3] = 60000;
ASSERT_EQ(2, kRawTick); // The following values rely on kRawTick being 2.
EXPECT_EQ(7 + 2, getCorrectedRawLength(&irsend.capture));
irsend.capture.rawbuf[4] = UINT16_MAX - 1;
EXPECT_EQ(7 + 2 * 2, getCorrectedRawLength(&irsend.capture));
irsend.capture.rawbuf[4] = UINT16_MAX;
EXPECT_EQ(7 + 2 * 2, getCorrectedRawLength(&irsend.capture));
}
TEST(TestResultToSourceCode, SimpleTests) {
IRsendTest irsend(0);
IRrecv irrecv(1);
uint16_t test_data[7] = {10, 20, 30, 40, 50, 60, 70};
irsend.begin();
irsend.reset();
irsend.sendRaw(test_data, 7, 38000);
irsend.makeDecodeResult();
irrecv.decode(&irsend.capture);
EXPECT_EQ(
"uint16_t rawData[7] = {10, 20, 30, 40, 50, 60, 70};"
" // UNKNOWN A5E5F35D\n",
resultToSourceCode(&irsend.capture));
// Stick in some large values.
irsend.capture.rawbuf[3] = 60000;
EXPECT_EQ(
"uint16_t rawData[9] = {10, 20, 65535, 0, 54465, 40,"
" 50, 60, 70}; // UNKNOWN A5E5F35D\n",
resultToSourceCode(&irsend.capture));
irsend.capture.rawbuf[5] = UINT16_MAX;
EXPECT_EQ(
"uint16_t rawData[11] = {10, 20, 65535, 0, 54465, 40,"
" 65535, 0, 65535, 60, 70}; // UNKNOWN A5E5F35D\n",
resultToSourceCode(&irsend.capture));
// Reset and put the large value in a space location.
irsend.reset();
irsend.sendRaw(test_data, 7, 38000);
irsend.makeDecodeResult();
irrecv.decode(&irsend.capture);
irsend.capture.rawbuf[4] = UINT16_MAX - 1;
EXPECT_EQ(
"uint16_t rawData[9] = {10, 20, 30, 65535, 0, 65533,"
" 50, 60, 70}; // UNKNOWN A5E5F35D\n",
resultToSourceCode(&irsend.capture));
}
TEST(TestResultToSourceCode, SimpleProtocols) {
IRsendTest irsend(0);
IRrecv irrecv(1);
irsend.begin();
// Generate a code which has address & command values.
irsend.reset();
irsend.sendNEC(irsend.encodeNEC(0x10, 0x20));
irsend.makeDecodeResult();
ASSERT_TRUE(irrecv.decode(&irsend.capture));
ASSERT_EQ(NEC, irsend.capture.decode_type);
ASSERT_EQ(kNECBits, irsend.capture.bits);
EXPECT_EQ(
"uint16_t rawData[68] = {8960, 4480, 560, 560, 560, 560, 560, 560, "
"560, 560, 560, 1680, 560, 560, 560, 560, 560, 560, 560, 1680, "
"560, 1680, 560, 1680, 560, 1680, 560, 560, 560, 1680, 560, 1680, "
"560, 1680, 560, 560, 560, 560, 560, 560, 560, 560, 560, 560, "
"560, 1680, 560, 560, 560, 560, 560, 1680, 560, 1680, 560, 1680, "
"560, 1680, 560, 1680, 560, 560, 560, 1680, 560, 1680, 560, 40320 "
"}; // NEC 8F704FB\n"
"uint32_t address = 0x10;\n"
"uint32_t command = 0x20;\n"
"uint64_t data = 0x8F704FB;\n",
resultToSourceCode(&irsend.capture));
// Generate a code which DOESN'T have address & command values.
