Tasmota/lib/lib_i2c/vl53l0x-arduino-1.02/VL53L0X.cpp

1037 lines
30 KiB
C++

// Most of the functionality of this library is based on the VL53L0X API
// provided by ST (STSW-IMG005), and some of the explanatory comments are quoted
// or paraphrased from the API source code, API user manual (UM2039), and the
// VL53L0X datasheet.
#include <VL53L0X.h>
#include <Wire.h>
// Defines /////////////////////////////////////////////////////////////////////
// The Arduino two-wire interface uses a 7-bit number for the address,
// and sets the last bit correctly based on reads and writes
#define ADDRESS_DEFAULT 0b0101001
// Record the current time to check an upcoming timeout against
#define startTimeout() (timeout_start_ms = millis())
// Check if timeout is enabled (set to nonzero value) and has expired
#define checkTimeoutExpired() (io_timeout > 0 && ((uint16_t)millis() - timeout_start_ms) > io_timeout)
// Decode VCSEL (vertical cavity surface emitting laser) pulse period in PCLKs
// from register value
// based on VL53L0X_decode_vcsel_period()
#define decodeVcselPeriod(reg_val) (((reg_val) + 1) << 1)
// Encode VCSEL pulse period register value from period in PCLKs
// based on VL53L0X_encode_vcsel_period()
#define encodeVcselPeriod(period_pclks) (((period_pclks) >> 1) - 1)
// Calculate macro period in *nanoseconds* from VCSEL period in PCLKs
// based on VL53L0X_calc_macro_period_ps()
// PLL_period_ps = 1655; macro_period_vclks = 2304
#define calcMacroPeriod(vcsel_period_pclks) ((((uint32_t)2304 * (vcsel_period_pclks) * 1655) + 500) / 1000)
// Constructors ////////////////////////////////////////////////////////////////
VL53L0X::VL53L0X(void)
: address(ADDRESS_DEFAULT)
, io_timeout(0) // no timeout
, did_timeout(false)
{
}
// Public Methods //////////////////////////////////////////////////////////////
void VL53L0X::setAddress(uint8_t new_addr)
{
writeReg(I2C_SLAVE_DEVICE_ADDRESS, new_addr & 0x7F);
address = new_addr;
}
// Initialize sensor using sequence based on VL53L0X_DataInit(),
// VL53L0X_StaticInit(), and VL53L0X_PerformRefCalibration().
// This function does not perform reference SPAD calibration
// (VL53L0X_PerformRefSpadManagement()), since the API user manual says that it
// is performed by ST on the bare modules; it seems like that should work well
// enough unless a cover glass is added.
// If io_2v8 (optional) is true or not given, the sensor is configured for 2V8
// mode.
bool VL53L0X::init(bool io_2v8)
{
// VL53L0X_DataInit() begin
// sensor uses 1V8 mode for I/O by default; switch to 2V8 mode if necessary
if (io_2v8)
{
writeReg(VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV,
readReg(VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV) | 0x01); // set bit 0
}
// "Set I2C standard mode"
writeReg(0x88, 0x00);
writeReg(0x80, 0x01);
writeReg(0xFF, 0x01);
writeReg(0x00, 0x00);
stop_variable = readReg(0x91);
writeReg(0x00, 0x01);
writeReg(0xFF, 0x00);
writeReg(0x80, 0x00);
// disable SIGNAL_RATE_MSRC (bit 1) and SIGNAL_RATE_PRE_RANGE (bit 4) limit checks
writeReg(MSRC_CONFIG_CONTROL, readReg(MSRC_CONFIG_CONTROL) | 0x12);
// set final range signal rate limit to 0.25 MCPS (million counts per second)
setSignalRateLimit(0.25);
writeReg(SYSTEM_SEQUENCE_CONFIG, 0xFF);
// VL53L0X_DataInit() end
// VL53L0X_StaticInit() begin
uint8_t spad_count;
bool spad_type_is_aperture;
if (!getSpadInfo(&spad_count, &spad_type_is_aperture)) { return false; }
// The SPAD map (RefGoodSpadMap) is read by VL53L0X_get_info_from_device() in
