mirror of https://github.com/arendst/Tasmota.git
651 lines
25 KiB
C++
651 lines
25 KiB
C++
/*
|
|
xsns_09_bmp.ino - BMP pressure, temperature, humidity and gas sensor support for Tasmota
|
|
|
|
Copyright (C) 2019 Heiko Krupp and Theo Arends
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifdef USE_I2C
|
|
#ifdef USE_BMP
|
|
/*********************************************************************************************\
|
|
* BMP085, BMP180, BMP280, BME280, BME680 - Pressure, Temperature, Humidity (BME280/BME680) and gas (BME680)
|
|
*
|
|
* Source: Heiko Krupp and Adafruit Industries
|
|
*
|
|
* I2C Address: 0x76 or 0x77
|
|
\*********************************************************************************************/
|
|
|
|
#define XSNS_09 9
|
|
|
|
#define BMP_ADDR1 0x76
|
|
#define BMP_ADDR2 0x77
|
|
|
|
#define BMP180_CHIPID 0x55
|
|
#define BMP280_CHIPID 0x58
|
|
#define BME280_CHIPID 0x60
|
|
#define BME680_CHIPID 0x61
|
|
|
|
#define BMP_REGISTER_CHIPID 0xD0
|
|
|
|
#define BMP_MAX_SENSORS 2
|
|
|
|
const char kBmpTypes[] PROGMEM = "BMP180|BMP280|BME280|BME680";
|
|
|
|
typedef struct {
|
|
uint8_t bmp_address; // I2C bus address
|
|
char bmp_name[7]; // Sensor name - "BMPXXX"
|
|
uint8_t bmp_type;
|
|
uint8_t bmp_model;
|
|
#ifdef USE_BME680
|
|
uint8_t bme680_state;
|
|
float bmp_gas_resistance;
|
|
#endif // USE_BME680
|
|
float bmp_temperature;
|
|
float bmp_pressure;
|
|
float bmp_humidity;
|
|
} bmp_sensors_t;
|
|
|
|
uint8_t bmp_addresses[] = { BMP_ADDR1, BMP_ADDR2 };
|
|
uint8_t bmp_count = 0;
|
|
uint8_t bmp_once = 1;
|
|
|
|
bmp_sensors_t *bmp_sensors = nullptr;
|
|
|
|
/*********************************************************************************************\
|
|
* BMP085 and BME180
|
|
\*********************************************************************************************/
|
|
|
|
#define BMP180_REG_CONTROL 0xF4
|
|
#define BMP180_REG_RESULT 0xF6
|
|
#define BMP180_TEMPERATURE 0x2E
|
|
#define BMP180_PRESSURE3 0xF4 // Max. oversampling -> OSS = 3
|
|
|
|
#define BMP180_AC1 0xAA
|
|
#define BMP180_AC2 0xAC
|
|
#define BMP180_AC3 0xAE
|
|
#define BMP180_AC4 0xB0
|
|
#define BMP180_AC5 0xB2
|
|
#define BMP180_AC6 0xB4
|
|
#define BMP180_VB1 0xB6
|
|
#define BMP180_VB2 0xB8
|
|
#define BMP180_MB 0xBA
|
|
#define BMP180_MC 0xBC
|
|
#define BMP180_MD 0xBE
|
|
|
|
#define BMP180_OSS 3
|
|
|
|
typedef struct {
|
|
int16_t cal_ac1;
|
|
int16_t cal_ac2;
|
|
int16_t cal_ac3;
|
|
int16_t cal_b1;
|
|
int16_t cal_b2;
|
|
int16_t cal_mc;
|
|
int16_t cal_md;
|
|
uint16_t cal_ac4;
|
|
uint16_t cal_ac5;
|
|
uint16_t cal_ac6;
|
|
} bmp180_cal_data_t;
|
|
|
|
bmp180_cal_data_t *bmp180_cal_data = nullptr;
|
|
|
|
bool Bmp180Calibration(uint8_t bmp_idx)
|
|
{
|
|
if (!bmp180_cal_data) {
|
|
bmp180_cal_data = (bmp180_cal_data_t*)malloc(BMP_MAX_SENSORS * sizeof(bmp180_cal_data_t));
|
|
}
|
|
if (!bmp180_cal_data) { return false; }
|
|
|
|
bmp180_cal_data[bmp_idx].cal_ac1 = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_AC1);
|
|
bmp180_cal_data[bmp_idx].cal_ac2 = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_AC2);
|
|
bmp180_cal_data[bmp_idx].cal_ac3 = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_AC3);
|
|
