mirror of https://github.com/arendst/Tasmota.git
338 lines
11 KiB
C++
338 lines
11 KiB
C++
/*
|
|
xnrg_01_hlw8012.ino - HLW8012 (Sonoff Pow) energy sensor support for Sonoff-Tasmota
|
|
|
|
Copyright (C) 2019 Theo Arends
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifdef USE_ENERGY_SENSOR
|
|
#ifdef USE_HLW8012
|
|
/*********************************************************************************************\
|
|
* HLW8012, BL0937 or HJL-01 - Energy (Sonoff Pow, HuaFan, KMC70011, BlitzWolf)
|
|
*
|
|
* Based on Source: Shenzhen Heli Technology Co., Ltd
|
|
\*********************************************************************************************/
|
|
|
|
#define XNRG_01 1
|
|
|
|
// Energy model type 0 (GPIO_HLW_CF) - HLW8012 based (Sonoff Pow, KMC70011, HuaFan, AplicWDP303075)
|
|
#define HLW_PREF 10000 // 1000.0W
|
|
#define HLW_UREF 2200 // 220.0V
|
|
#define HLW_IREF 4545 // 4.545A
|
|
|
|
// Energy model type 1 (GPIO_HJL_CF) - HJL-01/BL0937 based (BlitzWolf, Homecube, Gosund, Teckin)
|
|
#define HJL_PREF 1362
|
|
#define HJL_UREF 822
|
|
#define HJL_IREF 3300
|
|
|
|
#define HLW_POWER_PROBE_TIME 10 // Number of seconds to probe for power before deciding none used (low power pulse can take up to 10 seconds)
|
|
#define HLW_SAMPLE_COUNT 10 // Max number of samples per cycle
|
|
|
|
//#define HLW_DEBUG
|
|
|
|
struct HLW {
|
|
#ifdef HLW_DEBUG
|
|
unsigned long debug[HLW_SAMPLE_COUNT];
|
|
#endif
|
|
unsigned long cf_pulse_length = 0;
|
|
unsigned long cf_pulse_last_time = 0;
|
|
unsigned long cf_power_pulse_length = 0;
|
|
|
|
unsigned long cf1_pulse_length = 0;
|
|
unsigned long cf1_pulse_last_time = 0;
|
|
unsigned long cf1_summed_pulse_length = 0;
|
|
unsigned long cf1_pulse_counter = 0;
|
|
unsigned long cf1_voltage_pulse_length = 0;
|
|
unsigned long cf1_current_pulse_length = 0;
|
|
|
|
unsigned long energy_period_counter = 0;
|
|
|
|
unsigned long power_ratio = 0;
|
|
unsigned long voltage_ratio = 0;
|
|
unsigned long current_ratio = 0;
|
|
|
|
uint8_t model_type = 0;
|
|
uint8_t cf1_timer = 0;
|
|
uint8_t power_retry = 0;
|
|
bool select_ui_flag = false;
|
|
bool ui_flag = true;
|
|
bool load_off = true;
|
|
} Hlw;
|
|
|
|
// Fix core 2.5.x ISR not in IRAM Exception
|
|
#ifndef USE_WS2812_DMA // Collides with Neopixelbus but solves exception
|
|
void HlwCfInterrupt(void) ICACHE_RAM_ATTR;
|
|
void HlwCf1Interrupt(void) ICACHE_RAM_ATTR;
|
|
#endif // USE_WS2812_DMA
|
|
|
|
void HlwCfInterrupt(void) // Service Power
|
|
{
|
|
unsigned long us = micros();
|
|
|
|
if (Hlw.load_off) { // Restart plen measurement
|
|
Hlw.cf_pulse_last_time = us;
|
|
Hlw.load_off = false;
|
|
} else {
|
|
Hlw.cf_pulse_length = us - Hlw.cf_pulse_last_time;
