mirror of https://github.com/arendst/Tasmota.git
1037 lines
30 KiB
C++
1037 lines
30 KiB
C++
// Most of the functionality of this library is based on the VL53L0X API
|
|
// provided by ST (STSW-IMG005), and some of the explanatory comments are quoted
|
|
// or paraphrased from the API source code, API user manual (UM2039), and the
|
|
// VL53L0X datasheet.
|
|
|
|
#include <VL53L0X.h>
|
|
#include <Wire.h>
|
|
|
|
// Defines /////////////////////////////////////////////////////////////////////
|
|
|
|
// The Arduino two-wire interface uses a 7-bit number for the address,
|
|
// and sets the last bit correctly based on reads and writes
|
|
#define ADDRESS_DEFAULT 0b0101001
|
|
|
|
// Record the current time to check an upcoming timeout against
|
|
#define startTimeout() (timeout_start_ms = millis())
|
|
|
|
// Check if timeout is enabled (set to nonzero value) and has expired
|
|
#define checkTimeoutExpired() (io_timeout > 0 && ((uint16_t)millis() - timeout_start_ms) > io_timeout)
|
|
|
|
// Decode VCSEL (vertical cavity surface emitting laser) pulse period in PCLKs
|
|
// from register value
|
|
// based on VL53L0X_decode_vcsel_period()
|
|
#define decodeVcselPeriod(reg_val) (((reg_val) + 1) << 1)
|
|
|
|
// Encode VCSEL pulse period register value from period in PCLKs
|
|
// based on VL53L0X_encode_vcsel_period()
|
|
#define encodeVcselPeriod(period_pclks) (((period_pclks) >> 1) - 1)
|
|
|
|
// Calculate macro period in *nanoseconds* from VCSEL period in PCLKs
|
|
// based on VL53L0X_calc_macro_period_ps()
|
|
// PLL_period_ps = 1655; macro_period_vclks = 2304
|
|
#define calcMacroPeriod(vcsel_period_pclks) ((((uint32_t)2304 * (vcsel_period_pclks) * 1655) + 500) / 1000)
|
|
|
|
// Constructors ////////////////////////////////////////////////////////////////
|
|
|
|
VL53L0X::VL53L0X(void)
|
|
: address(ADDRESS_DEFAULT)
|
|
, io_timeout(0) // no timeout
|
|
, did_timeout(false)
|
|
{
|
|
}
|
|
|
|
// Public Methods //////////////////////////////////////////////////////////////
|
|
|
|
void VL53L0X::setAddress(uint8_t new_addr)
|
|
{
|
|
writeReg(I2C_SLAVE_DEVICE_ADDRESS, new_addr & 0x7F);
|
|
address = new_addr;
|
|
}
|
|
|
|
// Initialize sensor using sequence based on VL53L0X_DataInit(),
|
|
// VL53L0X_StaticInit(), and VL53L0X_PerformRefCalibration().
|
|
// This function does not perform reference SPAD calibration
|
|
// (VL53L0X_PerformRefSpadManagement()), since the API user manual says that it
|
|
// is performed by ST on the bare modules; it seems like that should work well
|
|
// enough unless a cover glass is added.
|
|
// If io_2v8 (optional) is true or not given, the sensor is configured for 2V8
|
|
// mode.
|
|
bool VL53L0X::init(bool io_2v8)
|
|
{
|
|
// VL53L0X_DataInit() begin
|
|
|
|
// sensor uses 1V8 mode for I/O by default; switch to 2V8 mode if necessary
|
|
if (io_2v8)
|
|
{
|
|
writeReg(VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV,
|
|
readReg(VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV) | 0x01); // set bit 0
|
|
}
|
|
|
|
// "Set I2C standard mode"
|
|
writeReg(0x88, 0x00);
|
|
|
|
writeReg(0x80, 0x01);
|
|
writeReg(0xFF, 0x01);
|
|
writeReg(0x00, 0x00);
|
|
stop_variable = readReg(0x91);
|
|
writeReg(0x00, 0x01);
|
|
writeReg(0xFF, 0x00);
|
|
writeReg(0x80, 0x00);
|
|
|
|
// disable SIGNAL_RATE_MSRC (bit 1) and SIGNAL_RATE_PRE_RANGE (bit 4) limit checks
|
|
writeReg(MSRC_CONFIG_CONTROL, readReg(MSRC_CONFIG_CONTROL) | 0x12);
|
|
|
|
// set final range signal rate limit to 0.25 MCPS (million counts per second)
|
|
setSignalRateLimit(0.25);
|
|
|
|
writeReg(SYSTEM_SEQUENCE_CONFIG, 0xFF);
|
|
|
|
// VL53L0X_DataInit() end
|
|
|
|
// VL53L0X_StaticInit() begin
|
|
|
|
uint8_t spad_count;
|
|
bool spad_type_is_aperture;
|
|
if (!getSpadInfo(&spad_count, &spad_type_is_aperture)) { return false; }
|
|
|
|
// The SPAD map (RefGoodSpadMap) is read by VL53L0X_get_info_from_device() in
|
|
// the API, but the same data seems to be more easily readable from
|
|
// GLOBAL_CONFIG_SPAD_ENABLES_REF_0 through _6, so read it from there
|
|
uint8_t ref_spad_map[6];