bmp180_cal_data[bmp_idx].cal_ac4 = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_AC4);
|
|
bmp180_cal_data[bmp_idx].cal_ac5 = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_AC5);
|
|
bmp180_cal_data[bmp_idx].cal_ac6 = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_AC6);
|
|
bmp180_cal_data[bmp_idx].cal_b1 = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_VB1);
|
|
bmp180_cal_data[bmp_idx].cal_b2 = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_VB2);
|
|
bmp180_cal_data[bmp_idx].cal_mc = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_MC);
|
|
bmp180_cal_data[bmp_idx].cal_md = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_MD);
|
|
|
|
// Check for Errors in calibration data. Value never is 0x0000 or 0xFFFF
|
|
if (!bmp180_cal_data[bmp_idx].cal_ac1 |
|
|
!bmp180_cal_data[bmp_idx].cal_ac2 |
|
|
!bmp180_cal_data[bmp_idx].cal_ac3 |
|
|
!bmp180_cal_data[bmp_idx].cal_ac4 |
|
|
!bmp180_cal_data[bmp_idx].cal_ac5 |
|
|
!bmp180_cal_data[bmp_idx].cal_ac6 |
|
|
!bmp180_cal_data[bmp_idx].cal_b1 |
|
|
!bmp180_cal_data[bmp_idx].cal_b2 |
|
|
!bmp180_cal_data[bmp_idx].cal_mc |
|
|
!bmp180_cal_data[bmp_idx].cal_md) {
|
|
return false;
|
|
}
|
|
|
|
if ((bmp180_cal_data[bmp_idx].cal_ac1 == (int16_t)0xFFFF) |
|
|
(bmp180_cal_data[bmp_idx].cal_ac2 == (int16_t)0xFFFF) |
|
|
(bmp180_cal_data[bmp_idx].cal_ac3 == (int16_t)0xFFFF) |
|
|
(bmp180_cal_data[bmp_idx].cal_ac4 == 0xFFFF) |
|
|
(bmp180_cal_data[bmp_idx].cal_ac5 == 0xFFFF) |
|
|
(bmp180_cal_data[bmp_idx].cal_ac6 == 0xFFFF) |
|
|
(bmp180_cal_data[bmp_idx].cal_b1 == (int16_t)0xFFFF) |
|
|
(bmp180_cal_data[bmp_idx].cal_b2 == (int16_t)0xFFFF) |
|
|
(bmp180_cal_data[bmp_idx].cal_mc == (int16_t)0xFFFF) |
|
|
(bmp180_cal_data[bmp_idx].cal_md == (int16_t)0xFFFF)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void Bmp180Read(uint8_t bmp_idx)
|
|
{
|
|
if (!bmp180_cal_data) { return; }
|
|
|
|
I2cWrite8(bmp_sensors[bmp_idx].bmp_address, BMP180_REG_CONTROL, BMP180_TEMPERATURE);
|
|
delay(5); // 5ms conversion time
|
|
int ut = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BMP180_REG_RESULT);
|
|
int32_t xt1 = (ut - (int32_t)bmp180_cal_data[bmp_idx].cal_ac6) * ((int32_t)bmp180_cal_data[bmp_idx].cal_ac5) >> 15;
|
|
int32_t xt2 = ((int32_t)bmp180_cal_data[bmp_idx].cal_mc << 11) / (xt1 + (int32_t)bmp180_cal_data[bmp_idx].cal_md);
|
|
int32_t bmp180_b5 = xt1 + xt2;
|
|
bmp_sensors[bmp_idx].bmp_temperature = ((bmp180_b5 + 8) >> 4) / 10.0;
|
|
|
|
I2cWrite8(bmp_sensors[bmp_idx].bmp_address, BMP180_REG_CONTROL, BMP180_PRESSURE3); // Highest resolution
|
|
delay(2 + (4 << BMP180_OSS)); // 26ms conversion time at ultra high resolution
|
|
uint32_t up = I2cRead24(bmp_sensors[bmp_idx].bmp_address, BMP180_REG_RESULT);
|
|
up >>= (8 - BMP180_OSS);
|
|
|
|
int32_t b6 = bmp180_b5 - 4000;
|
|
int32_t x1 = ((int32_t)bmp180_cal_data[bmp_idx].cal_b2 * ((b6 * b6) >> 12)) >> 11;
|
|
int32_t x2 = ((int32_t)bmp180_cal_data[bmp_idx].cal_ac2 * b6) >> 11;
|
|
int32_t x3 = x1 + x2;
|
|
int32_t b3 = ((((int32_t)bmp180_cal_data[bmp_idx].cal_ac1 * 4 + x3) << BMP180_OSS) + 2) >> 2;
|
|
|
|
x1 = ((int32_t)bmp180_cal_data[bmp_idx].cal_ac3 * b6) >> 13;
|
|
x2 = ((int32_t)bmp180_cal_data[bmp_idx].cal_b1 * ((b6 * b6) >> 12)) >> 16;