// the API, but the same data seems to be more easily readable from
// GLOBAL_CONFIG_SPAD_ENABLES_REF_0 through _6, so read it from there
uint8_t ref_spad_map[6];
readMulti(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, ref_spad_map, 6);
// -- VL53L0X_set_reference_spads() begin (assume NVM values are valid)
writeReg(0xFF, 0x01);
writeReg(DYNAMIC_SPAD_REF_EN_START_OFFSET, 0x00);
writeReg(DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD, 0x2C);
writeReg(0xFF, 0x00);
writeReg(GLOBAL_CONFIG_REF_EN_START_SELECT, 0xB4);
uint8_t first_spad_to_enable = spad_type_is_aperture ? 12 : 0; // 12 is the first aperture spad
uint8_t spads_enabled = 0;
for (uint8_t i = 0; i < 48; i++)
{
if (i < first_spad_to_enable || spads_enabled == spad_count)
{
// This bit is lower than the first one that should be enabled, or
// (reference_spad_count) bits have already been enabled, so zero this bit
ref_spad_map[i / 8] &= ~(1 << (i % 8));
}
else if ((ref_spad_map[i / 8] >> (i % 8)) & 0x1)
{
spads_enabled++;
}
}
writeMulti(GLOBAL_CONFIG_SPAD_ENABLES_REF_0, ref_spad_map, 6);
// -- VL53L0X_set_reference_spads() end
// -- VL53L0X_load_tuning_settings() begin
// DefaultTuningSettings from vl53l0x_tuning.h
writeReg(0xFF, 0x01);
writeReg(0x00, 0x00);
writeReg(0xFF, 0x00);
writeReg(0x09, 0x00);
writeReg(0x10, 0x00);
writeReg(0x11, 0x00);
writeReg(0x24, 0x01);
writeReg(0x25, 0xFF);
writeReg(0x75, 0x00);
writeReg(0xFF, 0x01);
writeReg(0x4E, 0x2C);
writeReg(0x48, 0x00);
writeReg(0x30, 0x20);
writeReg(0xFF, 0x00);
writeReg(0x30, 0x09);
writeReg(0x54, 0x00);
writeReg(0x31, 0x04);
writeReg(0x32, 0x03);
writeReg(0x40, 0x83);
writeReg(0x46, 0x25);
writeReg(0x60, 0x00);
writeReg(0x27, 0x00);
writeReg(0x50, 0x06);
writeReg(0x51, 0x00);
writeReg(0x52, 0x96);
writeReg(0x56, 0x08);
writeReg(0x57, 0x30);
writeReg(0x61, 0x00);
writeReg(0x62, 0x00);
writeReg(0x64, 0x00);
writeReg(0x65, 0x00);
writeReg(0x66, 0xA0);
writeReg(0xFF, 0x01);
writeReg(0x22, 0x32);
writeReg(0x47, 0x14);
writeReg(0x49, 0xFF);
writeReg(0x4A, 0x00);
writeReg(0xFF, 0x00);
writeReg(0x7A, 0x0A);
writeReg(0x7B, 0x00);
writeReg(0x78, 0x21);
writeReg(0xFF, 0x01);
writeReg(0x23, 0x34);
writeReg(0x42, 0x00);
writeReg(0x44, 0xFF);
writeReg(0x45, 0x26);
writeReg(0x46, 0x05);
writeReg(0x40, 0x40);
writeReg(0x0E, 0x06);
writeReg(0x20, 0x1A);
writeReg(0x43, 0x40);
writeReg(0xFF, 0x00);
writeReg(0x34, 0x03);
writeReg(0x35, 0x44);
writeReg(0xFF, 0x01);
writeReg(0x31, 0x04);
writeReg(0x4B, 0x09);
writeReg(0x4C, 0x05);
writeReg(0x4D, 0x04);
writeReg(0xFF, 0x00);
writeReg(0x44, 0x00);
writeReg(0x45, 0x20);
writeReg(0x47, 0x08);
writeReg(0x48, 0x28);
writeReg(0x67, 0x00);
writeReg(0x70, 0x04);
writeReg(0x71, 0x01);
writeReg(0x72, 0xFE);
writeReg(0x76, 0x00);
writeReg(0x77, 0x00);
writeReg(0xFF, 0x01);
writeReg(0x0D, 0x01);
writeReg(0xFF, 0x00);
writeReg(0x80, 0x01);
writeReg(0x01, 0xF8);
writeReg(0xFF, 0x01);
writeReg(0x8E, 0x01);
writeReg(0x00, 0x01);
writeReg(0xFF, 0x00);
writeReg(0x80, 0x00);
// -- VL53L0X_load_tuning_settings() end
// "Set interrupt config to new sample ready"
// -- VL53L0X_SetGpioConfig() begin
writeReg(SYSTEM_INTERRUPT_CONFIG_GPIO, 0x04);
writeReg(GPIO_HV_MUX_ACTIVE_HIGH, readReg(GPIO_HV_MUX_ACTIVE_HIGH) & ~0x10); // active low
writeReg(SYSTEM_INTERRUPT_CLEAR, 0x01);
// -- VL53L0X_SetGpioConfig() end
measurement_timing_budget_us = getMeasurementTimingBudget();
// "Disable MSRC and TCC by default"
// MSRC = Minimum Signal Rate Check
// TCC = Target CentreCheck
// -- VL53L0X_SetSequenceStepEnable() begin
writeReg(SYSTEM_SEQUENCE_CONFIG, 0xE8);