|
|
readMulti(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, ref_spad_map, 6);
|
|
|
|
// -- VL53L0X_set_reference_spads() begin (assume NVM values are valid)
|
|
|
|
writeReg(0xFF, 0x01);
|
|
writeReg(DYNAMIC_SPAD_REF_EN_START_OFFSET, 0x00);
|
|
writeReg(DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD, 0x2C);
|
|
writeReg(0xFF, 0x00);
|
|
writeReg(GLOBAL_CONFIG_REF_EN_START_SELECT, 0xB4);
|
|
|
|
uint8_t first_spad_to_enable = spad_type_is_aperture ? 12 : 0; // 12 is the first aperture spad
|
|
uint8_t spads_enabled = 0;
|
|
|
|
for (uint8_t i = 0; i < 48; i++)
|
|
{
|
|
if (i < first_spad_to_enable || spads_enabled == spad_count)
|
|
{
|
|
// This bit is lower than the first one that should be enabled, or
|
|
// (reference_spad_count) bits have already been enabled, so zero this bit
|
|
ref_spad_map[i / 8] &= ~(1 << (i % 8));
|
|
}
|
|
else if ((ref_spad_map[i / 8] >> (i % 8)) & 0x1)
|
|
{
|
|
spads_enabled++;
|
|
}
|
|
}
|
|
|
|
writeMulti(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, ref_spad_map, 6);
|
|
|
|
// -- VL53L0X_set_reference_spads() end
|
|
|
|
// -- VL53L0X_load_tuning_settings() begin
|
|
// DefaultTuningSettings from vl53l0x_tuning.h
|
|
|
|
writeReg(0xFF, 0x01);
|
|
writeReg(0x00, 0x00);
|
|
|
|
writeReg(0xFF, 0x00);
|
|
writeReg(0x09, 0x00);
|
|
writeReg(0x10, 0x00);
|
|
writeReg(0x11, 0x00);
|
|
|
|
writeReg(0x24, 0x01);
|
|
writeReg(0x25, 0xFF);
|
|
writeReg(0x75, 0x00);
|
|
|
|
writeReg(0xFF, 0x01);
|
|
writeReg(0x4E, 0x2C);
|
|
writeReg(0x48, 0x00);
|
|
writeReg(0x30, 0x20);
|
|
|
|
writeReg(0xFF, 0x00);
|
|
writeReg(0x30, 0x09);
|
|
writeReg(0x54, 0x00);
|
|
writeReg(0x31, 0x04);
|
|
writeReg(0x32, 0x03);
|
|
writeReg(0x40, 0x83);
|
|
writeReg(0x46, 0x25);
|
|
writeReg(0x60, 0x00);
|
|
writeReg(0x27, 0x00);
|
|
writeReg(0x50, 0x06);
|
|
writeReg(0x51, 0x00);
|
|
writeReg(0x52, 0x96);
|
|
writeReg(0x56, 0x08);
|
|
writeReg(0x57, 0x30);
|
|
writeReg(0x61, 0x00);
|
|
writeReg(0x62, 0x00);
|
|
writeReg(0x64, 0x00);
|
|
writeReg(0x65, 0x00);
|
|
writeReg(0x66, 0xA0);
|
|
|
|
writeReg(0xFF, 0x01);
|
|
writeReg(0x22, 0x32);
|
|
writeReg(0x47, 0x14);
|
|
writeReg(0x49, 0xFF);
|
|
writeReg(0x4A, 0x00);
|
|
|
|
writeReg(0xFF, 0x00);
|
|
writeReg(0x7A, 0x0A);
|
|
writeReg(0x7B, 0x00);
|
|
writeReg(0x78, 0x21);
|
|
|
|
writeReg(0xFF, 0x01);
|
|
writeReg(0x23, 0x34);
|
|
writeReg(0x42, 0x00);
|
|
writeReg(0x44, 0xFF);
|
|
writeReg(0x45, 0x26);
|
|
writeReg(0x46, 0x05);
|
|
writeReg(0x40, 0x40);
|
|
writeReg(0x0E, 0x06);
|
|
writeReg(0x20, 0x1A);
|
|
writeReg(0x43, 0x40);
|
|
|
|
writeReg(0xFF, 0x00);
|
|
writeReg(0x34, 0x03);
|
|
writeReg(0x35, 0x44);
|
|
|
|
writeReg(0xFF, 0x01);
|
|
writeReg(0x31, 0x04);
|
|
writeReg(0x4B, 0x09);
|
|
writeReg(0x4C, 0x05);
|
|
writeReg(0x4D, 0x04);
|
|
|
|
writeReg(0xFF, 0x00);
|
|
writeReg(0x44, 0x00);
|
|
writeReg(0x45, 0x20);
|
|
writeReg(0x47, 0x08);
|
|
writeReg(0x48, 0x28);
|
|
writeReg(0x67, 0x00);
|
|
writeReg(0x70, 0x04);
|
|
writeReg(0x71, 0x01);
|
|
writeReg(0x72, 0xFE);
|
|
writeReg(0x76, 0x00);
|
|
writeReg(0x77, 0x00);
|
|
|
|
writeReg(0xFF, 0x01);
|
|
writeReg(0x0D, 0x01);
|
|
|
|
writeReg(0xFF, 0x00);
|
|
writeReg(0x80, 0x01);
|
|
writeReg(0x01, 0xF8);
|
|
|
|
writeReg(0xFF, 0x01);
|
|
writeReg(0x8E, 0x01);
|
|
writeReg(0x00, 0x01);
|
|
writeReg(0xFF, 0x00);
|
|
writeReg(0x80, 0x00);
|
|
|
|
// -- VL53L0X_load_tuning_settings() end
|
|
|
|
// "Set interrupt config to new sample ready"
|
|
// -- VL53L0X_SetGpioConfig() begin
|
|
|
|
writeReg(SYSTEM_INTERRUPT_CONFIG_GPIO, 0x04);
|
|
writeReg(GPIO_HV_MUX_ACTIVE_HIGH, readReg(GPIO_HV_MUX_ACTIVE_HIGH) & ~0x10); // active low
|
|
writeReg(SYSTEM_INTERRUPT_CLEAR, 0x01);
|
|
|
|
// -- VL53L0X_SetGpioConfig() end
|
|
|
|
measurement_timing_budget_us = getMeasurementTimingBudget();
|
|
|
|
// "Disable MSRC and TCC by default"
|
|
// MSRC = Minimum Signal Rate Check
|
|
// TCC = Target CentreCheck
|
|
// -- VL53L0X_SetSequenceStepEnable() begin
|
|
|
|
writeReg(SYSTEM_SEQUENCE_CONFIG, 0xE8);
|
|
|
|
// -- VL53L0X_SetSequenceStepEnable() end
|
|
|
|