|
|
x3 = ((x1 + x2) + 2) >> 2;
|
|
uint32_t b4 = ((uint32_t)bmp180_cal_data[bmp_idx].cal_ac4 * (uint32_t)(x3 + 32768)) >> 15;
|
|
uint32_t b7 = ((uint32_t)up - b3) * (uint32_t)(50000UL >> BMP180_OSS);
|
|
|
|
int32_t p;
|
|
if (b7 < 0x80000000) {
|
|
p = (b7 * 2) / b4;
|
|
}
|
|
else {
|
|
p = (b7 / b4) * 2;
|
|
}
|
|
x1 = (p >> 8) * (p >> 8);
|
|
x1 = (x1 * 3038) >> 16;
|
|
x2 = (-7357 * p) >> 16;
|
|
p += ((x1 + x2 + (int32_t)3791) >> 4);
|
|
bmp_sensors[bmp_idx].bmp_pressure = (float)p / 100.0; // convert to mbar
|
|
}
|
|
|
|
/*********************************************************************************************\
|
|
* BMP280 and BME280
|
|
*
|
|
* Programmer : BMP280/BME280 Datasheet and Adafruit with changes by Theo Arends
|
|
\*********************************************************************************************/
|
|
|
|
#define BME280_REGISTER_CONTROLHUMID 0xF2
|
|
#define BME280_REGISTER_CONTROL 0xF4
|
|
#define BME280_REGISTER_CONFIG 0xF5
|
|
#define BME280_REGISTER_PRESSUREDATA 0xF7
|
|
#define BME280_REGISTER_TEMPDATA 0xFA
|
|
#define BME280_REGISTER_HUMIDDATA 0xFD
|
|
|
|
#define BME280_REGISTER_DIG_T1 0x88
|
|
#define BME280_REGISTER_DIG_T2 0x8A
|
|
#define BME280_REGISTER_DIG_T3 0x8C
|
|
#define BME280_REGISTER_DIG_P1 0x8E
|
|
#define BME280_REGISTER_DIG_P2 0x90
|
|
#define BME280_REGISTER_DIG_P3 0x92
|
|
#define BME280_REGISTER_DIG_P4 0x94
|
|
#define BME280_REGISTER_DIG_P5 0x96
|
|
#define BME280_REGISTER_DIG_P6 0x98
|
|
#define BME280_REGISTER_DIG_P7 0x9A
|
|
#define BME280_REGISTER_DIG_P8 0x9C
|
|
#define BME280_REGISTER_DIG_P9 0x9E
|
|
#define BME280_REGISTER_DIG_H1 0xA1
|
|
#define BME280_REGISTER_DIG_H2 0xE1
|
|
#define BME280_REGISTER_DIG_H3 0xE3
|
|
#define BME280_REGISTER_DIG_H4 0xE4
|
|
#define BME280_REGISTER_DIG_H5 0xE5
|
|
#define BME280_REGISTER_DIG_H6 0xE7
|
|
|
|
typedef struct {
|
|
uint16_t dig_T1;
|
|
int16_t dig_T2;
|
|
int16_t dig_T3;
|
|
uint16_t dig_P1;
|
|
int16_t dig_P2;
|
|
int16_t dig_P3;
|
|
int16_t dig_P4;
|
|
int16_t dig_P5;
|
|
int16_t dig_P6;
|
|
int16_t dig_P7;
|
|
int16_t dig_P8;
|
|
int16_t dig_P9;
|
|
int16_t dig_H2;
|
|
int16_t dig_H4;
|
|
int16_t dig_H5;
|
|
uint8_t dig_H1;
|
|
uint8_t dig_H3;
|
|
int8_t dig_H6;
|
|
} Bme280CalibrationData_t;
|
|
|
|
Bme280CalibrationData_t *Bme280CalibrationData = nullptr;
|
|
|
|
bool Bmx280Calibrate(uint8_t bmp_idx)
|
|
{
|
|
// if (I2cRead8(bmp_address, BMP_REGISTER_CHIPID) != BME280_CHIPID) return false;
|
|
|
|
if (!Bme280CalibrationData) {
|
|
Bme280CalibrationData = (Bme280CalibrationData_t*)malloc(BMP_MAX_SENSORS * sizeof(Bme280CalibrationData_t));
|
|
}
|
|
if (!Bme280CalibrationData) { return false; }
|
|
|
|
Bme280CalibrationData[bmp_idx].dig_T1 = I2cRead16LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_T1);
|
|
Bme280CalibrationData[bmp_idx].dig_T2 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_T2);
|
|
Bme280CalibrationData[bmp_idx].dig_T3 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_T3);
|
|
Bme280CalibrationData[bmp_idx].dig_P1 = I2cRead16LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P1);
|
|
Bme280CalibrationData[bmp_idx].dig_P2 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P2);