// -- VL53L0X_SetSequenceStepEnable() end
// "Recalculate timing budget"
setMeasurementTimingBudget(measurement_timing_budget_us);
// VL53L0X_StaticInit() end
// VL53L0X_PerformRefCalibration() begin (VL53L0X_perform_ref_calibration())
// -- VL53L0X_perform_vhv_calibration() begin
writeReg(SYSTEM_SEQUENCE_CONFIG, 0x01);
if (!performSingleRefCalibration(0x40)) { return false; }
// -- VL53L0X_perform_vhv_calibration() end
// -- VL53L0X_perform_phase_calibration() begin
writeReg(SYSTEM_SEQUENCE_CONFIG, 0x02);
if (!performSingleRefCalibration(0x00)) { return false; }
// -- VL53L0X_perform_phase_calibration() end
// "restore the previous Sequence Config"
writeReg(SYSTEM_SEQUENCE_CONFIG, 0xE8);
// VL53L0X_PerformRefCalibration() end
return true;
}
// Write an 8-bit register
void VL53L0X::writeReg(uint8_t reg, uint8_t value)
{
Wire.beginTransmission(address);
Wire.write(reg);
Wire.write(value);
last_status = Wire.endTransmission();
}
// Write a 16-bit register
void VL53L0X::writeReg16Bit(uint8_t reg, uint16_t value)
{
Wire.beginTransmission(address);
Wire.write(reg);
Wire.write((value >> 8) & 0xFF); // value high byte
Wire.write( value & 0xFF); // value low byte
last_status = Wire.endTransmission();
}
// Write a 32-bit register
void VL53L0X::writeReg32Bit(uint8_t reg, uint32_t value)
{
Wire.beginTransmission(address);
Wire.write(reg);
Wire.write((value >> 24) & 0xFF); // value highest byte
Wire.write((value >> 16) & 0xFF);
Wire.write((value >> 8) & 0xFF);
Wire.write( value & 0xFF); // value lowest byte
last_status = Wire.endTransmission();
}
// Read an 8-bit register
uint8_t VL53L0X::readReg(uint8_t reg)
{
uint8_t value;
Wire.beginTransmission(address);
Wire.write(reg);
last_status = Wire.endTransmission();
Wire.requestFrom(address, (uint8_t)1);
value = Wire.read();
return value;
}
// Read a 16-bit register
uint16_t VL53L0X::readReg16Bit(uint8_t reg)
{
uint16_t value;
Wire.beginTransmission(address);
Wire.write(reg);
last_status = Wire.endTransmission();
Wire.requestFrom(address, (uint8_t)2);
value = (uint16_t)Wire.read() << 8; // value high byte
value |= Wire.read(); // value low byte
return value;
}
// Read a 32-bit register
uint32_t VL53L0X::readReg32Bit(uint8_t reg)
{
uint32_t value;
Wire.beginTransmission(address);
Wire.write(reg);
last_status = Wire.endTransmission();
Wire.requestFrom(address, (uint8_t)4);
value = (uint32_t)Wire.read() << 24; // value highest byte
value |= (uint32_t)Wire.read() << 16;
value |= (uint16_t)Wire.read() << 8;
value |= Wire.read(); // value lowest byte
return value;
}
// Write an arbitrary number of bytes from the given array to the sensor,
// starting at the given register
void VL53L0X::writeMulti(uint8_t reg, uint8_t const * src, uint8_t count)
{
Wire.beginTransmission(address);
Wire.write(reg);
while (count-- > 0)
{
Wire.write(*(src++));
}
last_status = Wire.endTransmission();
}
// Read an arbitrary number of bytes from the sensor, starting at the given
// register, into the given array
void VL53L0X::readMulti(uint8_t reg, uint8_t * dst, uint8_t count)
{
Wire.beginTransmission(address);
Wire.write(reg);
last_status = Wire.endTransmission();
Wire.requestFrom(address, count);
while (count-- > 0)
{
*(dst++) = Wire.read();
}
}
// Set the return signal rate limit check value in units of MCPS (mega counts
// per second). "This represents the amplitude of the signal reflected from the
// target and detected by the device"; setting this limit presumably determines
// the minimum measurement necessary for the sensor to report a valid reading.