// "Recalculate timing budget"
|
|
setMeasurementTimingBudget(measurement_timing_budget_us);
|
|
|
|
// VL53L0X_StaticInit() end
|
|
|
|
// VL53L0X_PerformRefCalibration() begin (VL53L0X_perform_ref_calibration())
|
|
|
|
// -- VL53L0X_perform_vhv_calibration() begin
|
|
|
|
writeReg(SYSTEM_SEQUENCE_CONFIG, 0x01);
|
|
if (!performSingleRefCalibration(0x40)) { return false; }
|
|
|
|
// -- VL53L0X_perform_vhv_calibration() end
|
|
|
|
// -- VL53L0X_perform_phase_calibration() begin
|
|
|
|
writeReg(SYSTEM_SEQUENCE_CONFIG, 0x02);
|
|
if (!performSingleRefCalibration(0x00)) { return false; }
|
|
|
|
// -- VL53L0X_perform_phase_calibration() end
|
|
|
|
// "restore the previous Sequence Config"
|
|
writeReg(SYSTEM_SEQUENCE_CONFIG, 0xE8);
|
|
|
|
// VL53L0X_PerformRefCalibration() end
|
|
|
|
return true;
|
|
}
|
|
|
|
// Write an 8-bit register
|
|
void VL53L0X::writeReg(uint8_t reg, uint8_t value)
|
|
{
|
|
Wire.beginTransmission(address);
|
|
Wire.write(reg);
|
|
Wire.write(value);
|
|
last_status = Wire.endTransmission();
|
|
}
|
|
|
|
// Write a 16-bit register
|
|
void VL53L0X::writeReg16Bit(uint8_t reg, uint16_t value)
|
|
{
|
|
Wire.beginTransmission(address);
|
|
Wire.write(reg);
|
|
Wire.write((value >> 8) & 0xFF); // value high byte
|
|
Wire.write( value & 0xFF); // value low byte
|
|
last_status = Wire.endTransmission();
|
|
}
|
|
|
|
// Write a 32-bit register
|
|
void VL53L0X::writeReg32Bit(uint8_t reg, uint32_t value)
|
|
{
|
|
Wire.beginTransmission(address);
|
|
Wire.write(reg);
|
|
Wire.write((value >> 24) & 0xFF); // value highest byte
|
|
Wire.write((value >> 16) & 0xFF);
|
|
Wire.write((value >> 8) & 0xFF);
|
|
Wire.write( value & 0xFF); // value lowest byte
|
|
last_status = Wire.endTransmission();
|
|
}
|
|
|
|
// Read an 8-bit register
|
|
uint8_t VL53L0X::readReg(uint8_t reg)
|
|
{
|
|
uint8_t value;
|
|
|
|
Wire.beginTransmission(address);
|
|
Wire.write(reg);
|
|
last_status = Wire.endTransmission();
|
|
|
|
Wire.requestFrom(address, (uint8_t)1);
|
|
value = Wire.read();
|
|
|
|
return value;
|
|
}
|
|
|
|
// Read a 16-bit register
|
|
uint16_t VL53L0X::readReg16Bit(uint8_t reg)
|
|
{
|
|
uint16_t value;
|
|
|
|
Wire.beginTransmission(address);
|
|
Wire.write(reg);
|
|
last_status = Wire.endTransmission();
|
|
|
|
Wire.requestFrom(address, (uint8_t)2);
|
|
value = (uint16_t)Wire.read() << 8; // value high byte
|
|
value |= Wire.read(); // value low byte
|
|
|
|
return value;
|
|
}
|
|
|
|
// Read a 32-bit register
|
|
uint32_t VL53L0X::readReg32Bit(uint8_t reg)
|
|
{
|
|
uint32_t value;
|
|
|
|
Wire.beginTransmission(address);
|
|
Wire.write(reg);
|
|
last_status = Wire.endTransmission();
|
|
|
|
Wire.requestFrom(address, (uint8_t)4);
|
|
value = (uint32_t)Wire.read() << 24; // value highest byte
|
|
value |= (uint32_t)Wire.read() << 16;
|
|
value |= (uint16_t)Wire.read() << 8;
|
|
value |= Wire.read(); // value lowest byte
|
|
|
|
return value;
|
|
}
|
|
|
|
// Write an arbitrary number of bytes from the given array to the sensor,
|
|
// starting at the given register
|
|
void VL53L0X::writeMulti(uint8_t reg, uint8_t const * src, uint8_t count)
|
|
{
|
|
Wire.beginTransmission(address);
|
|
Wire.write(reg);
|
|
|
|
while (count-- > 0)
|
|
{
|
|
Wire.write(*(src++));
|
|
}
|
|
|
|
last_status = Wire.endTransmission();
|
|
}
|
|
|
|
// Read an arbitrary number of bytes from the sensor, starting at the given
|
|
// register, into the given array
|
|
void VL53L0X::readMulti(uint8_t reg, uint8_t * dst, uint8_t count)
|
|
{
|
|
Wire.beginTransmission(address);
|
|
Wire.write(reg);
|
|
last_status = Wire.endTransmission();
|
|
|
|
Wire.requestFrom(address, count);
|
|
|
|
while (count-- > 0)
|
|
{
|
|
*(dst++) = Wire.read();
|
|
}
|
|
}
|
|
|
|
// Set the return signal rate limit check value in units of MCPS (mega counts
|
|
// per second). "This represents the amplitude of the signal reflected from the
|
|
// target and detected by the device"; setting this limit presumably determines
|
|
// the minimum measurement necessary for the sensor to report a valid reading.