|
|
Bme280CalibrationData[bmp_idx].dig_P3 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P3);
|
|
Bme280CalibrationData[bmp_idx].dig_P4 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P4);
|
|
Bme280CalibrationData[bmp_idx].dig_P5 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P5);
|
|
Bme280CalibrationData[bmp_idx].dig_P6 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P6);
|
|
Bme280CalibrationData[bmp_idx].dig_P7 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P7);
|
|
Bme280CalibrationData[bmp_idx].dig_P8 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P8);
|
|
Bme280CalibrationData[bmp_idx].dig_P9 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_P9);
|
|
if (BME280_CHIPID == bmp_sensors[bmp_idx].bmp_type) { // #1051
|
|
Bme280CalibrationData[bmp_idx].dig_H1 = I2cRead8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_H1);
|
|
Bme280CalibrationData[bmp_idx].dig_H2 = I2cReadS16_LE(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_H2);
|
|
Bme280CalibrationData[bmp_idx].dig_H3 = I2cRead8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_H3);
|
|
Bme280CalibrationData[bmp_idx].dig_H4 = (I2cRead8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_H4) << 4) | (I2cRead8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_H4 + 1) & 0xF);
|
|
Bme280CalibrationData[bmp_idx].dig_H5 = (I2cRead8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_H5 + 1) << 4) | (I2cRead8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_H5) >> 4);
|
|
Bme280CalibrationData[bmp_idx].dig_H6 = (int8_t)I2cRead8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_DIG_H6);
|
|
I2cWrite8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_CONTROL, 0x00); // sleep mode since writes to config can be ignored in normal mode (Datasheet 5.4.5/6 page 27)
|
|
// Set before CONTROL_meas (DS 5.4.3)
|
|
I2cWrite8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_CONTROLHUMID, 0x01); // 1x oversampling
|
|
I2cWrite8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_CONFIG, 0xA0); // 1sec standby between measurements (to limit self heating), IIR filter off
|
|
I2cWrite8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_CONTROL, 0x27); // 1x oversampling, normal mode
|
|
} else {
|
|
I2cWrite8(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_CONTROL, 0xB7); // 16x oversampling, normal mode (Adafruit)
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void Bme280Read(uint8_t bmp_idx)
|
|
{
|
|
if (!Bme280CalibrationData) { return; }
|
|
|
|
int32_t adc_T = I2cRead24(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_TEMPDATA);
|
|
adc_T >>= 4;
|
|
|
|
int32_t vart1 = ((((adc_T >> 3) - ((int32_t)Bme280CalibrationData[bmp_idx].dig_T1 << 1))) * ((int32_t)Bme280CalibrationData[bmp_idx].dig_T2)) >> 11;
|
|
int32_t vart2 = (((((adc_T >> 4) - ((int32_t)Bme280CalibrationData[bmp_idx].dig_T1)) * ((adc_T >> 4) - ((int32_t)Bme280CalibrationData[bmp_idx].dig_T1))) >> 12) *
|
|
((int32_t)Bme280CalibrationData[bmp_idx].dig_T3)) >> 14;
|
|
int32_t t_fine = vart1 + vart2;
|
|
float T = (t_fine * 5 + 128) >> 8;
|
|
bmp_sensors[bmp_idx].bmp_temperature = T / 100.0;
|
|
|
|
