Tasmota/sonoff/xsns_05_ds18b20.ino

254 lines
6.4 KiB
C++

/*
xsns_05_ds18b20.ino - DS18B20 temperature sensor support for Sonoff-Tasmota
Copyright (C) 2019 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_DS18B20
/*********************************************************************************************\
* DS18B20 - Temperature - Single sensor
\*********************************************************************************************/
#define XSNS_05 5
#define W1_SKIP_ROM 0xCC
#define W1_CONVERT_TEMP 0x44
#define W1_READ_SCRATCHPAD 0xBE
float ds18b20_temperature = 0;
uint8_t ds18b20_valid = 0;
uint8_t ds18x20_pin = 0;
char ds18b20_types[] = "DS18B20";
/*********************************************************************************************\
* Embedded stripped and tuned OneWire library
\*********************************************************************************************/
uint8_t OneWireReset(void)
{
uint8_t retries = 125;
//noInterrupts();
#ifdef DS18B20_INTERNAL_PULLUP
pinMode(ds18x20_pin, INPUT_PULLUP);
#else
pinMode(ds18x20_pin, INPUT);
#endif
do {
if (--retries == 0) {
return 0;
}
delayMicroseconds(2);
} while (!digitalRead(ds18x20_pin));
pinMode(ds18x20_pin, OUTPUT);
digitalWrite(ds18x20_pin, LOW);
delayMicroseconds(480);
#ifdef DS18B20_INTERNAL_PULLUP
pinMode(ds18x20_pin, INPUT_PULLUP);
#else
pinMode(ds18x20_pin, INPUT);
#endif
delayMicroseconds(70);
uint8_t r = !digitalRead(ds18x20_pin);
//interrupts();
delayMicroseconds(410);
return r;
}
void OneWireWriteBit(uint8_t v)
{
static const uint8_t delay_low[2] = { 65, 10 };
static const uint8_t delay_high[2] = { 5, 55 };
v &= 1;
//noInterrupts();
digitalWrite(ds18x20_pin, LOW);
pinMode(ds18x20_pin, OUTPUT);
delayMicroseconds(delay_low[v]);
digitalWrite(ds18x20_pin, HIGH);
//interrupts();
delayMicroseconds(delay_high[v]);
}
uint8_t OneWireReadBit(void)
{
//noInterrupts();
pinMode(ds18x20_pin, OUTPUT);
digitalWrite(ds18x20_pin, LOW);
delayMicroseconds(3);
#ifdef DS18B20_INTERNAL_PULLUP
pinMode(ds18x20_pin, INPUT_PULLUP);
#else
pinMode(ds18x20_pin, INPUT);
#endif
delayMicroseconds(10);
uint8_t r = digitalRead(ds18x20_pin);
//interrupts();
delayMicroseconds(53);
return r;
}
void OneWireWrite(uint8_t v)
{
for (uint8_t bit_mask = 0x01; bit_mask; bit_mask <<= 1) {
OneWireWriteBit((bit_mask & v) ? 1 : 0);
}
}
uint8_t OneWireRead(void)
{
uint8_t r = 0;
for (uint8_t bit_mask = 0x01; bit_mask; bit_mask <<= 1) {
if (OneWireReadBit()) {
r |= bit_mask;
}
}
return r;
}
bool OneWireCrc8(uint8_t *addr)
{
uint8_t crc = 0;
uint8_t len = 8;
while (len--) {
uint8_t inbyte = *addr++; // from 0 to 7
for (uint8_t i = 8; i; i--) {
uint8_t mix = (crc ^ inbyte) & 0x01;
crc >>= 1;
if (mix) {
crc ^= 0x8C;
}
inbyte >>= 1;
}
}
return (crc == *addr); // addr 8
}
/********************************************************************************************/
void Ds18b20Convert(void)
{
OneWireReset();
OneWireWrite(W1_SKIP_ROM); // Address all Sensors on Bus
OneWireWrite(W1_CONVERT_TEMP); // start conversion, no parasite power on at the end
// delay(750); // 750ms should be enough for 12bit conv
}
bool Ds18b20Read(void)
{
uint8_t data[9];
int8_t sign = 1;
if (ds18b20_valid) { ds18b20_valid--; }
/*
if (!OneWireReadBit()) { // Check end of measurement
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DSB D_SENSOR_BUSY));
return;
}
*/
for (uint8_t retry = 0; retry < 3; retry++) {
OneWireReset();
OneWireWrite(W1_SKIP_ROM);
OneWireWrite(W1_READ_SCRATCHPAD);
for (uint8_t i = 0; i < 9; i++) {
data[i] = OneWireRead();
}
if (OneWireCrc8(data)) {
uint16_t temp12 = (data[1] << 8) + data[0];
if (temp12 > 2047) {
temp12 = (~temp12) +1;
sign = -1;
}
ds18b20_temperature = ConvertTemp(sign * temp12 * 0.0625);
ds18b20_valid = SENSOR_MAX_MISS;
return true;
}
}
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DSB D_SENSOR_CRC_ERROR));
return false;
}
/********************************************************************************************/
void Ds18b20EverySecond(void)
{
ds18x20_pin = pin[GPIO_DSB];
if (uptime &1) {
// 2mS
Ds18b20Convert(); // Start conversion, takes up to one second
} else {
// 12mS
if (!Ds18b20Read()) { // Read temperature
AddLogMissed(ds18b20_types, ds18b20_valid);
}
}
}
void Ds18b20Show(bool json)
{
if (ds18b20_valid) { // Check for valid temperature
char temperature[33];
dtostrfd(ds18b20_temperature, Settings.flag2.temperature_resolution, temperature);
if(json) {
snprintf_P(mqtt_data, sizeof(mqtt_data), JSON_SNS_TEMP, mqtt_data, ds18b20_types, temperature);
#ifdef USE_DOMOTICZ
if (0 == tele_period) {
DomoticzSensor(DZ_TEMP, temperature);
}
#endif // USE_DOMOTICZ
#ifdef USE_KNX
if (0 == tele_period) {
KnxSensor(KNX_TEMPERATURE, ds18b20_temperature);
}
#endif // USE_KNX
#ifdef USE_WEBSERVER
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_TEMP, mqtt_data, ds18b20_types, temperature, TempUnit());
#endif // USE_WEBSERVER
}
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns05(uint8_t function)
{
bool result = false;
if (pin[GPIO_DSB] < 99) {
switch (function) {
case FUNC_EVERY_SECOND:
Ds18b20EverySecond();
break;
case FUNC_JSON_APPEND:
Ds18b20Show(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_APPEND:
Ds18b20Show(0);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_DS18B20