Tasmota/tasmota/xnrg_19_cse7761.ino

363 lines
16 KiB
C++

/*
xnrg_19_cse7761.ino - CSE7761 energy sensor support for Tasmota
Copyright (C) 2021 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ENERGY_SENSOR
#ifdef USE_CSE7761
/*********************************************************************************************\
* CSE7761 - Energy (Sonoff Dual R3 Pow)
*
* Based on datasheet from ChipSea
\*********************************************************************************************/
#define XNRG_19 19
#define CSE7761_K1 2 // Current channel sampling resistance in milli Ohm
#define CSE7761_K2 2 // Voltage divider resistance in 1k/1M
#define CSE7761_2POWER22 4194304
#define CSE7761_2POWER23 8388608
#define CSE7761_2POWER31 2147483648
enum CSE7761 { RmsIAC, RmsIBC, RmsUC, PowerPAC, PowerPBC, PowerSC, EnergyAc, EnergyBC };
#include <TasmotaSerial.h>
TasmotaSerial *Cse7761Serial = nullptr;
struct {
uint32_t voltage_rms = 0;
uint32_t current_rms[2] = { 0 };
uint32_t active_power[2] = { 0 };
uint16_t coefficient[8] = { 0 };
uint8_t init = 0;
bool found = false;
} CSE7761Data;
void Cse7761Write(uint32_t reg, uint32_t data) {
uint8_t buffer[5];
buffer[0] = 0xA5;
buffer[1] = reg;
uint32_t len = 2;
if (data) {
if (data < 0xFF) {
buffer[2] = data & 0xFF;
len = 3;
} else {
buffer[2] = (data >> 8) & 0xFF;
buffer[3] = data & 0xFF;
len = 4;
}
uint8_t crc = 0;
for (uint32_t i = 0; i < len; i++) {
crc += buffer[i];
}
buffer[len] = ~crc;
len++;
}
Cse7761Serial->write(buffer, len);
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Send %d, Data %*_H"), len, len, buffer);
}
uint32_t Cse7761Read(uint32_t reg, uint32_t request) {
delay(3);
Cse7761Write(reg, 0);
uint8_t buffer[5];
uint32_t rcvd = 0;
uint32_t timeout = millis() + 3;
while (!TimeReached(timeout) && (rcvd <= request) && (rcvd <= sizeof(buffer))) {
int value = Cse7761Serial->read();
if (value > -1) {
buffer[rcvd++] = value;
}
}
if (!rcvd) {
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Rcvd %d"), rcvd);
return 0;
}
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Rcvd %d, Data %*_H"), rcvd, rcvd, buffer);
int result = 0;
uint8_t crc = 0xA5 + reg;
for (uint32_t i = 0; i < rcvd -1; i++) {
result = (result << 8) | buffer[i];
crc += buffer[i];
}
crc = ~crc;
if (crc != buffer[rcvd]) {
result = 0;
}
return result;
}
bool Cse7761ChipInit(void) {
uint16_t calc_chksum = 0xFFFF;
for (uint32_t i = 0; i < 8; i++) {
CSE7761Data.coefficient[i] = Cse7761Read(0x70 + i, 2);
calc_chksum += CSE7761Data.coefficient[i];
}
uint16_t dummy = Cse7761Read(0x6E, 2);
uint16_t coeff_chksum = Cse7761Read(0x6F, 2);
if (calc_chksum != coeff_chksum) {
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Coefficients invalid"));
// return false;
}
delay(3);
Cse7761Write(0xEA, 0xE5); // Enable write operation
delay(5);
uint8_t sys_status = Cse7761Read(0x43, 1);
if (sys_status & 0x10) { // Write enable to protected registers (WREN)
delay(3);
/*
System Control Register (SYSCON) Addr:0x00 Default value: 0x0A04
Bit name Function description
15-11 NC -, the default is 1
10 ADC2ON
=1, means ADC current channel B is on (Sonoff Dual R3 Pow)
=0, means ADC current channel B is closed
9 NC -, the default is 1.
8-6 PGAIB[2:0] Current channel B analog gain selection highest bit
=1XX, PGA of current channel B=16
=011, PGA of current channel B=8
=010, PGA of current channel B=4
=001, PGA of current channel B=2
=000, PGA of current channel B=1 (Sonoff Dual R3 Pow)
5-3 PGAU[2:0] Highest bit of voltage channel analog gain selection
=1XX, PGA of current channel U=16
=011, PGA of current channel U=8
=010, PGA of current channel U=4
=001, PGA of current channel U=2 (Sonoff Dual R3 Pow)
=000, PGA of current channel U=1
2-0 PGAIA[2:0] Current channel A analog gain selection highest bit
=1XX, PGA of current channel A=16
=011, PGA of current channel A=8
=010, PGA of current channel A=4
=001, PGA of current channel A=2
=000, PGA of current channel A=1 (Sonoff Dual R3 Pow)
*/
Cse7761Write(0x80, 0xFF04); // Set SYSCON
/*
Energy Measure Control Register (EMUCON) Addr:0x01 Default value: 0x0000
Bit name Function description
15-14 Tsensor_Step[1:0] Measurement steps of temperature sensor:
=2'b00 The first step of temperature sensor measurement, the Offset of OP1 and OP2 is +/+. (Sonoff Dual R3 Pow)
=2'b01 The second step of temperature sensor measurement, the Offset of OP1 and OP2 is +/-.