|
|
Hlw.cf_pulse_last_time = us;
|
|
Hlw.energy_period_counter++;
|
|
}
|
|
Energy.data_valid = 0;
|
|
}
|
|
|
|
void HlwCf1Interrupt(void) // Service Voltage and Current
|
|
{
|
|
unsigned long us = micros();
|
|
|
|
Hlw.cf1_pulse_length = us - Hlw.cf1_pulse_last_time;
|
|
Hlw.cf1_pulse_last_time = us;
|
|
if ((Hlw.cf1_timer > 2) && (Hlw.cf1_timer < 8)) { // Allow for 300 mSec set-up time and measure for up to 1 second
|
|
Hlw.cf1_summed_pulse_length += Hlw.cf1_pulse_length;
|
|
#ifdef HLW_DEBUG
|
|
Hlw.debug[Hlw.cf1_pulse_counter] = Hlw.cf1_pulse_length;
|
|
#endif
|
|
Hlw.cf1_pulse_counter++;
|
|
if (HLW_SAMPLE_COUNT == Hlw.cf1_pulse_counter) {
|
|
Hlw.cf1_timer = 8; // We need up to HLW_SAMPLE_COUNT samples within 1 second (low current could take up to 0.3 second)
|
|
}
|
|
}
|
|
Energy.data_valid = 0;
|
|
}
|
|
|
|
/********************************************************************************************/
|
|
|
|
void HlwEvery200ms(void)
|
|
{
|
|
unsigned long cf1_pulse_length = 0;
|
|
unsigned long hlw_w = 0;
|
|
unsigned long hlw_u = 0;
|
|
unsigned long hlw_i = 0;
|
|
|
|
if (micros() - Hlw.cf_pulse_last_time > (HLW_POWER_PROBE_TIME * 1000000)) {
|
|
Hlw.cf_pulse_length = 0; // No load for some time
|
|
Hlw.load_off = true;
|
|
}
|
|
Hlw.cf_power_pulse_length = Hlw.cf_pulse_length;
|
|
|
|
if (Hlw.cf_power_pulse_length && Energy.power_on && !Hlw.load_off) {
|
|
hlw_w = (Hlw.power_ratio * Settings.energy_power_calibration) / Hlw.cf_power_pulse_length ; // W *10
|
|
Energy.active_power = (float)hlw_w / 10;
|
|
Hlw.power_retry = 1; // Workaround issue #5161
|
|
} else {
|
|
if (Hlw.power_retry) {
|
|
Hlw.power_retry--;
|
|
} else {
|
|
Energy.active_power = 0;
|
|
}
|
|
}
|
|
|
|
if (pin[GPIO_NRG_CF1] < 99) {
|
|
Hlw.cf1_timer++;
|
|
if (Hlw.cf1_timer >= 8) {
|
|
Hlw.cf1_timer = 0;
|
|
Hlw.select_ui_flag = (Hlw.select_ui_flag) ? false : true;
|
|
if (pin[GPIO_NRG_SEL] < 99) {
|
|
digitalWrite(pin[GPIO_NRG_SEL], Hlw.select_ui_flag);
|
|
}
|
|
|
|
if (Hlw.cf1_pulse_counter) {
|
|
cf1_pulse_length = Hlw.cf1_summed_pulse_length / Hlw.cf1_pulse_counter;
|
|
}
|
|
|
|
#ifdef HLW_DEBUG
|
|
// Debugging for calculating mean and median
|
|
char stemp[100];
|
|
stemp[0] = '\0';
|
|
for (uint32_t i = 0; i < Hlw.cf1_pulse_counter; i++) {
|
|
snprintf_P(stemp, sizeof(stemp), PSTR("%s %d"), stemp, Hlw.debug[i]);
|
|
}
|
|
for (uint32_t i = 0; i < Hlw.cf1_pulse_counter; i++) {
|
|
for (uint32_t j = i + 1; j < Hlw.cf1_pulse_counter; j++) {
|
|
if (Hlw.debug[i] > Hlw.debug[j]) { // Sort ascending
|
|
std::swap(Hlw.debug[i], Hlw.debug[j]);
|
|
}
|
|
}
|
|
}
|
|
unsigned long median = Hlw.debug[(Hlw.cf1_pulse_counter +1) / 2];
|
|