// Setting a lower limit increases the potential range of the sensor but also
// seems to increase the likelihood of getting an inaccurate reading because of
// unwanted reflections from objects other than the intended target.
// Defaults to 0.25 MCPS as initialized by the ST API and this library.
bool VL53L0X::setSignalRateLimit(float limit_Mcps)
{
if (limit_Mcps < 0 || limit_Mcps > 511.99) { return false; }
// Q9.7 fixed point format (9 integer bits, 7 fractional bits)
writeReg16Bit(FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT, limit_Mcps * (1 << 7));
return true;
}
// Get the return signal rate limit check value in MCPS
float VL53L0X::getSignalRateLimit(void)
{
return (float)readReg16Bit(FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT) / (1 << 7);
}
// Set the measurement timing budget in microseconds, which is the time allowed
// for one measurement; the ST API and this library take care of splitting the
// timing budget among the sub-steps in the ranging sequence. A longer timing
// budget allows for more accurate measurements. Increasing the budget by a
// factor of N decreases the range measurement standard deviation by a factor of
// sqrt(N). Defaults to about 33 milliseconds; the minimum is 20 ms.
// based on VL53L0X_set_measurement_timing_budget_micro_seconds()
bool VL53L0X::setMeasurementTimingBudget(uint32_t budget_us)
{
SequenceStepEnables enables;
SequenceStepTimeouts timeouts;
uint16_t const StartOverhead = 1320; // note that this is different than the value in get_
uint16_t const EndOverhead = 960;
uint16_t const MsrcOverhead = 660;
uint16_t const TccOverhead = 590;
uint16_t const DssOverhead = 690;
uint16_t const PreRangeOverhead = 660;
uint16_t const FinalRangeOverhead = 550;
uint32_t const MinTimingBudget = 20000;
if (budget_us < MinTimingBudget) { return false; }
uint32_t used_budget_us = StartOverhead + EndOverhead;
getSequenceStepEnables(&enables);
getSequenceStepTimeouts(&enables, &timeouts);
if (enables.tcc)
{
used_budget_us += (timeouts.msrc_dss_tcc_us + TccOverhead);
}
if (enables.dss)
{
used_budget_us += 2 * (timeouts.msrc_dss_tcc_us + DssOverhead);
}
else if (enables.msrc)
{
used_budget_us += (timeouts.msrc_dss_tcc_us + MsrcOverhead);
}
if (enables.pre_range)
{
used_budget_us += (timeouts.pre_range_us + PreRangeOverhead);
}
if (enables.final_range)
{
used_budget_us += FinalRangeOverhead;
// "Note that the final range timeout is determined by the timing
// budget and the sum of all other timeouts within the sequence.
// If there is no room for the final range timeout, then an error
// will be set. Otherwise the remaining time will be applied to
// the final range."
if (used_budget_us > budget_us)
{
// "Requested timeout too big."
return false;
}
uint32_t final_range_timeout_us = budget_us - used_budget_us;
// set_sequence_step_timeout() begin
// (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE)
// "For the final range timeout, the pre-range timeout
// must be added. To do this both final and pre-range
// timeouts must be expressed in macro periods MClks
// because they have different vcsel periods."