=2'b10 The third step of temperature sensor measurement, the Offset of OP1 and OP2 is -/+.
=2'b11 The fourth step of temperature sensor measurement, the Offset of OP1 and OP2 is -/-.
After measuring these four results and averaging, the AD value of the current measured temperature can be obtained.
13 tensor_en Temperature measurement module control
=0 when the temperature measurement module is closed; (Sonoff Dual R3 Pow)
=1 when the temperature measurement module is turned on;
12 comp_off Comparator module close signal:
=0 when the comparator module is in working state
=1 when the comparator module is off (Sonoff Dual R3 Pow)
11-10 Pmode[1:0] Selection of active energy calculation method:
Pmode =00, both positive and negative active energy participate in the accumulation,
the accumulation method is algebraic sum mode, the reverse REVQ symbol indicates to active power; (Sonoff Dual R3 Pow)
Pmode = 01, only accumulate positive active energy;
Pmode = 10, both positive and negative active energy participate in the accumulation,
and the accumulation method is absolute value method. No reverse active power indication;
Pmode =11, reserved, the mode is the same as Pmode =00
9 NC -
8 ZXD1 The initial value of ZX output is 0, and different waveforms are output according to the configuration of ZXD1 and ZXD0:
=0, it means that the ZX output changes only at the selected zero-crossing point (Sonoff Dual R3 Pow)
=1, indicating that the ZX output changes at both the positive and negative zero crossings
7 ZXD0
=0, indicates that the positive zero-crossing point is selected as the zero-crossing detection signal (Sonoff Dual R3 Pow)
=1, indicating that the negative zero-crossing point is selected as the zero-crossing detection signal
6 HPFIBOFF
=0, enable current channel B digital high-pass filter (Sonoff Dual R3 Pow)
=1, turn off the digital high-pass filter of current channel B
5 HPFIAOFF
=0, enable current channel A digital high-pass filter (Sonoff Dual R3 Pow)
=1, turn off the digital high-pass filter of current channel A
4 HPFUOFF
=0, enable U channel digital high pass filter (Sonoff Dual R3 Pow)
=1, turn off the U channel digital high-pass filter
3-2 NC -
1 PBRUN
=1, enable PFB pulse output and active energy register accumulation; (Sonoff Dual R3 Pow)
=0 (default), turn off PFB pulse output and active energy register accumulation.
0 PARUN
=1, enable PFA pulse output and active energy register accumulation; (Sonoff Dual R3 Pow)
=0 (default), turn off PFA pulse output and active energy register accumulation.
*/
Cse7761Write(0x81, 0x1003); // Set EMUCON
/*
Energy Measure Control Register (EMUCON2) Addr: 0x13 Default value: 0x0001
Bit name Function description
15-13 NC -
12 SDOCmos
=1, SDO pin CMOS open-drain output (Sonoff Dual R3 Pow)