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("NRG: power %d, ui %d, cnt %d, smpl%s, sum %d, mean %d, median %d"),
|
|
Hlw.cf_power_pulse_length , Hlw.select_ui_flag, Hlw.cf1_pulse_counter, stemp, Hlw.cf1_summed_pulse_length, cf1_pulse_length, median);
|
|
#endif
|
|
|
|
if (Hlw.select_ui_flag == Hlw.ui_flag) {
|
|
Hlw.cf1_voltage_pulse_length = cf1_pulse_length;
|
|
|
|
if (Hlw.cf1_voltage_pulse_length && Energy.power_on) { // If powered on always provide voltage
|
|
hlw_u = (Hlw.voltage_ratio * Settings.energy_voltage_calibration) / Hlw.cf1_voltage_pulse_length ; // V *10
|
|
Energy.voltage = (float)hlw_u / 10;
|
|
} else {
|
|
Energy.voltage = 0;
|
|
}
|
|
|
|
} else {
|
|
Hlw.cf1_current_pulse_length = cf1_pulse_length;
|
|
|
|
if (Hlw.cf1_current_pulse_length && Energy.active_power) { // No current if no power being consumed
|
|
hlw_i = (Hlw.current_ratio * Settings.energy_current_calibration) / Hlw.cf1_current_pulse_length; // mA
|
|
Energy.current = (float)hlw_i / 1000;
|
|
} else {
|
|
Energy.current = 0;
|
|
}
|
|
|
|
}
|
|
Hlw.cf1_summed_pulse_length = 0;
|
|
Hlw.cf1_pulse_counter = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
void HlwEverySecond(void)
|
|
{
|
|
if (Energy.data_valid > ENERGY_WATCHDOG) {
|
|
Hlw.cf1_voltage_pulse_length = 0;
|
|
Hlw.cf1_current_pulse_length = 0;
|
|
Hlw.cf_power_pulse_length = 0;
|
|
} else {
|
|
unsigned long hlw_len;
|
|
|
|
if (Hlw.energy_period_counter) {
|
|
hlw_len = 10000 / Hlw.energy_period_counter;
|
|
Hlw.energy_period_counter = 0;
|
|
if (hlw_len) {
|
|
Energy.kWhtoday_delta += ((Hlw.power_ratio * Settings.energy_power_calibration) / hlw_len) / 36;
|
|
EnergyUpdateToday();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void HlwSnsInit(void)
|
|
{
|
|
if (!Settings.energy_power_calibration || (4975 == Settings.energy_power_calibration)) {
|
|
Settings.energy_power_calibration = HLW_PREF_PULSE;
|
|
Settings.energy_voltage_calibration = HLW_UREF_PULSE;
|
|
Settings.energy_current_calibration = HLW_IREF_PULSE;
|
|
}
|
|
|
|
if (Hlw.model_type) {
|
|
Hlw.power_ratio = HJL_PREF;
|
|
Hlw.voltage_ratio = HJL_UREF;
|
|
Hlw.current_ratio = HJL_IREF;
|
|
} else {
|
|
Hlw.power_ratio = HLW_PREF;
|
|
Hlw.voltage_ratio = HLW_UREF;
|
|
Hlw.current_ratio = HLW_IREF;
|
|
}
|
|
|
|
if (pin[GPIO_NRG_SEL] < 99) {
|
|
pinMode(pin[GPIO_NRG_SEL], OUTPUT);
|
|
digitalWrite(pin[GPIO_NRG_SEL], Hlw.select_ui_flag);
|
|
}
|
|
if (pin[GPIO_NRG_CF1] < 99) {
|
|
pinMode(pin[GPIO_NRG_CF1], INPUT_PULLUP);
|
|
attachInterrupt(pin[GPIO_NRG_CF1], HlwCf1Interrupt, FALLING);
|
|
}
|
|
pinMode(pin[GPIO_HLW_CF], INPUT_PULLUP);
|
|
attachInterrupt(pin[GPIO_HLW_CF], HlwCfInterrupt, FALLING);
|
|
}
|
|
|
|
void HlwDrvInit(void)
|