uint16_t final_range_timeout_mclks =
timeoutMicrosecondsToMclks(final_range_timeout_us,
timeouts.final_range_vcsel_period_pclks);
if (enables.pre_range)
{
final_range_timeout_mclks += timeouts.pre_range_mclks;
}
writeReg16Bit(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI,
encodeTimeout(final_range_timeout_mclks));
// set_sequence_step_timeout() end
measurement_timing_budget_us = budget_us; // store for internal reuse
}
return true;
}
// Get the measurement timing budget in microseconds
// based on VL53L0X_get_measurement_timing_budget_micro_seconds()
// in us
uint32_t VL53L0X::getMeasurementTimingBudget(void)
{
SequenceStepEnables enables;
SequenceStepTimeouts timeouts;
uint16_t const StartOverhead = 1910; // note that this is different than the value in set_
uint16_t const EndOverhead = 960;
uint16_t const MsrcOverhead = 660;
uint16_t const TccOverhead = 590;
uint16_t const DssOverhead = 690;
uint16_t const PreRangeOverhead = 660;
uint16_t const FinalRangeOverhead = 550;
// "Start and end overhead times always present"
uint32_t budget_us = StartOverhead + EndOverhead;
getSequenceStepEnables(&enables);
getSequenceStepTimeouts(&enables, &timeouts);
if (enables.tcc)
{
budget_us += (timeouts.msrc_dss_tcc_us + TccOverhead);
}
if (enables.dss)
{
budget_us += 2 * (timeouts.msrc_dss_tcc_us + DssOverhead);
}
else if (enables.msrc)
{
budget_us += (timeouts.msrc_dss_tcc_us + MsrcOverhead);
}
if (enables.pre_range)
{
budget_us += (timeouts.pre_range_us + PreRangeOverhead);
}
if (enables.final_range)
{
budget_us += (timeouts.final_range_us + FinalRangeOverhead);
}
measurement_timing_budget_us = budget_us; // store for internal reuse
return budget_us;
}
// Set the VCSEL (vertical cavity surface emitting laser) pulse period for the
// given period type (pre-range or final range) to the given value in PCLKs.
// Longer periods seem to increase the potential range of the sensor.
// Valid values are (even numbers only):
// pre: 12 to 18 (initialized default: 14)
// final: 8 to 14 (initialized default: 10)
// based on VL53L0X_set_vcsel_pulse_period()
bool VL53L0X::setVcselPulsePeriod(vcselPeriodType type, uint8_t period_pclks)
{
uint8_t vcsel_period_reg = encodeVcselPeriod(period_pclks);
SequenceStepEnables enables;
SequenceStepTimeouts timeouts;
getSequenceStepEnables(&enables);
getSequenceStepTimeouts(&enables, &timeouts);
// "Apply specific settings for the requested clock period"
// "Re-calculate and apply timeouts, in macro periods"
// "When the VCSEL period for the pre or final range is changed,
// the corresponding timeout must be read from the device using
// the current VCSEL period, then the new VCSEL period can be
// applied. The timeout then must be written back to the device
// using the new VCSEL period.
//
// For the MSRC timeout, the same applies - this timeout being
// dependant on the pre-range vcsel period."