|
|
// Setting a lower limit increases the potential range of the sensor but also
|
|
// seems to increase the likelihood of getting an inaccurate reading because of
|
|
// unwanted reflections from objects other than the intended target.
|
|
// Defaults to 0.25 MCPS as initialized by the ST API and this library.
|
|
bool VL53L0X::setSignalRateLimit(float limit_Mcps)
|
|
{
|
|
if (limit_Mcps < 0 || limit_Mcps > 511.99) { return false; }
|
|
|
|
// Q9.7 fixed point format (9 integer bits, 7 fractional bits)
|
|
writeReg16Bit(FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT, limit_Mcps * (1 << 7));
|
|
return true;
|
|
}
|
|
|
|
// Get the return signal rate limit check value in MCPS
|
|
float VL53L0X::getSignalRateLimit(void)
|
|
{
|
|
return (float)readReg16Bit(FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT) / (1 << 7);
|
|
}
|
|
|
|
// Set the measurement timing budget in microseconds, which is the time allowed
|
|
// for one measurement; the ST API and this library take care of splitting the
|
|
// timing budget among the sub-steps in the ranging sequence. A longer timing
|
|
// budget allows for more accurate measurements. Increasing the budget by a
|
|
// factor of N decreases the range measurement standard deviation by a factor of
|
|
// sqrt(N). Defaults to about 33 milliseconds; the minimum is 20 ms.
|
|
// based on VL53L0X_set_measurement_timing_budget_micro_seconds()
|
|
bool VL53L0X::setMeasurementTimingBudget(uint32_t budget_us)
|
|
{
|
|
SequenceStepEnables enables;
|
|
SequenceStepTimeouts timeouts;
|
|
|
|
uint16_t const StartOverhead = 1320; // note that this is different than the value in get_
|
|
uint16_t const EndOverhead = 960;
|
|
uint16_t const MsrcOverhead = 660;
|
|
uint16_t const TccOverhead = 590;
|
|
uint16_t const DssOverhead = 690;
|
|
uint16_t const PreRangeOverhead = 660;
|
|
uint16_t const FinalRangeOverhead = 550;
|
|
|
|
uint32_t const MinTimingBudget = 20000;
|
|
|
|
if (budget_us < MinTimingBudget) { return false; }
|
|
|
|
uint32_t used_budget_us = StartOverhead + EndOverhead;
|
|
|
|
getSequenceStepEnables(&enables);
|
|
getSequenceStepTimeouts(&enables, &timeouts);
|
|
|
|
if (enables.tcc)
|
|
{
|
|
used_budget_us += (timeouts.msrc_dss_tcc_us + TccOverhead);
|
|
}
|
|
|
|
if (enables.dss)
|
|
{
|
|
used_budget_us += 2 * (timeouts.msrc_dss_tcc_us + DssOverhead);
|
|
}
|
|
else if (enables.msrc)
|
|
{
|
|
used_budget_us += (timeouts.msrc_dss_tcc_us + MsrcOverhead);
|
|
}
|
|
|
|
if (enables.pre_range)
|
|
{
|
|
used_budget_us += (timeouts.pre_range_us + PreRangeOverhead);
|
|
}
|
|
|
|
if (enables.final_range)
|
|
{
|
|
used_budget_us += FinalRangeOverhead;
|
|
|
|
// "Note that the final range timeout is determined by the timing
|
|
// budget and the sum of all other timeouts within the sequence.
|
|
// If there is no room for the final range timeout, then an error
|
|
// will be set. Otherwise the remaining time will be applied to
|
|
// the final range."
|
|
|
|
if (used_budget_us > budget_us)
|
|
{
|
|
// "Requested timeout too big."
|
|
return false;
|
|
}
|
|
|
|
uint32_t final_range_timeout_us = budget_us - used_budget_us;
|
|
|
|
// set_sequence_step_timeout() begin
|
|
// (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE)
|
|
|
|
// "For the final range timeout, the pre-range timeout
|
|
// must be added. To do this both final and pre-range
|
|
// timeouts must be expressed in macro periods MClks
|
|
// because they have different vcsel periods."