irsend.reset();
irsend.sendNikai(0xD0F2F);
irsend.makeDecodeResult();
ASSERT_TRUE(irrecv.decode(&irsend.capture));
ASSERT_EQ(NIKAI, irsend.capture.decode_type);
ASSERT_EQ(kNikaiBits, irsend.capture.bits);
EXPECT_EQ(
"uint16_t rawData[52] = {4000, 4000, 500, 2000, 500, 2000, "
"500, 2000, 500, 2000, 500, 1000, 500, 1000, 500, 2000, 500, 1000, "
"500, 2000, 500, 2000, 500, 2000, 500, 2000, 500, 1000, 500, 1000, "
"500, 1000, 500, 1000, 500, 2000, 500, 2000, 500, 1000, 500, 2000, "
"500, 1000, 500, 1000, 500, 1000, 500, 1000, 500, 8500 };"
" // NIKAI D0F2F\n"
"uint64_t data = 0xD0F2F;\n",
resultToSourceCode(&irsend.capture));
}
TEST(TestResultToSourceCode, ComplexProtocols) {
IRsendTest irsend(0);
IRrecv irrecv(1);
irsend.begin();
uint8_t state[kToshibaACStateLength] = {0xF2, 0x0D, 0x03, 0xFC, 0x01,
0x00, 0x00, 0x00, 0x01};
irsend.reset();
irsend.sendToshibaAC(state);
irsend.makeDecodeResult();
ASSERT_TRUE(irrecv.decode(&irsend.capture));
ASSERT_EQ(TOSHIBA_AC, irsend.capture.decode_type);
ASSERT_EQ(kToshibaACBits, irsend.capture.bits);
EXPECT_EQ(
"uint16_t rawData[296] = {4400, 4300, 542, 1622, 542, 1622, "
"542, 1622, 542, 1622, 542, 472, 542, 472, 542, 1622, 542, 472, "
"542, 472, 542, 472, 542, 472, 542, 472, 542, 1622, 542, 1622, "
"542, 472, 542, 1622, 542, 472, 542, 472, 542, 472, 542, 472, "
"542, 472, 542, 472, 542, 1622, 542, 1622, 542, 1622, 542, 1622, "
"542, 1622, 542, 1622, 542, 1622, 542, 1622, 542, 472, 542, 472, "
"542, 472, 542, 472, 542, 472, 542, 472, 542, 472, 542, 472, "
"542, 472, 542, 1622, 542, 472, 542, 472, 542, 472, 542, 472, "
"542, 472, 542, 472, 542, 472, 542, 472, 542, 472, 542, 472, "
"542, 472, 542, 472, 542, 472, 542, 472, 542, 472, 542, 472, "
"542, 472, 542, 472, 542, 472, 542, 472, 542, 472, 542, 472, "
"542, 472, 542, 472, 542, 472, 542, 472, 542, 472, 542, 472, "
"542, 472, 542, 472, 542, 472, 542, 1622, 542, 7048, 4400, 4300, "
"542, 1622, 542, 1622, 542, 1622, 542, 1622, 542, 472, 542, 472, "
"542, 1622, 542, 472, 542, 472, 542, 472, 542, 472, 542, 472, "
"542, 1622, 542, 1622, 542, 472, 542, 1622, 542, 472, 542, 472, "
"542, 472, 542, 472, 542, 472, 542, 472, 542, 1622, 542, 1622, "
"542, 1622, 542, 1622, 542, 1622, 542, 1622, 542, 1622, 542, 1622, "
"542, 472, 542, 472, 542, 472, 542, 472, 542, 472, 542, 472, "
"542, 472, 542, 472, 542, 472, 542, 1622, 542, 472, 542, 472, "
"542, 472, 542, 472, 542, 472, 542, 472, 542, 472, 542, 472, "
"542, 472, 542, 472, 542, 472, 542, 472, 542, 472, 542, 472, "
"542, 472, 542, 472, 542, 472, 542, 472, 542, 472, 542, 472, "
"542, 472, 542, 472, 542, 472, 542, 472, 542, 472, 542, 472, "
"542, 472, 542, 472, 542, 472, 542, 472, 542, 472, 542, 1622, "
"542, 7048 }; // TOSHIBA_AC\n"
"uint8_t state[9] = {0xF2, 0x0D, 0x03, 0xFC, 0x01, 0x00, 0x00, 0x00, "
"0x01};\n",
resultToSourceCode(&irsend.capture));
}
TEST(TestResultToTimingInfo, General) {