if (type == VcselPeriodPreRange)
{
// "Set phase check limits"
switch (period_pclks)
{
case 12:
writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x18);
break;
case 14:
writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x30);
break;
case 16:
writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x40);
break;
case 18:
writeReg(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x50);
break;
default:
// invalid period
return false;
}
writeReg(PRE_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
// apply new VCSEL period
writeReg(PRE_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg);
// update timeouts
// set_sequence_step_timeout() begin
// (SequenceStepId == VL53L0X_SEQUENCESTEP_PRE_RANGE)
uint16_t new_pre_range_timeout_mclks =
timeoutMicrosecondsToMclks(timeouts.pre_range_us, period_pclks);
writeReg16Bit(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI,
encodeTimeout(new_pre_range_timeout_mclks));
// set_sequence_step_timeout() end
// set_sequence_step_timeout() begin
// (SequenceStepId == VL53L0X_SEQUENCESTEP_MSRC)
uint16_t new_msrc_timeout_mclks =
timeoutMicrosecondsToMclks(timeouts.msrc_dss_tcc_us, period_pclks);
writeReg(MSRC_CONFIG_TIMEOUT_MACROP,
(new_msrc_timeout_mclks > 256) ? 255 : (new_msrc_timeout_mclks - 1));
// set_sequence_step_timeout() end
}
else if (type == VcselPeriodFinalRange)
{
switch (period_pclks)
{
case 8:
writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x10);
writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x02);
writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x0C);
writeReg(0xFF, 0x01);
writeReg(ALGO_PHASECAL_LIM, 0x30);
writeReg(0xFF, 0x00);
break;
case 10:
writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x28);
writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x09);
writeReg(0xFF, 0x01);
writeReg(ALGO_PHASECAL_LIM, 0x20);
writeReg(0xFF, 0x00);
break;
case 12:
writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x38);
writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x08);
writeReg(0xFF, 0x01);
writeReg(ALGO_PHASECAL_LIM, 0x20);
writeReg(0xFF, 0x00);
break;
case 14:
writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x48);
writeReg(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08);
writeReg(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03);
writeReg(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x07);
writeReg(0xFF, 0x01);
writeReg(ALGO_PHASECAL_LIM, 0x20);
writeReg(0xFF, 0x00);
break;
default:
// invalid period
return false;
}
// apply new VCSEL period
writeReg(FINAL_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg);
// update timeouts
// set_sequence_step_timeout() begin
// (SequenceStepId == VL53L0X_SEQUENCESTEP_FINAL_RANGE)
// "For the final range timeout, the pre-range timeout
// must be added. To do this both final and pre-range
// timeouts must be expressed in macro periods MClks
// because they have different vcsel periods."
uint16_t new_final_range_timeout_mclks =
timeoutMicrosecondsToMclks(timeouts.final_range_us, period_pclks);
if (enables.pre_range)
{
new_final_range_timeout_mclks += timeouts.pre_range_mclks;
}
writeReg16Bit(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI,
encodeTimeout(new_final_range_timeout_mclks));
// set_sequence_step_timeout end
}
else
{
// invalid type
return false;
}
// "Finally, the timing budget must be re-applied"
setMeasurementTimingBudget(measurement_timing_budget_us);
// "Perform the phase calibration. This is needed after changing on vcsel period."
// VL53L0X_perform_phase_calibration() begin
uint8_t sequence_config = readReg(SYSTEM_SEQUENCE_CONFIG);
writeReg(SYSTEM_SEQUENCE_CONFIG, 0x02);
performSingleRefCalibration(0x0);
writeReg(SYSTEM_SEQUENCE_CONFIG, sequence_config);
// VL53L0X_perform_phase_calibration() end
return true;
}
// Get the VCSEL pulse period in PCLKs for the given period type.
// based on VL53L0X_get_vcsel_pulse_period()
uint8_t VL53L0X::getVcselPulsePeriod(vcselPeriodType type)
{
if (type == VcselPeriodPreRange)
{
return decodeVcselPeriod(readReg(PRE_RANGE_CONFIG_VCSEL_PERIOD));
}
else if (type == VcselPeriodFinalRange)
{
return decodeVcselPeriod(readReg(FINAL_RANGE_CONFIG_VCSEL_PERIOD));
}
else { return 255; }
}
// Start continuous ranging measurements. If period_ms (optional) is 0 or not
// given, continuous back-to-back mode is used (the sensor takes measurements as
// often as possible); otherwise, continuous timed mode is used, with the given
// inter-measurement period in milliseconds determining how often the sensor
// takes a measurement.
