Tasmota/sonoff/xnrg_07_ade7953.ino

251 lines
7.4 KiB
C++

/*
xnrg_07_ade7953.ino - ADE7953 energy sensor support for Sonoff-Tasmota
Copyright (C) 2019 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_I2C
#ifdef USE_ENERGY_SENSOR
#ifdef USE_ADE7953
/*********************************************************************************************\
* ADE7953 - Energy (Shelly 2.5)
*
* Based on datasheet from https://www.analog.com/en/products/ade7953.html
*
* I2C Address: 0x38
\*********************************************************************************************/
#define XNRG_07 7
#define ADE7953_PREF 1540
#define ADE7953_UREF 26000
#define ADE7953_IREF 10000
#define ADE7953_ADDR 0x38
uint32_t ade7953_active_power = 0;
uint32_t ade7953_active_power1 = 0;
uint32_t ade7953_active_power2 = 0;
uint32_t ade7953_current_rms = 0;
uint32_t ade7953_current_rms1 = 0;
uint32_t ade7953_current_rms2 = 0;
uint32_t ade7953_voltage_rms = 0;
uint8_t ade7953_init = 0;
int Ade7953RegSize(uint16_t reg)
{
int size = 0;
switch ((reg >> 8) & 0x0F) {
case 0x03:
size++;
case 0x02:
size++;
case 0x01:
size++;
case 0x00:
case 0x07:
case 0x08:
size++;
}
return size;
}
void Ade7953Write(uint16_t reg, uint32_t val)
{
int size = Ade7953RegSize(reg);
if (size) {
Wire.beginTransmission(ADE7953_ADDR);
Wire.write((reg >> 8) & 0xFF);
Wire.write(reg & 0xFF);
while (size--) {
Wire.write((val >> (8 * size)) & 0xFF); // Write data, MSB first
}
Wire.endTransmission();
delayMicroseconds(5); // Bus-free time minimum 4.7us
}
}
uint32_t Ade7953Read(uint16_t reg)
{
uint32_t response = 0;
int size = Ade7953RegSize(reg);
if (size) {
Wire.beginTransmission(ADE7953_ADDR);
Wire.write((reg >> 8) & 0xFF);
Wire.write(reg & 0xFF);
Wire.endTransmission(0);
Wire.requestFrom(ADE7953_ADDR, size);
if (size <= Wire.available()) {
for (int i = 0; i < size; i++) {
response = response << 8 | Wire.read(); // receive DATA (MSB first)
}
}
}
return response;
}
void Ade7953Init(void)
{
Ade7953Write(0x102, 0x0004); // Locking the communication interface (Clear bit COMM_LOCK), Enable HPF
Ade7953Write(0x0FE, 0x00AD); // Unlock register 0x120
Ade7953Write(0x120, 0x0030); // Configure optimum setting
}
void Ade7953GetData(void)
{
ade7953_voltage_rms = Ade7953Read(0x31C); // Both relays
ade7953_current_rms1 = Ade7953Read(0x31B); // Relay 1
if (ade7953_current_rms1 < 2000) { // No load threshold (20mA)
ade7953_current_rms1 = 0;
ade7953_active_power1 = 0;
} else {
ade7953_active_power1 = (int32_t)Ade7953Read(0x313) * -1; // Relay 1
}
ade7953_current_rms2 = Ade7953Read(0x31A); // Relay 2
if (ade7953_current_rms2 < 2000) { // No load threshold (20mA)
ade7953_current_rms2 = 0;
ade7953_active_power2 = 0;
} else {
ade7953_active_power2 = (int32_t)Ade7953Read(0x312); // Relay 2
}
// First phase only supports accumulated Current and Power
ade7953_current_rms = ade7953_current_rms1 + ade7953_current_rms2;
ade7953_active_power = ade7953_active_power1 + ade7953_active_power2;
if (energy_power_on) { // Powered on
energy_voltage = (float)ade7953_voltage_rms / Settings.energy_voltage_calibration;
energy_active_power = (float)ade7953_active_power / (Settings.energy_power_calibration / 10);
if (0 == energy_active_power) {
energy_current = 0;
} else {
energy_current = (float)ade7953_current_rms / (Settings.energy_current_calibration * 10);
}
} else { // Powered off
energy_voltage = 0;
energy_active_power = 0;
energy_current = 0;
}
}
void Ade7953EnergyEverySecond()
{
if (ade7953_active_power) {
energy_kWhtoday_delta += ((ade7953_active_power * (100000 / (Settings.energy_power_calibration / 10))) / 3600);
EnergyUpdateToday();
}
if (ade7953_init) {
if (1 == ade7953_init) {
Ade7953Init();
}
ade7953_init--;
}
else {
Ade7953GetData();
}
}
void Ade7953DrvInit(void)
{
if (!energy_flg) {
if (i2c_flg && (pin[GPIO_ADE7953_IRQ] < 99)) { // Irq on GPIO16 is not supported...
delay(100); // Need 100mS to init ADE7953
if (I2cDevice(ADE7953_ADDR)) {
if (HLW_PREF_PULSE == Settings.energy_power_calibration) {
Settings.energy_power_calibration = ADE7953_PREF;
Settings.energy_voltage_calibration = ADE7953_UREF;
Settings.energy_current_calibration = ADE7953_IREF;
}
AddLog_P2(LOG_LEVEL_DEBUG, S_LOG_I2C_FOUND_AT, "ADE7953", ADE7953_ADDR);
ade7953_init = 2;
energy_flg = XNRG_07;
}
}
}
}
bool Ade7953Command(void)
{
bool serviced = true;
uint32_t value = (uint32_t)(CharToDouble(XdrvMailbox.data) * 100); // 1.23 = 123
if (CMND_POWERCAL == energy_command_code) {
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = ADE7953_PREF; }
// Service in xdrv_03_energy.ino
}
else if (CMND_VOLTAGECAL == energy_command_code) {
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = ADE7953_UREF; }
// Service in xdrv_03_energy.ino
}
else if (CMND_CURRENTCAL == energy_command_code) {
if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = ADE7953_IREF; }
// Service in xdrv_03_energy.ino
}
else if (CMND_POWERSET == energy_command_code) {
if (XdrvMailbox.data_len && ade7953_active_power) {
if ((value > 100) && (value < 200000)) { // Between 1W and 2000W
Settings.energy_power_calibration = (ade7953_active_power * 1000) / value; // 0.00 W
}
}
}
else if (CMND_VOLTAGESET == energy_command_code) {
if (XdrvMailbox.data_len && ade7953_voltage_rms) {
if ((value > 10000) && (value < 26000)) { // Between 100V and 260V
Settings.energy_voltage_calibration = (ade7953_voltage_rms * 100) / value; // 0.00 V
}
}
}
else if (CMND_CURRENTSET == energy_command_code) {
if (XdrvMailbox.data_len && ade7953_current_rms) {
if ((value > 2000) && (value < 1000000)) { // Between 20mA and 10A
Settings.energy_current_calibration = ((ade7953_current_rms * 100) / value) * 100; // 0.00 mA
}
}
}
else serviced = false; // Unknown command
return serviced;
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
int Xnrg07(uint8_t function)
{
int result = 0;
if (FUNC_PRE_INIT == function) {
Ade7953DrvInit();
}
else if (XNRG_07 == energy_flg) {
switch (function) {
case FUNC_ENERGY_EVERY_SECOND:
Ade7953EnergyEverySecond();
break;
case FUNC_COMMAND:
result = Ade7953Command();
break;
}
}
return result;
}
#endif // USE_ADE7953
#endif // USE_ENERGY_SENSOR
#endif // USE_I2C