int32_t adc_P = I2cRead24(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_PRESSUREDATA);
|
|
adc_P >>= 4;
|
|
|
|
int64_t var1 = ((int64_t)t_fine) - 128000;
|
|
int64_t var2 = var1 * var1 * (int64_t)Bme280CalibrationData[bmp_idx].dig_P6;
|
|
var2 = var2 + ((var1 * (int64_t)Bme280CalibrationData[bmp_idx].dig_P5) << 17);
|
|
var2 = var2 + (((int64_t)Bme280CalibrationData[bmp_idx].dig_P4) << 35);
|
|
var1 = ((var1 * var1 * (int64_t)Bme280CalibrationData[bmp_idx].dig_P3) >> 8) + ((var1 * (int64_t)Bme280CalibrationData[bmp_idx].dig_P2) << 12);
|
|
var1 = (((((int64_t)1) << 47) + var1)) * ((int64_t)Bme280CalibrationData[bmp_idx].dig_P1) >> 33;
|
|
if (0 == var1) {
|
|
return; // avoid exception caused by division by zero
|
|
}
|
|
int64_t p = 1048576 - adc_P;
|
|
p = (((p << 31) - var2) * 3125) / var1;
|
|
var1 = (((int64_t)Bme280CalibrationData[bmp_idx].dig_P9) * (p >> 13) * (p >> 13)) >> 25;
|
|
var2 = (((int64_t)Bme280CalibrationData[bmp_idx].dig_P8) * p) >> 19;
|
|
p = ((p + var1 + var2) >> 8) + (((int64_t)Bme280CalibrationData[bmp_idx].dig_P7) << 4);
|
|
bmp_sensors[bmp_idx].bmp_pressure = (float)p / 25600.0;
|
|
|
|
if (BMP280_CHIPID == bmp_sensors[bmp_idx].bmp_type) { return; }
|
|
|
|
int32_t adc_H = I2cRead16(bmp_sensors[bmp_idx].bmp_address, BME280_REGISTER_HUMIDDATA);
|
|
|
|
int32_t v_x1_u32r = (t_fine - ((int32_t)76800));
|
|
v_x1_u32r = (((((adc_H << 14) - (((int32_t)Bme280CalibrationData[bmp_idx].dig_H4) << 20) -
|
|
(((int32_t)Bme280CalibrationData[bmp_idx].dig_H5) * v_x1_u32r)) + ((int32_t)16384)) >> 15) *
|
|
(((((((v_x1_u32r * ((int32_t)Bme280CalibrationData[bmp_idx].dig_H6)) >> 10) *
|
|
(((v_x1_u32r * ((int32_t)Bme280CalibrationData[bmp_idx].dig_H3)) >> 11) + ((int32_t)32768))) >> 10) +
|
|
((int32_t)2097152)) * ((int32_t)Bme280CalibrationData[bmp_idx].dig_H2) + 8192) >> 14));
|
|
v_x1_u32r = (v_x1_u32r - (((((v_x1_u32r >> 15) * (v_x1_u32r >> 15)) >> 7) *
|
|
((int32_t)Bme280CalibrationData[bmp_idx].dig_H1)) >> 4));
|
|
v_x1_u32r = (v_x1_u32r < 0) ? 0 : v_x1_u32r;
|
|
v_x1_u32r = (v_x1_u32r > 419430400) ? 419430400 : v_x1_u32r;
|
|
float h = (v_x1_u32r >> 12);
|
|
bmp_sensors[bmp_idx].bmp_humidity = h / 1024.0;
|
|
}
|
|
|
|
#ifdef USE_BME680
|
|
/*********************************************************************************************\
|
|
* BME680 support by Bosch https://github.com/BoschSensortec/BME680_driver
|
|
\*********************************************************************************************/
|
|
|
|
#include <bme680.h>
|
|
|
|
struct bme680_dev *gas_sensor = nullptr;
|
|
|
|
static void BmeDelayMs(uint32_t ms)
|
|
{
|
|
delay(ms);
|
|
}
|
|
|
|
bool Bme680Init(uint8_t bmp_idx)
|
|
{
|
|
if (!gas_sensor) {
|
|
gas_sensor = (bme680_dev*)malloc(BMP_MAX_SENSORS * sizeof(bme680_dev));
|
|
}
|
|
if (!gas_sensor) { return false; }
|
|
|
|
gas_sensor[bmp_idx].dev_id = bmp_sensors[bmp_idx].bmp_address;
|
|
gas_sensor[bmp_idx].intf = BME680_I2C_INTF;
|
|
gas_sensor[bmp_idx].read = &I2cReadBuffer;
|
|
gas_sensor[bmp_idx].write = &I2cWriteBuffer;
|
|
gas_sensor[bmp_idx].delay_ms = BmeDelayMs;
|
|
/* amb_temp can be set to 25 prior to configuring the gas sensor
|
|
* or by performing a few temperature readings without operating the gas sensor.