IRsendTest irsend(0);
IRrecv irrecv(1);
irsend.begin();
irsend.reset();
irsend.sendNEC(irsend.encodeNEC(0x10, 0x20));
irsend.makeDecodeResult();
ASSERT_TRUE(irrecv.decode(&irsend.capture));
ASSERT_EQ(NEC, irsend.capture.decode_type);
ASSERT_EQ(kNECBits, irsend.capture.bits);
EXPECT_EQ(
"Raw Timing[68]:\n"
" + 8960, - 4480, + 560, - 560, + 560, - 560,"
" + 560, - 560, \n"
" + 560, - 560, + 560, - 1680, + 560, - 560,"
" + 560, - 560, \n"
" + 560, - 560, + 560, - 1680, + 560, - 1680,"
" + 560, - 1680, \n"
" + 560, - 1680, + 560, - 560, + 560, - 1680,"
" + 560, - 1680, \n"
" + 560, - 1680, + 560, - 560, + 560, - 560,"
" + 560, - 560, \n"
" + 560, - 560, + 560, - 560, + 560, - 1680,"
" + 560, - 560, \n"
" + 560, - 560, + 560, - 1680, + 560, - 1680,"
" + 560, - 1680, \n"
" + 560, - 1680, + 560, - 1680, + 560, - 560,"
" + 560, - 1680, \n"
" + 560, - 1680, + 560, - 40320\n",
resultToTimingInfo(&irsend.capture));
irsend.reset();
uint16_t rawData[9] = {10, 20, 30, 40, 50, 60, 70, 80, 90};
irsend.sendRaw(rawData, 9, 38000);
irsend.makeDecodeResult();
ASSERT_TRUE(irrecv.decode(&irsend.capture));
EXPECT_EQ(
"Raw Timing[9]:\n"
" + 10, - 20, + 30, - 40, + 50, - 60,"
" + 70, - 80, \n"
" + 90\n",
resultToTimingInfo(&irsend.capture));
}
TEST(TestResultToHumanReadableBasic, SimpleCodes) {
IRsendTest irsend(0);
IRrecv irrecv(1);
irsend.begin();
irsend.reset();
irsend.sendNEC(irsend.encodeNEC(0x10, 0x20));
irsend.makeDecodeResult();
ASSERT_TRUE(irrecv.decode(&irsend.capture));
ASSERT_EQ(NEC, irsend.capture.decode_type);
ASSERT_EQ(kNECBits, irsend.capture.bits);
EXPECT_EQ(
"Encoding : NEC\n"
"Code : 8F704FB (32 bits)\n",
resultToHumanReadableBasic(&irsend.capture));
}
TEST(TestResultToHumanReadableBasic, ComplexCodes) {
IRsendTest irsend(0);
IRrecv irrecv(1);
irsend.begin();
uint8_t state[kToshibaACStateLength] = {0xF2, 0x0D, 0x03, 0xFC, 0x01,
0x00, 0x00, 0x00, 0x01};
irsend.reset();
irsend.sendToshibaAC(state);
irsend.makeDecodeResult();
ASSERT_TRUE(irrecv.decode(&irsend.capture));
ASSERT_EQ(TOSHIBA_AC, irsend.capture.decode_type);
ASSERT_EQ(kToshibaACBits, irsend.capture.bits);
EXPECT_EQ(
"Encoding : TOSHIBA_AC\n"
"Code : F20D03FC0100000001 (72 bits)\n",
resultToHumanReadableBasic(&irsend.capture));
}
TEST(TestInvertBits, Normal) {
ASSERT_EQ(0xAAAA5555AAAA5555, invertBits(0x5555AAAA5555AAAA, 64));
ASSERT_EQ(0xAAAA5555, invertBits(0x5555AAAA, 32));
ASSERT_EQ(0xFFFFFFFFFFFFFFFF, invertBits(0x0, 64));
ASSERT_EQ(0x0, invertBits(invertBits(0x0, 64), 64));
ASSERT_EQ(0x2, invertBits(0x1, 2));
}
TEST(TestInvertBits, ZeroBits) {
ASSERT_EQ(0xAAAA5555AAAA5555, invertBits(0xAAAA5555AAAA5555, 0));
ASSERT_EQ(0x0, invertBits(0x0, 0));
ASSERT_EQ(0x1, invertBits(0x1, 0));
}
TEST(TestInvertBits, MoreThan64Bits) {
ASSERT_EQ(0xAAAA5555AAAA5555, invertBits(0x5555AAAA5555AAAA, 70));
ASSERT_EQ(0xFFFFFFFFFFFFFFFF, invertBits(0x0, 128));
}