|
|
|
|
uint16_t final_range_timeout_mclks =
|
|
timeoutMicrosecondsToMclks(final_range_timeout_us,
|
|
timeouts.final_range_vcsel_period_pclks);
|
|
|
|
if (enables.pre_range)
|
|
{
|
|
final_range_timeout_mclks += timeouts.pre_range_mclks;
|
|
}
|
|
|
|
writeReg16Bit(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI,
|
|
encodeTimeout(final_range_timeout_mclks));
|
|
|
|
// set_sequence_step_timeout() end
|
|
|
|
measurement_timing_budget_us = budget_us; // store for internal reuse
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Get the measurement timing budget in microseconds
|
|
// based on VL53L0X_get_measurement_timing_budget_micro_seconds()
|
|
// in us
|
|
uint32_t VL53L0X::getMeasurementTimingBudget(void)
|
|
{
|
|
SequenceStepEnables enables;
|
|
SequenceStepTimeouts timeouts;
|
|
|
|
uint16_t const StartOverhead = 1910; // note that this is different than the value in set_
|
|
uint16_t const EndOverhead = 960;
|
|
uint16_t const MsrcOverhead = 660;
|
|
uint16_t const TccOverhead = 590;
|
|
uint16_t const DssOverhead = 690;
|
|
uint16_t const PreRangeOverhead = 660;
|
|
uint16_t const FinalRangeOverhead = 550;
|
|
|
|
// "Start and end overhead times always present"
|
|
uint32_t budget_us = StartOverhead + EndOverhead;
|
|
|
|
getSequenceStepEnables(&enables);
|
|
getSequenceStepTimeouts(&enables, &timeouts);
|
|
|
|
if (enables.tcc)
|
|
{
|
|
budget_us += (timeouts.msrc_dss_tcc_us + TccOverhead);
|
|
}
|
|
|
|
if (enables.dss)
|
|
{
|
|
budget_us += 2 * (timeouts.msrc_dss_tcc_us + DssOverhead);
|
|
}
|
|
else if (enables.msrc)
|
|
{
|
|
budget_us += (timeouts.msrc_dss_tcc_us + MsrcOverhead);
|
|
}
|
|
|
|
if (enables.pre_range)
|
|
{
|
|
budget_us += (timeouts.pre_range_us + PreRangeOverhead);
|
|
}
|
|
|
|
if (enables.final_range)
|
|
{
|
|
budget_us += (timeouts.final_range_us + FinalRangeOverhead);
|
|
}
|
|
|
|
measurement_timing_budget_us = budget_us; // store for internal reuse
|
|
return budget_us;
|
|
}
|
|
|
|
// Set the VCSEL (vertical cavity surface emitting laser) pulse period for the
|
|
// given period type (pre-range or final range) to the given value in PCLKs.
|
|
// Longer periods seem to increase the potential range of the sensor.
|
|
// Valid values are (even numbers only):
|
|
// pre: 12 to 18 (initialized default: 14)
|
|
// final: 8 to 14 (initialized default: 10)
|
|
// based on VL53L0X_set_vcsel_pulse_period()
|
|
bool VL53L0X::setVcselPulsePeriod(vcselPeriodType type, uint8_t period_pclks)
|
|
{
|
|
uint8_t vcsel_period_reg = encodeVcselPeriod(period_pclks);
|
|
|
|
SequenceStepEnables enables;
|
|
SequenceStepTimeouts timeouts;
|
|
|
|
getSequenceStepEnables(&enables);
|
|
getSequenceStepTimeouts(&enables, &timeouts);
|
|
|
|
// "Apply specific settings for the requested clock period"
|
|
// "Re-calculate and apply timeouts, in macro periods"
|
|
|
|
// "When the VCSEL period for the pre or final range is changed,
|
|
// the corresponding timeout must be read from the device using
|
|
// the current VCSEL period, then the new VCSEL period can be
|
|
// applied. The timeout then must be written back to the device
|
|
// using the new VCSEL period.
|
|
//
|
|
// For the MSRC timeout, the same applies - this timeout being
|
|
// dependant on the pre-range vcsel period."
|
|
|
|
|
|
if (type == VcselPeriodPreRange)
|
|
{
|
|
// "Set phase check limits"
|
|
switch (period_pclks)
|
|
{
|
|
case 12:
|
|
writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x18);
|
|
break;
|
|
|
|
case 14:
|
|
writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x30);
|
|
break;
|
|
|
|
case 16:
|
|
writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x40);
|
|
break;
|
|
|
|
case 18:
|
|
writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x50);
|
|
break;
|
|
|
|
default:
|
|
// invalid period
|
|
return false;
|
|
}
|
|
writeReg(PRE_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
|
|
|
|
// apply new VCSEL period
|
|
writeReg(PRE_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg);
|
|
|
|
// update timeouts
|
|
|
|
// set_sequence_step_timeout() begin
|
|
// (SequenceStepId == VL53L0X_SEQUENCESTEP_PRE_RANGE)
|
|
|
|
uint16_t new_pre_range_timeout_mclks =
|
|
timeoutMicrosecondsToMclks(timeouts.pre_range_us, period_pclks);
|
|
|
|
writeReg16Bit(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
|
|
encodeTimeout(new_pre_range_timeout_mclks));
|
|
|
|