|
|
*/
|
|
gas_sensor[bmp_idx].amb_temp = 25;
|
|
|
|
int8_t rslt = BME680_OK;
|
|
rslt = bme680_init(&gas_sensor[bmp_idx]);
|
|
if (rslt != BME680_OK) { return false; }
|
|
|
|
/* Set the temperature, pressure and humidity settings */
|
|
gas_sensor[bmp_idx].tph_sett.os_hum = BME680_OS_2X;
|
|
gas_sensor[bmp_idx].tph_sett.os_pres = BME680_OS_4X;
|
|
gas_sensor[bmp_idx].tph_sett.os_temp = BME680_OS_8X;
|
|
gas_sensor[bmp_idx].tph_sett.filter = BME680_FILTER_SIZE_3;
|
|
|
|
/* Set the remaining gas sensor settings and link the heating profile */
|
|
gas_sensor[bmp_idx].gas_sett.run_gas = BME680_ENABLE_GAS_MEAS;
|
|
/* Create a ramp heat waveform in 3 steps */
|
|
gas_sensor[bmp_idx].gas_sett.heatr_temp = 320; /* degree Celsius */
|
|
gas_sensor[bmp_idx].gas_sett.heatr_dur = 150; /* milliseconds */
|
|
|
|
/* Select the power mode */
|
|
/* Must be set before writing the sensor configuration */
|
|
gas_sensor[bmp_idx].power_mode = BME680_FORCED_MODE;
|
|
|
|
/* Set the required sensor settings needed */
|
|
uint8_t set_required_settings = BME680_OST_SEL | BME680_OSP_SEL | BME680_OSH_SEL | BME680_FILTER_SEL | BME680_GAS_SENSOR_SEL;
|
|
|
|
/* Set the desired sensor configuration */
|
|
rslt = bme680_set_sensor_settings(set_required_settings,&gas_sensor[bmp_idx]);
|
|
if (rslt != BME680_OK) { return false; }
|
|
|
|
bmp_sensors[bmp_idx].bme680_state = 0;
|
|
|
|
return true;
|
|
}
|
|
|
|
void Bme680Read(uint8_t bmp_idx)
|
|
{
|
|
if (!gas_sensor) { return; }
|
|
|
|
int8_t rslt = BME680_OK;
|
|
|
|
if (BME680_CHIPID == bmp_sensors[bmp_idx].bmp_type) {
|
|
if (0 == bmp_sensors[bmp_idx].bme680_state) {
|
|
/* Trigger the next measurement if you would like to read data out continuously */
|
|
rslt = bme680_set_sensor_mode(&gas_sensor[bmp_idx]);
|
|
if (rslt != BME680_OK) { return; }
|
|
|
|
/* Get the total measurement duration so as to sleep or wait till the
|
|
* measurement is complete */
|
|
// uint16_t meas_period;
|
|
// bme680_get_profile_dur(&meas_period, &gas_sensor[bmp_idx]);
|
|
// delay(meas_period); /* Delay till the measurement is ready */ // 183 mSec - we'll wait a second
|
|
|
|
bmp_sensors[bmp_idx].bme680_state = 1;
|
|
} else {
|
|
bmp_sensors[bmp_idx].bme680_state = 0;
|
|
|
|
struct bme680_field_data data;
|
|
rslt = bme680_get_sensor_data(&data, &gas_sensor[bmp_idx]);
|
|
if (rslt != BME680_OK) { return; }
|
|
|
|
bmp_sensors[bmp_idx].bmp_temperature = data.temperature / 100.0;
|
|
bmp_sensors[bmp_idx].bmp_humidity = data.humidity / 1000.0;
|
|
bmp_sensors[bmp_idx].bmp_pressure = data.pressure / 100.0;
|
|
/* Avoid using measurements from an unstable heating setup */
|
|
if (data.status & BME680_GASM_VALID_MSK) {
|
|
bmp_sensors[bmp_idx].bmp_gas_resistance = data.gas_resistance / 1000.0;
|
|
} else {
|
|
bmp_sensors[bmp_idx].bmp_gas_resistance = 0;
|
|
}
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
#endif // USE_BME680
|
|
|
|
/********************************************************************************************/
|
|
|
|
void BmpDetect(void)
|
|
{
|
|
if (bmp_count) return;
|
|
|
|
int bmp_sensor_size = BMP_MAX_SENSORS * sizeof(bmp_sensors_t);
|
|
if (!bmp_sensors) {
|
|
bmp_sensors = (bmp_sensors_t*)malloc(bmp_sensor_size);
|
|
}
|
|