|
{
|
|
Hlw.model_type = 0; // HLW8012
|
|
if (pin[GPIO_HJL_CF] < 99) {
|
|
pin[GPIO_HLW_CF] = pin[GPIO_HJL_CF];
|
|
pin[GPIO_HJL_CF] = 99;
|
|
Hlw.model_type = 1; // HJL-01/BL0937
|
|
}
|
|
|
|
if (pin[GPIO_HLW_CF] < 99) { // HLW8012 or HJL-01 based device Power monitor
|
|
|
|
Hlw.ui_flag = true; // Voltage on high
|
|
if (pin[GPIO_NRG_SEL_INV] < 99) {
|
|
pin[GPIO_NRG_SEL] = pin[GPIO_NRG_SEL_INV];
|
|
pin[GPIO_NRG_SEL_INV] = 99;
|
|
Hlw.ui_flag = false; // Voltage on low
|
|
}
|
|
|
|
if (pin[GPIO_NRG_CF1] < 99) { // Voltage and/or Current monitor
|
|
if (99 == pin[GPIO_NRG_SEL]) { // Voltage and/or Current selector
|
|
Energy.current_available = false; // Assume Voltage
|
|
}
|
|
} else {
|
|
Energy.current_available = false;
|
|
Energy.voltage_available = false;
|
|
}
|
|
|
|
energy_flg = XNRG_01;
|
|
}
|
|
}
|
|
|
|
bool HlwCommand(void)
|
|
{
|
|
bool serviced = true;
|
|
|
|
if ((CMND_POWERCAL == Energy.command_code) || (CMND_VOLTAGECAL == Energy.command_code) || (CMND_CURRENTCAL == Energy.command_code)) {
|
|
// Service in xdrv_03_energy.ino
|
|
}
|
|
else if (CMND_POWERSET == Energy.command_code) {
|
|
if (XdrvMailbox.data_len && Hlw.cf_power_pulse_length ) {
|
|
Settings.energy_power_calibration = ((unsigned long)(CharToFloat(XdrvMailbox.data) * 10) * Hlw.cf_power_pulse_length ) / Hlw.power_ratio;
|
|
}
|
|
}
|
|
else if (CMND_VOLTAGESET == Energy.command_code) {
|
|
if (XdrvMailbox.data_len && Hlw.cf1_voltage_pulse_length ) {
|
|
Settings.energy_voltage_calibration = ((unsigned long)(CharToFloat(XdrvMailbox.data) * 10) * Hlw.cf1_voltage_pulse_length ) / Hlw.voltage_ratio;
|
|
}
|
|
}
|
|
else if (CMND_CURRENTSET == Energy.command_code) {
|
|
if (XdrvMailbox.data_len && Hlw.cf1_current_pulse_length) {
|
|
Settings.energy_current_calibration = ((unsigned long)(CharToFloat(XdrvMailbox.data)) * Hlw.cf1_current_pulse_length) / Hlw.current_ratio;
|
|
}
|
|
}
|
|
else serviced = false; // Unknown command
|
|
|
|
return serviced;
|
|
}
|
|
|
|
/*********************************************************************************************\
|
|
* Interface
|
|
\*********************************************************************************************/
|
|
|
|
bool Xnrg01(uint8_t function)
|
|
{
|
|
bool result = false;
|
|
|
|
switch (function) {
|
|
case FUNC_EVERY_200_MSECOND:
|
|
HlwEvery200ms();
|
|
break;
|
|
case FUNC_ENERGY_EVERY_SECOND:
|
|
HlwEverySecond();
|
|
break;
|
|
case FUNC_COMMAND:
|
|
result = HlwCommand();
|
|
break;
|
|
case FUNC_INIT:
|
|
HlwSnsInit();
|
|
break;
|
|
case FUNC_PRE_INIT:
|
|
HlwDrvInit();
|
|
break;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#endif // USE_HLW8012
|
|
#endif // USE_ENERGY_SENSOR
|