// set_sequence_step_timeout() end
|
|
|
|
// set_sequence_step_timeout() begin
|
|
// (SequenceStepId == VL53L0X_SEQUENCESTEP_MSRC)
|
|
|
|
uint16_t new_msrc_timeout_mclks =
|
|
timeoutMicrosecondsToMclks(timeouts.msrc_dss_tcc_us, period_pclks);
|
|
|
|
writeReg(MSRC_CONFIG_TIMEOUT_MACROP,
|
|
(new_msrc_timeout_mclks > 256) ? 255 : (new_msrc_timeout_mclks - 1));
|
|
|
|
// set_sequence_step_timeout() end
|
|
}
|
|
else if (type == VcselPeriodFinalRange)
|
|
{
|
|
switch (period_pclks)
|
|
{
|
|
case 8:
|
|
writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x10);
|
|
writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
|
|
writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x02);
|
|
writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x0C);
|
|
writeReg(0xFF, 0x01);
|
|
writeReg(ALGO_PHASECAL_LIM, 0x30);
|
|
writeReg(0xFF, 0x00);
|
|
break;
|
|
|
|
case 10:
|
|
writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x28);
|
|
writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
|
|
writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
|
|
writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x09);
|
|
writeReg(0xFF, 0x01);
|
|
writeReg(ALGO_PHASECAL_LIM, 0x20);
|
|
writeReg(0xFF, 0x00);
|
|
break;
|
|
|
|
case 12:
|
|
writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x38);
|
|
writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
|
|
writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
|
|
writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x08);
|
|
writeReg(0xFF, 0x01);
|
|
writeReg(ALGO_PHASECAL_LIM, 0x20);
|
|
writeReg(0xFF, 0x00);
|
|
break;
|
|
|
|
case 14:
|
|
writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x48);
|
|
writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
|
|
writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
|
|
writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x07);
|
|
writeReg(0xFF, 0x01);
|
|
writeReg(ALGO_PHASECAL_LIM, 0x20);
|
|
writeReg(0xFF, 0x00);
|
|
break;
|
|
|
|
default:
|
|
// invalid period
|
|
return false;
|
|
}
|
|
|
|
// apply new VCSEL period
|
|
writeReg(FINAL_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg);
|
|
|
|
// update timeouts
|
|
|
|
// set_sequence_step_timeout() begin
|
|
// (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE)
|
|
|
|
// "For the final range timeout, the pre-range timeout
|
|
// must be added. To do this both final and pre-range
|
|
// timeouts must be expressed in macro periods MClks
|
|
// because they have different vcsel periods."
|
|
|
|
uint16_t new_final_range_timeout_mclks =
|
|
timeoutMicrosecondsToMclks(timeouts.final_range_us, period_pclks);
|
|
|
|
if (enables.pre_range)
|
|
{
|
|
new_final_range_timeout_mclks += timeouts.pre_range_mclks;
|
|
}
|
|
|
|
writeReg16Bit(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI,
|
|
encodeTimeout(new_final_range_timeout_mclks));
|
|
|
|
// set_sequence_step_timeout end
|
|
}
|
|
else
|
|
{
|
|
// invalid type
|
|
return false;
|
|
}
|
|
|
|
// "Finally, the timing budget must be re-applied"
|
|
|
|
setMeasurementTimingBudget(measurement_timing_budget_us);
|
|
|
|
// "Perform the phase calibration. This is needed after changing on vcsel period."
|
|
// VL53L0X_perform_phase_calibration() begin
|
|
|
|
uint8_t sequence_config = readReg(SYSTEM_SEQUENCE_CONFIG);
|
|
writeReg(SYSTEM_SEQUENCE_CONFIG, 0x02);
|
|
performSingleRefCalibration(0x0);
|
|
writeReg(SYSTEM_SEQUENCE_CONFIG, sequence_config);
|
|
|
|
// VL53L0X_perform_phase_calibration() end
|
|
|
|
return true;
|
|
}
|
|
|
|
// Get the VCSEL pulse period in PCLKs for the given period type.
|
|
// based on VL53L0X_get_vcsel_pulse_period()
|
|
uint8_t VL53L0X::getVcselPulsePeriod(vcselPeriodType type)
|
|
{
|
|
if (type == VcselPeriodPreRange)
|
|
{
|
|
return decodeVcselPeriod(readReg(PRE_RANGE_CONFIG_VCSEL_PERIOD));
|
|
}
|
|
else if (type == VcselPeriodFinalRange)
|
|
{
|
|
return decodeVcselPeriod(readReg(FINAL_RANGE_CONFIG_VCSEL_PERIOD));
|
|
}
|
|
else { return 255; }
|
|
}
|
|
|
|
// Start continuous ranging measurements. If period_ms (optional) is 0 or not
|
|
// given, continuous back-to-back mode is used (the sensor takes measurements as
|
|
// often as possible); otherwise, continuous timed mode is used, with the given
|
|
// inter-measurement period in milliseconds determining how often the sensor
|
|
// takes a measurement.