if (!bmp_sensors) { return; }
|
|
memset(bmp_sensors, 0, bmp_sensor_size); // Init defaults to 0
|
|
|
|
for (uint32_t i = 0; i < BMP_MAX_SENSORS; i++) {
|
|
uint8_t bmp_type = I2cRead8(bmp_addresses[i], BMP_REGISTER_CHIPID);
|
|
if (bmp_type) {
|
|
bmp_sensors[bmp_count].bmp_address = bmp_addresses[i];
|
|
bmp_sensors[bmp_count].bmp_type = bmp_type;
|
|
bmp_sensors[bmp_count].bmp_model = 0;
|
|
|
|
bool success = false;
|
|
switch (bmp_type) {
|
|
case BMP180_CHIPID:
|
|
success = Bmp180Calibration(bmp_count);
|
|
break;
|
|
case BME280_CHIPID:
|
|
bmp_sensors[bmp_count].bmp_model++; // 2
|
|
case BMP280_CHIPID:
|
|
bmp_sensors[bmp_count].bmp_model++; // 1
|
|
success = Bmx280Calibrate(bmp_count);
|
|
break;
|
|
#ifdef USE_BME680
|
|
case BME680_CHIPID:
|
|
bmp_sensors[bmp_count].bmp_model = 3; // 3
|
|
success = Bme680Init(bmp_count);
|
|
break;
|
|
#endif // USE_BME680
|
|
}
|
|
if (success) {
|
|
GetTextIndexed(bmp_sensors[bmp_count].bmp_name, sizeof(bmp_sensors[bmp_count].bmp_name), bmp_sensors[bmp_count].bmp_model, kBmpTypes);
|
|
AddLog_P2(LOG_LEVEL_DEBUG, S_LOG_I2C_FOUND_AT, bmp_sensors[bmp_count].bmp_name, bmp_sensors[bmp_count].bmp_address);
|
|
bmp_count++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void BmpRead(void)
|
|
{
|
|
if (!bmp_sensors) { return; }
|
|
|
|
for (uint32_t bmp_idx = 0; bmp_idx < bmp_count; bmp_idx++) {
|
|
switch (bmp_sensors[bmp_idx].bmp_type) {
|
|
case BMP180_CHIPID:
|
|
Bmp180Read(bmp_idx);
|
|
break;
|
|
case BMP280_CHIPID:
|
|
case BME280_CHIPID:
|
|
Bme280Read(bmp_idx);
|
|
break;
|
|
#ifdef USE_BME680
|
|
case BME680_CHIPID:
|
|
Bme680Read(bmp_idx);
|
|
break;
|
|
#endif // USE_BME680
|
|
}
|
|
}
|
|
ConvertTemp(bmp_sensors[0].bmp_temperature); // Set global temperature
|
|
ConvertHumidity(bmp_sensors[0].bmp_humidity); // Set global humidity
|
|
}
|
|
|
|
void BmpEverySecond(void)
|
|
{
|
|
if (91 == (uptime %100)) {
|
|
// 1mS
|
|
BmpDetect();
|
|
}
|
|
else {
|
|
// 2mS
|
|
BmpRead();
|
|
}
|
|
}
|
|
|
|
void BmpShow(bool json)
|
|
{
|
|
if (!bmp_sensors) { return; }
|
|
|
|
for (uint32_t bmp_idx = 0; bmp_idx < bmp_count; bmp_idx++) {
|
|
if (bmp_sensors[bmp_idx].bmp_type) {
|
|
float bmp_sealevel = 0.0;
|
|
if (bmp_sensors[bmp_idx].bmp_pressure != 0.0) {
|
|
bmp_sealevel = (bmp_sensors[bmp_idx].bmp_pressure / FastPrecisePow(1.0 - ((float)Settings.altitude / 44330.0), 5.255)) - 21.6;
|
|
bmp_sealevel = ConvertPressure(bmp_sealevel);
|
|
}
|
|
float bmp_temperature = ConvertTemp(bmp_sensors[bmp_idx].bmp_temperature);
|
|
float bmp_pressure = ConvertPressure(bmp_sensors[bmp_idx].bmp_pressure);
|
|
|
|
char name[10];
|
|
strlcpy(name, bmp_sensors[bmp_idx].bmp_name, sizeof(name));
|
|
if (bmp_count > 1) {
|
|
snprintf_P(name, sizeof(name), PSTR("%s%c%02X"), name, IndexSeparator(), bmp_sensors[bmp_idx].bmp_address); // BMXXXX-XX
|
|
}
|
|
|
|
char temperature[33];
|
|
dtostrfd(bmp_temperature, Settings.flag2.temperature_resolution, temperature);
|
|
char pressure[33];
|
|
dtostrfd(bmp_pressure, Settings.flag2.pressure_resolution, pressure);
|
|
char sea_pressure[33];
|
|
dtostrfd(bmp_sealevel, Settings.flag2.pressure_resolution, sea_pressure);
|
|
char humidity[33];
|
|
dtostrfd(bmp_sensors[bmp_idx].bmp_humidity, Settings.flag2.humidity_resolution, humidity);