// based on VL53L0X_StartMeasurement()
void VL53L0X::startContinuous(uint32_t period_ms)
{
writeReg(0x80, 0x01);
writeReg(0xFF, 0x01);
writeReg(0x00, 0x00);
writeReg(0x91, stop_variable);
writeReg(0x00, 0x01);
writeReg(0xFF, 0x00);
writeReg(0x80, 0x00);
if (period_ms != 0)
{
// continuous timed mode
// VL53L0X_SetInterMeasurementPeriodMilliSeconds() begin
uint16_t osc_calibrate_val = readReg16Bit(OSC_CALIBRATE_VAL);
if (osc_calibrate_val != 0)
{
period_ms *= osc_calibrate_val;
}
writeReg32Bit(SYSTEM_INTERMEASUREMENT_PERIOD, period_ms);
// VL53L0X_SetInterMeasurementPeriodMilliSeconds() end
writeReg(SYSRANGE_START, 0x04); // VL53L0X_REG_SYSRANGE_MODE_TIMED
}
else
{
// continuous back-to-back mode
writeReg(SYSRANGE_START, 0x02); // VL53L0X_REG_SYSRANGE_MODE_BACKTOBACK
}
}
// Stop continuous measurements
// based on VL53L0X_StopMeasurement()
void VL53L0X::stopContinuous(void)
{
writeReg(SYSRANGE_START, 0x01); // VL53L0X_REG_SYSRANGE_MODE_SINGLESHOT
writeReg(0xFF, 0x01);
writeReg(0x00, 0x00);
writeReg(0x91, 0x00);
writeReg(0x00, 0x01);
writeReg(0xFF, 0x00);
}
// Returns a range reading in millimeters when continuous mode is active
// (readRangeSingleMillimeters() also calls this function after starting a
// single-shot range measurement)
uint16_t VL53L0X::readRangeContinuousMillimeters(void)
{
startTimeout();
while ((readReg(RESULT_INTERRUPT_STATUS) & 0x07) == 0)
{
if (checkTimeoutExpired())
{
did_timeout = true;
return 65535;
}
}
// assumptions: Linearity Corrective Gain is 1000 (default);
// fractional ranging is not enabled
uint16_t range = readReg16Bit(RESULT_RANGE_STATUS + 10);
writeReg(SYSTEM_INTERRUPT_CLEAR, 0x01);
return range;
}
// Performs a single-shot range measurement and returns the reading in
// millimeters
// based on VL53L0X_PerformSingleRangingMeasurement()
uint16_t VL53L0X::readRangeSingleMillimeters(void)
{
writeReg(0x80, 0x01);
writeReg(0xFF, 0x01);
writeReg(0x00, 0x00);
writeReg(0x91, stop_variable);
writeReg(0x00, 0x01);
writeReg(0xFF, 0x00);
writeReg(0x80, 0x00);
writeReg(SYSRANGE_START, 0x01);
// "Wait until start bit has been cleared"
startTimeout();
while (readReg(SYSRANGE_START) & 0x01)
{
if (checkTimeoutExpired())
{
did_timeout = true;
return 65535;
}
}
return readRangeContinuousMillimeters();
}
// Did a timeout occur in one of the read functions since the last call to
// timeoutOccurred()?
bool VL53L0X::timeoutOccurred()
{
bool tmp = did_timeout;
did_timeout = false;
return tmp;
}
// Private Methods /////////////////////////////////////////////////////////////
// Get reference SPAD (single photon avalanche diode) count and type
// based on VL53L0X_get_info_from_device(),
// but only gets reference SPAD count and type
bool VL53L0X::getSpadInfo(uint8_t * count, bool * type_is_aperture)
{
uint8_t tmp;
writeReg(0x80, 0x01);
writeReg(0xFF, 0x01);
writeReg(0x00, 0x00);
writeReg(0xFF, 0x06);
writeReg(0x83, readReg(0x83) | 0x04);
writeReg(0xFF, 0x07);
writeReg(0x81, 0x01);
writeReg(0x80, 0x01);
writeReg(0x94, 0x6b);
writeReg(0x83, 0x00);
startTimeout();
while (readReg(0x83) == 0x00)
{
if (checkTimeoutExpired()) { return false; }
}
writeReg(0x83, 0x01);
tmp = readReg(0x92);
*count = tmp & 0x7f;
*type_is_aperture = (tmp >> 7) & 0x01;
writeReg(0x81, 0x00);
writeReg(0xFF, 0x06);
writeReg(0x83, readReg(0x83) & ~0x04);
writeReg(0xFF, 0x01);
writeReg(0x00, 0x01);
writeReg(0xFF, 0x00);
writeReg(0x80, 0x00);
return true;
}
// Get sequence step enables
// based on VL53L0X_GetSequenceStepEnables()
void VL53L0X::getSequenceStepEnables(SequenceStepEnables * enables)
{
uint8_t sequence_config = readReg(SYSTEM_SEQUENCE_CONFIG);