|
|
// based on VL53L0X_StartMeasurement()
|
|
void VL53L0X::startContinuous(uint32_t period_ms)
|
|
{
|
|
writeReg(0x80, 0x01);
|
|
writeReg(0xFF, 0x01);
|
|
writeReg(0x00, 0x00);
|
|
writeReg(0x91, stop_variable);
|
|
writeReg(0x00, 0x01);
|
|
writeReg(0xFF, 0x00);
|
|
writeReg(0x80, 0x00);
|
|
|
|
if (period_ms != 0)
|
|
{
|
|
// continuous timed mode
|
|
|
|
// VL53L0X_SetInterMeasurementPeriodMilliSeconds() begin
|
|
|
|
uint16_t osc_calibrate_val = readReg16Bit(OSC_CALIBRATE_VAL);
|
|
|
|
if (osc_calibrate_val != 0)
|
|
{
|
|
period_ms *= osc_calibrate_val;
|
|
}
|
|
|
|
writeReg32Bit(SYSTEM_INTERMEASUREMENT_PERIOD, period_ms);
|
|
|
|
// VL53L0X_SetInterMeasurementPeriodMilliSeconds() end
|
|
|
|
writeReg(SYSRANGE_START, 0x04); // VL53L0X_REG_SYSRANGE_MODE_TIMED
|
|
}
|
|
else
|
|
{
|
|
// continuous back-to-back mode
|
|
writeReg(SYSRANGE_START, 0x02); // VL53L0X_REG_SYSRANGE_MODE_BACKTOBACK
|
|
}
|
|
}
|
|
|
|
// Stop continuous measurements
|
|
// based on VL53L0X_StopMeasurement()
|
|
void VL53L0X::stopContinuous(void)
|
|
{
|
|
writeReg(SYSRANGE_START, 0x01); // VL53L0X_REG_SYSRANGE_MODE_SINGLESHOT
|
|
|
|
writeReg(0xFF, 0x01);
|
|
writeReg(0x00, 0x00);
|
|
writeReg(0x91, 0x00);
|
|
writeReg(0x00, 0x01);
|
|
writeReg(0xFF, 0x00);
|
|
}
|
|
|
|
// Returns a range reading in millimeters when continuous mode is active
|
|
// (readRangeSingleMillimeters() also calls this function after starting a
|
|
// single-shot range measurement)
|
|
uint16_t VL53L0X::readRangeContinuousMillimeters(void)
|
|
{
|
|
startTimeout();
|
|
while ((readReg(RESULT_INTERRUPT_STATUS) & 0x07) == 0)
|
|
{
|
|
if (checkTimeoutExpired())
|
|
{
|
|
did_timeout = true;
|
|
return 65535;
|
|
}
|
|
}
|
|
|
|
// assumptions: Linearity Corrective Gain is 1000 (default);
|
|
// fractional ranging is not enabled
|
|
uint16_t range = readReg16Bit(RESULT_RANGE_STATUS + 10);
|
|
|
|
writeReg(SYSTEM_INTERRUPT_CLEAR, 0x01);
|
|
|
|
return range;
|
|
}
|
|
|
|
// Performs a single-shot range measurement and returns the reading in
|
|
// millimeters
|
|
// based on VL53L0X_PerformSingleRangingMeasurement()
|
|
uint16_t VL53L0X::readRangeSingleMillimeters(void)
|
|
{
|
|
writeReg(0x80, 0x01);
|
|
writeReg(0xFF, 0x01);
|
|
writeReg(0x00, 0x00);
|
|
writeReg(0x91, stop_variable);
|
|
writeReg(0x00, 0x01);
|
|
writeReg(0xFF, 0x00);
|
|
writeReg(0x80, 0x00);
|
|
|
|
writeReg(SYSRANGE_START, 0x01);
|
|
|
|
// "Wait until start bit has been cleared"
|
|
startTimeout();
|
|
while (readReg(SYSRANGE_START) & 0x01)
|
|
{
|
|
if (checkTimeoutExpired())
|
|
{
|
|
did_timeout = true;
|
|
return 65535;
|
|
}
|
|
}
|
|
|
|
return readRangeContinuousMillimeters();
|
|
}
|
|
|
|
// Did a timeout occur in one of the read functions since the last call to
|
|
// timeoutOccurred()?
|
|
bool VL53L0X::timeoutOccurred()
|
|
{
|
|
bool tmp = did_timeout;
|
|
did_timeout = false;
|
|
return tmp;
|
|
}
|
|
|
|
// Private Methods /////////////////////////////////////////////////////////////
|
|
|
|
// Get reference SPAD (single photon avalanche diode) count and type
|
|
// based on VL53L0X_get_info_from_device(),
|
|
// but only gets reference SPAD count and type
|
|
bool VL53L0X::getSpadInfo(uint8_t * count, bool * type_is_aperture)
|
|
{
|
|
uint8_t tmp;
|
|
|
|
writeReg(0x80, 0x01);
|
|
writeReg(0xFF, 0x01);
|
|
writeReg(0x00, 0x00);
|
|
|
|
writeReg(0xFF, 0x06);
|
|
writeReg(0x83, readReg(0x83) | 0x04);
|
|
writeReg(0xFF, 0x07);
|
|
writeReg(0x81, 0x01);
|
|
|
|
writeReg(0x80, 0x01);
|
|
|
|
writeReg(0x94, 0x6b);
|
|
writeReg(0x83, 0x00);
|
|
startTimeout();
|
|
while (readReg(0x83) == 0x00)
|
|
{
|
|
if (checkTimeoutExpired()) { return false; }
|
|
}
|
|
writeReg(0x83, 0x01);
|
|
tmp = readReg(0x92);
|
|
|
|
*count = tmp & 0x7f;
|
|
*type_is_aperture = (tmp >> 7) & 0x01;
|
|
|
|
writeReg(0x81, 0x00);
|
|
writeReg(0xFF, 0x06);
|
|
writeReg(0x83, readReg(0x83) & ~0x04);
|
|
writeReg(0xFF, 0x01);
|
|
writeReg(0x00, 0x01);
|
|
|
|
writeReg(0xFF, 0x00);
|
|
writeReg(0x80, 0x00);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Get sequence step enables
|
|
// based on VL53L0X_GetSequenceStepEnables()
|
|