|
|
#ifdef USE_BME680
|
|
char gas_resistance[33];
|
|
dtostrfd(bmp_sensors[bmp_idx].bmp_gas_resistance, 2, gas_resistance);
|
|
#endif // USE_BME680
|
|
|
|
if (json) {
|
|
char json_humidity[40];
|
|
snprintf_P(json_humidity, sizeof(json_humidity), PSTR(",\"" D_JSON_HUMIDITY "\":%s"), humidity);
|
|
char json_sealevel[40];
|
|
snprintf_P(json_sealevel, sizeof(json_sealevel), PSTR(",\"" D_JSON_PRESSUREATSEALEVEL "\":%s"), sea_pressure);
|
|
#ifdef USE_BME680
|
|
char json_gas[40];
|
|
snprintf_P(json_gas, sizeof(json_gas), PSTR(",\"" D_JSON_GAS "\":%s"), gas_resistance);
|
|
|
|
ResponseAppend_P(PSTR(",\"%s\":{\"" D_JSON_TEMPERATURE "\":%s%s,\"" D_JSON_PRESSURE "\":%s%s%s}"),
|
|
name,
|
|
temperature,
|
|
(bmp_sensors[bmp_idx].bmp_model >= 2) ? json_humidity : "",
|
|
pressure,
|
|
(Settings.altitude != 0) ? json_sealevel : "",
|
|
(bmp_sensors[bmp_idx].bmp_model >= 3) ? json_gas : "");
|
|
#else
|
|
ResponseAppend_P(PSTR(",\"%s\":{\"" D_JSON_TEMPERATURE "\":%s%s,\"" D_JSON_PRESSURE "\":%s%s}"),
|
|
name, temperature, (bmp_sensors[bmp_idx].bmp_model >= 2) ? json_humidity : "", pressure, (Settings.altitude != 0) ? json_sealevel : "");
|
|
#endif // USE_BME680
|
|
|
|
#ifdef USE_DOMOTICZ
|
|
if ((0 == tele_period) && (0 == bmp_idx)) { // We want the same first sensor to report to Domoticz in case a read is missed
|
|
DomoticzTempHumPressureSensor(temperature, humidity, pressure);
|
|
#ifdef USE_BME680
|
|
if (bmp_sensors[bmp_idx].bmp_model >= 3) { DomoticzSensor(DZ_AIRQUALITY, (uint32_t)bmp_sensors[bmp_idx].bmp_gas_resistance); }
|
|
#endif // USE_BME680
|
|
}
|
|
#endif // USE_DOMOTICZ
|
|
|
|
#ifdef USE_KNX
|
|
if (0 == tele_period) {
|
|
KnxSensor(KNX_TEMPERATURE, bmp_temperature);
|
|
KnxSensor(KNX_HUMIDITY, bmp_sensors[bmp_idx].bmp_humidity);
|
|
}
|
|
#endif // USE_KNX
|
|
|
|
#ifdef USE_WEBSERVER
|
|
} else {
|
|
WSContentSend_PD(HTTP_SNS_TEMP, name, temperature, TempUnit());
|
|
if (bmp_sensors[bmp_idx].bmp_model >= 2) {
|
|
WSContentSend_PD(HTTP_SNS_HUM, name, humidity);
|
|
}
|
|
WSContentSend_PD(HTTP_SNS_PRESSURE, name, pressure, PressureUnit().c_str());
|
|
if (Settings.altitude != 0) {
|
|
WSContentSend_PD(HTTP_SNS_SEAPRESSURE, name, sea_pressure, PressureUnit().c_str());
|
|
}
|
|
#ifdef USE_BME680
|
|
if (bmp_sensors[bmp_idx].bmp_model >= 3) {
|
|
WSContentSend_PD(PSTR("{s}%s " D_GAS "{m}%s " D_UNIT_KILOOHM "{e}"), name, gas_resistance);
|
|
}
|
|
#endif // USE_BME680
|
|
|
|
#endif // USE_WEBSERVER
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*********************************************************************************************\
|
|
* Interface
|
|
\*********************************************************************************************/
|
|
|
|
bool Xsns09(uint8_t function)
|
|
{
|
|
bool result = false;
|
|
|
|
if (i2c_flg) {
|
|
switch (function) {
|
|
case FUNC_INIT:
|
|
BmpDetect();
|
|
break;
|
|
case FUNC_EVERY_SECOND:
|
|
BmpEverySecond();
|
|
break;
|
|
case FUNC_JSON_APPEND:
|
|
BmpShow(1);
|
|
break;
|
|
#ifdef USE_WEBSERVER
|
|
case FUNC_WEB_SENSOR:
|
|
BmpShow(0);
|
|
break;
|
|
#endif // USE_WEBSERVER
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#endif // USE_BMP
|
|
#endif // USE_I2C
|