=0, SDO pin CMOS output
11 EPB_CB Energy_PB clear signal control, the default is 0, and it needs to be configured to 1 in UART mode.
Clear after reading is not supported in UART mode
=1, Energy_PB will not be cleared after reading; (Sonoff Dual R3 Pow)
=0, Energy_PB is cleared after reading;
10 EPA_CB Energy_PA clear signal control, the default is 0, it needs to be configured to 1 in UART mode,
Clear after reading is not supported in UART mode
=1, Energy_PA will not be cleared after reading; (Sonoff Dual R3 Pow)
=0, Energy_PA is cleared after reading;
9-8 DUPSEL[1:0] Average register update frequency control
=00, Update frequency 3.4Hz
=01, Update frequency 6.8Hz
=10, Update frequency 13.65Hz
=11, Update frequency 27.3Hz (Sonoff Dual R3 Pow)
7 CHS_IB Current channel B measurement selection signal
=1, measure the current of channel B (Sonoff Dual R3 Pow)
=0, measure the internal temperature of the chip
6 PfactorEN Power factor function enable
=1, turn on the power factor output function (Sonoff Dual R3 Pow)
=0, turn off the power factor output function
5 WaveEN Waveform data, instantaneous data output enable signal
=1, turn on the waveform data output function
=0, turn off the waveform data output function (Sonoff Dual R3 Pow)
4 SAGEN Voltage drop detection enable signal, WaveEN=1 must be configured first
=1, turn on the voltage drop detection function
=0, turn off the voltage drop detection function (Sonoff Dual R3 Pow)
3 OverEN Overvoltage, overcurrent, and overload detection enable signal, WaveEN=1 must be configured first
=1, turn on the overvoltage, overcurrent, and overload detection functions
=0, turn off the overvoltage, overcurrent, and overload detection functions (Sonoff Dual R3 Pow)
2 ZxEN Zero-crossing detection, phase angle, voltage frequency measurement enable signal
=1, turn on the zero-crossing detection, phase angle, and voltage frequency measurement functions
=0, disable zero-crossing detection, phase angle, voltage frequency measurement functions (Sonoff Dual R3 Pow)
1 PeakEN Peak detect enable signal
=1, turn on the peak detection function
=0, turn off the peak detection function (Sonoff Dual R3 Pow)
0 NC Default is 1
*/
Cse7761Write(0x93, 0x0FC1); // Set EMUCON2
} else {
AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Write enable failed"));
// return false;
}
delay(80);
Cse7761Write(0xEA, 0xDC); // Close write operation
return true;
}
void Cse7761GetData(void) {
CSE7761Data.voltage_rms = Cse7761Read(0x26, 3);
CSE7761Data.current_rms[0] = Cse7761Read(0x24, 3);
CSE7761Data.active_power[0] = Cse7761Read(0x2C, 4);
CSE7761Data.current_rms[1] = Cse7761Read(0x25, 3);
CSE7761Data.active_power[1] = Cse7761Read(0x2D, 4);
if (Energy.power_on) { // Powered on
Energy.voltage[0] = ((float)CSE7761Data.voltage_rms * ((double)CSE7761Data.coefficient[RmsUC] / (CSE7761_K2 * 2 * CSE7761_2POWER22))) / 1000; // V
for (uint32_t channel = 0; channel < 2; channel++) {
Energy.data_valid[channel] = 0;
Energy.active_power[channel] = (float)CSE7761Data.active_power[channel] * ((double)CSE7761Data.coefficient[PowerPAC + channel] / (CSE7761_K1 * CSE7761_K2 * 2 * CSE7761_2POWER31)); // W
if (0 == Energy.active_power[channel]) {
Energy.current[channel] = 0;
} else {
Energy.current[channel] = (float)CSE7761Data.current_rms[channel] * ((double)CSE7761Data.coefficient[RmsIAC + channel] / (CSE7761_K1 * 2 * CSE7761_2POWER23)); // mA
}
}
uint32_t active_power_sum = (Energy.active_power[0] + Energy.active_power[1]) * 1000;
if (active_power_sum) {
Energy.kWhtoday_delta += active_power_sum / 36;
EnergyUpdateToday();
}
} else { // Powered off
Energy.data_valid[0] = ENERGY_WATCHDOG;
Energy.data_valid[1] = ENERGY_WATCHDOG;
}
}
/********************************************************************************************/
void Cse7761EverySecond(void) {
if (CSE7761Data.init) {
if (2 == CSE7761Data.init) {
Cse7761Write(0xEA, 0x96); // Reset chip
}
else if (1 == CSE7761Data.init) {
uint16_t syscon = Cse7761Read(0x00, 2); // Default 0x0A04
if (0x0A04 == syscon) {
CSE7761Data.found = Cse7761ChipInit();
}
if (CSE7761Data.found) {
AddLog(LOG_LEVEL_INFO, PSTR("C61: CSE7761 found"));
}
}
CSE7761Data.init--;
}
else {
if (CSE7761Data.found) {
Cse7761GetData();
}
}
}
void Cse7761SnsInit(void) {
// Software serial init needs to be done here as earlier (serial) interrupts may lead to Exceptions
Cse7761Serial = new TasmotaSerial(Pin(GPIO_CSE7766_RX), Pin(GPIO_CSE7766_TX), 1);
if (Cse7761Serial->begin(38400, SERIAL_8E1)) {
if (Cse7761Serial->hardwareSerial()) {
// SetSerial(38400, TS_SERIAL_8E1);
ClaimSerial();
}
} else {
TasmotaGlobal.energy_driver = ENERGY_NONE;
}
}
void Cse7761DrvInit(void) {
if (PinUsed(GPIO_CSE7761_RX) && PinUsed(GPIO_CSE7761_TX)) {
CSE7761Data.found = false;
CSE7761Data.init = 3; // Init setup steps
Energy.phase_count = 2; // Handle two channels as two phases
Energy.voltage_common = true; // Use common voltage
TasmotaGlobal.energy_driver = XNRG_19;
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xnrg19(uint8_t function) {
bool result = false;
switch (function) {
case FUNC_EVERY_SECOND:
Cse7761EverySecond();
break;
case FUNC_INIT:
Cse7761SnsInit();
break;
case FUNC_PRE_INIT:
Cse7761DrvInit();
break;
}
return result;
}
#endif // USE_CSE7761
#endif // USE_ENERGY_SENSOR