void VL53L0X::getSequenceStepEnables(SequenceStepEnables * enables)
|
|
{
|
|
uint8_t sequence_config = readReg(SYSTEM_SEQUENCE_CONFIG);
|
|
|
|
enables->tcc = (sequence_config >> 4) & 0x1;
|
|
enables->dss = (sequence_config >> 3) & 0x1;
|
|
enables->msrc = (sequence_config >> 2) & 0x1;
|
|
enables->pre_range = (sequence_config >> 6) & 0x1;
|
|
enables->final_range = (sequence_config >> 7) & 0x1;
|
|
}
|
|
|
|
// Get sequence step timeouts
|
|
// based on get_sequence_step_timeout(),
|
|
// but gets all timeouts instead of just the requested one, and also stores
|
|
// intermediate values
|
|
void VL53L0X::getSequenceStepTimeouts(SequenceStepEnables const * enables, SequenceStepTimeouts * timeouts)
|
|
{
|
|
timeouts->pre_range_vcsel_period_pclks = getVcselPulsePeriod(VcselPeriodPreRange);
|
|
|
|
timeouts->msrc_dss_tcc_mclks = readReg(MSRC_CONFIG_TIMEOUT_MACROP) + 1;
|
|
timeouts->msrc_dss_tcc_us =
|
|
timeoutMclksToMicroseconds(timeouts->msrc_dss_tcc_mclks,
|
|
timeouts->pre_range_vcsel_period_pclks);
|
|
|
|
timeouts->pre_range_mclks =
|
|
decodeTimeout(readReg16Bit(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI));
|
|
timeouts->pre_range_us =
|
|
timeoutMclksToMicroseconds(timeouts->pre_range_mclks,
|
|
timeouts->pre_range_vcsel_period_pclks);
|
|
|
|
timeouts->final_range_vcsel_period_pclks = getVcselPulsePeriod(VcselPeriodFinalRange);
|
|
|
|
timeouts->final_range_mclks =
|
|
decodeTimeout(readReg16Bit(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI));
|
|
|
|
if (enables->pre_range)
|
|
{
|
|
timeouts->final_range_mclks -= timeouts->pre_range_mclks;
|
|
}
|
|
|
|
timeouts->final_range_us =
|
|
timeoutMclksToMicroseconds(timeouts->final_range_mclks,
|
|
timeouts->final_range_vcsel_period_pclks);
|
|
}
|
|
|
|
// Decode sequence step timeout in MCLKs from register value
|
|
// based on VL53L0X_decode_timeout()
|
|
// Note: the original function returned a uint32_t, but the return value is
|
|
// always stored in a uint16_t.
|
|
uint16_t VL53L0X::decodeTimeout(uint16_t reg_val)
|
|
{
|
|
// format: "(LSByte * 2^MSByte) + 1"
|
|
return (uint16_t)((reg_val & 0x00FF) <<
|
|
(uint16_t)((reg_val & 0xFF00) >> 8)) + 1;
|
|
}
|
|
|
|
// Encode sequence step timeout register value from timeout in MCLKs
|
|
// based on VL53L0X_encode_timeout()
|
|
// Note: the original function took a uint16_t, but the argument passed to it
|
|
// is always a uint16_t.
|
|
uint16_t VL53L0X::encodeTimeout(uint16_t timeout_mclks)
|
|
{
|
|
// format: "(LSByte * 2^MSByte) + 1"
|
|
|
|
uint32_t ls_byte = 0;
|
|
uint16_t ms_byte = 0;
|
|
|
|
if (timeout_mclks > 0)
|
|
{
|
|
ls_byte = timeout_mclks - 1;
|
|
|
|
while ((ls_byte & 0xFFFFFF00) > 0)
|
|
{
|
|
ls_byte >>= 1;
|
|
ms_byte++;
|
|
}
|
|
|
|
return (ms_byte << 8) | (ls_byte & 0xFF);
|
|
}
|
|
else { return 0; }
|
|
}
|
|
|
|
// Convert sequence step timeout from MCLKs to microseconds with given VCSEL period in PCLKs
|
|
// based on VL53L0X_calc_timeout_us()
|
|
uint32_t VL53L0X::timeoutMclksToMicroseconds(uint16_t timeout_period_mclks, uint8_t vcsel_period_pclks)
|
|
{
|
|
uint32_t macro_period_ns = calcMacroPeriod(vcsel_period_pclks);
|
|
|
|
return ((timeout_period_mclks * macro_period_ns) + (macro_period_ns / 2)) / 1000;
|
|
}
|
|
|
|
// Convert sequence step timeout from microseconds to MCLKs with given VCSEL period in PCLKs
|
|
// based on VL53L0X_calc_timeout_mclks()
|
|
uint32_t VL53L0X::timeoutMicrosecondsToMclks(uint32_t timeout_period_us, uint8_t vcsel_period_pclks)
|
|
{
|
|
uint32_t macro_period_ns = calcMacroPeriod(vcsel_period_pclks);
|
|
|
|
return (((timeout_period_us * 1000) + (macro_period_ns / 2)) / macro_period_ns);
|
|
}
|
|
|
|
|
|
// based on VL53L0X_perform_single_ref_calibration()
|
|
bool VL53L0X::performSingleRefCalibration(uint8_t vhv_init_byte)
|
|
{
|
|
writeReg(SYSRANGE_START, 0x01 | vhv_init_byte); // VL53L0X_REG_SYSRANGE_MODE_START_STOP
|
|
|
|
startTimeout();
|
|
while ((readReg(RESULT_INTERRUPT_STATUS) & 0x07) == 0)
|
|
{
|
|
if (checkTimeoutExpired()) { return false; }
|
|
}
|
|
|
|
writeReg(SYSTEM_INTERRUPT_CLEAR, 0x01);
|
|
|
|
writeReg(SYSRANGE_START, 0x00);
|
|
|
|
return true;
|
|
}
|