enables->tcc = (sequence_config >> 4) & 0x1;
enables->dss = (sequence_config >> 3) & 0x1;
enables->msrc = (sequence_config >> 2) & 0x1;
enables->pre_range = (sequence_config >> 6) & 0x1;
enables->final_range = (sequence_config >> 7) & 0x1;
}
// Get sequence step timeouts
// based on get_sequence_step_timeout(),
// but gets all timeouts instead of just the requested one, and also stores
// intermediate values
void VL53L0X::getSequenceStepTimeouts(SequenceStepEnables const * enables, SequenceStepTimeouts * timeouts)
{
timeouts->pre_range_vcsel_period_pclks = getVcselPulsePeriod(VcselPeriodPreRange);
timeouts->msrc_dss_tcc_mclks = readReg(MSRC_CONFIG_TIMEOUT_MACROP) + 1;
timeouts->msrc_dss_tcc_us =
timeoutMclksToMicroseconds(timeouts->msrc_dss_tcc_mclks,
timeouts->pre_range_vcsel_period_pclks);
timeouts->pre_range_mclks =
decodeTimeout(readReg16Bit(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI));
timeouts->pre_range_us =
timeoutMclksToMicroseconds(timeouts->pre_range_mclks,
timeouts->pre_range_vcsel_period_pclks);
timeouts->final_range_vcsel_period_pclks = getVcselPulsePeriod(VcselPeriodFinalRange);
timeouts->final_range_mclks =
decodeTimeout(readReg16Bit(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI));
if (enables->pre_range)
{
timeouts->final_range_mclks -= timeouts->pre_range_mclks;
}
timeouts->final_range_us =
timeoutMclksToMicroseconds(timeouts->final_range_mclks,
timeouts->final_range_vcsel_period_pclks);
}
// Decode sequence step timeout in MCLKs from register value
// based on VL53L0X_decode_timeout()
// Note: the original function returned a uint32_t, but the return value is
// always stored in a uint16_t.
uint16_t VL53L0X::decodeTimeout(uint16_t reg_val)
{
// format: "(LSByte * 2^MSByte) + 1"
return (uint16_t)((reg_val & 0x00FF) <<
(uint16_t)((reg_val & 0xFF00) >> 8)) + 1;
}
// Encode sequence step timeout register value from timeout in MCLKs
// based on VL53L0X_encode_timeout()
// Note: the original function took a uint16_t, but the argument passed to it
// is always a uint16_t.
uint16_t VL53L0X::encodeTimeout(uint16_t timeout_mclks)
{
// format: "(LSByte * 2^MSByte) + 1"
uint32_t ls_byte = 0;
uint16_t ms_byte = 0;
if (timeout_mclks > 0)
{
ls_byte = timeout_mclks - 1;
while ((ls_byte & 0xFFFFFF00) > 0)
{
ls_byte >>= 1;
ms_byte++;
}
return (ms_byte << 8) | (ls_byte & 0xFF);
}
else { return 0; }
}
// Convert sequence step timeout from MCLKs to microseconds with given VCSEL period in PCLKs
// based on VL53L0X_calc_timeout_us()
uint32_t VL53L0X::timeoutMclksToMicroseconds(uint16_t timeout_period_mclks, uint8_t vcsel_period_pclks)
{
uint32_t macro_period_ns = calcMacroPeriod(vcsel_period_pclks);
return ((timeout_period_mclks * macro_period_ns) + (macro_period_ns / 2)) / 1000;
}
// Convert sequence step timeout from microseconds to MCLKs with given VCSEL period in PCLKs
// based on VL53L0X_calc_timeout_mclks()
uint32_t VL53L0X::timeoutMicrosecondsToMclks(uint32_t timeout_period_us, uint8_t vcsel_period_pclks)
{
uint32_t macro_period_ns = calcMacroPeriod(vcsel_period_pclks);
return (((timeout_period_us * 1000) + (macro_period_ns / 2)) / macro_period_ns);
}
// based on VL53L0X_perform_single_ref_calibration()
bool VL53L0X::performSingleRefCalibration(uint8_t vhv_init_byte)
{
writeReg(SYSRANGE_START, 0x01 | vhv_init_byte); // VL53L0X_REG_SYSRANGE_MODE_START_STOP
startTimeout();
while ((readReg(RESULT_INTERRUPT_STATUS) & 0x07) == 0)
{
if (checkTimeoutExpired()) { return false; }
}
writeReg(SYSTEM_INTERRUPT_CLEAR, 0x01);
writeReg(SYSRANGE_START, 0x00);
return true;
}