Tasmota/tasmota/xdrv_31_tasmota_slave.ino

611 lines
18 KiB
C++

/*
xdrv_31_tasmota_slave.ino - Support for external microcontroller slave on serial
Copyright (C) 2020 Andre Thomas and Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_TASMOTA_SLAVE
/*********************************************************************************************\
* Tasmota slave
\*********************************************************************************************/
#define XDRV_31 31
#define CONST_STK_CRC_EOP 0x20
#define CMND_STK_GET_SYNC 0x30
#define CMND_STK_SET_DEVICE 0x42
#define CMND_STK_SET_DEVICE_EXT 0x45
#define CMND_STK_ENTER_PROGMODE 0x50
#define CMND_STK_LEAVE_PROGMODE 0x51
#define CMND_STK_LOAD_ADDRESS 0x55
#define CMND_STK_PROG_PAGE 0x64
/*************************************************\
* Tasmota Slave Specific Commands
\*************************************************/
#define CMND_START 0xFC
#define CMND_END 0xFD
#define CMND_FEATURES 0x01
#define CMND_JSON 0x02
#define CMND_FUNC_EVERY_SECOND 0x03
#define CMND_FUNC_EVERY_100_MSECOND 0x04
#define CMND_SLAVE_SEND 0x05
#define CMND_PUBLISH_TELE 0x06
#define CMND_EXECUTE_CMND 0x07
#define PARAM_DATA_START 0xFE
#define PARAM_DATA_END 0xFF
#include <TasmotaSerial.h>
/*
* Embedding class in here since its rather specific to Arduino bootloader
*/
class SimpleHexParse {
public:
SimpleHexParse(void);
uint8_t parseLine(char *hexline);
uint8_t ptr_l = 0;
uint8_t ptr_h = 0;
bool PageIsReady = false;
bool firstrun = true;
bool EndOfFile = false;
uint8_t FlashPage[128];
uint8_t FlashPageIdx = 0;
uint8_t layoverBuffer[16];
uint8_t layoverIdx = 0;
uint8_t getByte(char *hexline, uint8_t idx);
};
SimpleHexParse::SimpleHexParse(void)
{
}
uint8_t SimpleHexParse::parseLine(char *hexline)
{
if (layoverIdx) {
memcpy(&FlashPage[0], &layoverBuffer[0], layoverIdx);
FlashPageIdx = layoverIdx;
layoverIdx = 0;
}
uint8_t len = getByte(hexline, 1);
uint8_t addr_h = getByte(hexline, 2);
uint8_t addr_l = getByte(hexline, 3);
uint8_t rectype = getByte(hexline, 4);
for (uint8_t idx = 0; idx < len; idx++) {
if (FlashPageIdx < 128) {
FlashPage[FlashPageIdx] = getByte(hexline, idx+5);
FlashPageIdx++;
} else { // We have layover bytes
layoverBuffer[layoverIdx] = getByte(hexline, idx+5);
layoverIdx++;
}
}
if (1 == rectype) {
EndOfFile = true;
while (FlashPageIdx < 128) {
FlashPage[FlashPageIdx] = 0xFF;
FlashPageIdx++;
}
}
if (FlashPageIdx == 128) {
if (firstrun) {
firstrun = false;
} else {
ptr_l += 0x40;
if (ptr_l == 0) {
ptr_l = 0;
ptr_h++;
}
}
firstrun = false;
PageIsReady = true;
}
return 0;
}
uint8_t SimpleHexParse::getByte(char* hexline, uint8_t idx)
{
char buff[3];
buff[3] = '\0';
memcpy(&buff, &hexline[(idx*2)-1], 2);
return strtol(buff, 0, 16);
}
/*
* End of embedded class SimpleHexParse
*/
struct TSLAVE {
uint32_t spi_hex_size = 0;
uint32_t spi_sector_counter = 0;
uint8_t spi_sector_cursor = 0;
uint8_t inverted = LOW;
bool type = false;
bool flashing = false;
bool SerialEnabled = false;
uint8_t waitstate = 0; // We use this so that features detection does not slow down other stuff on startup
bool unsupported = false;
} TSlave;
typedef union {
uint32_t data;
struct {
uint32_t func_json_append : 1; // Slave supports providing a JSON for TELEPERIOD
uint32_t func_every_second : 1; // Slave supports receiving a FUNC_EVERY_SECOND callback with no response
uint32_t func_every_100_msecond : 1; // Slave supports receiving a FUNC_EVERY_100_MSECOND callback with no response
uint32_t func_slave_send : 1; // Slave supports receiving commands with "slave send xxx"
uint32_t spare4 : 1;
uint32_t spare5 : 1;
uint32_t spare6 : 1;
uint32_t spare7 : 1;
uint32_t spare8 : 1;
uint32_t spare9 : 1;
uint32_t spare10 : 1;
uint32_t spare11 : 1;
uint32_t spare12 : 1;
uint32_t spare13 : 1;
uint32_t spare14 : 1;
uint32_t spare15 : 1;
uint32_t spare16 : 1;
uint32_t spare17 : 1;
uint32_t spare18 : 1;
uint32_t spare19 : 1;
uint32_t spare20 : 1;
uint32_t spare21 : 1;
uint32_t spare22 : 1;
uint32_t spare23 : 1;
uint32_t spare24 : 1;
uint32_t spare25 : 1;
uint32_t spare26 : 1;
uint32_t spare27 : 1;
uint32_t spare28 : 1;
uint32_t spare29 : 1;
uint32_t spare30 : 1;
uint32_t spare31 : 1;
};
} TSlaveFeatureCfg;
/*
* The structure below must remain 4 byte aligned to be compatible with
* Tasmota as master
*/
struct TSLAVE_FEATURES {
uint32_t features_version;
TSlaveFeatureCfg features;
} TSlaveSettings;
struct TSLAVE_COMMAND {
uint8_t command;
uint8_t parameter;
uint8_t unused2;
uint8_t unused3;
} TSlaveCommand;
TasmotaSerial *TasmotaSlave_Serial;
uint32_t TasmotaSlave_FlashStart(void)
{
return (ESP.getSketchSize() / SPI_FLASH_SEC_SIZE) + 2; // Stay on the safe side
}
uint8_t TasmotaSlave_UpdateInit(void)
{
TSlave.spi_hex_size = 0;
TSlave.spi_sector_counter = TasmotaSlave_FlashStart(); // Reset the pre-defined write address where firmware will temporarily be stored
TSlave.spi_sector_cursor = 0;
return 0;
}
void TasmotaSlave_Reset(void)
{
if (TSlave.SerialEnabled) {
digitalWrite(pin[GPIO_TASMOTASLAVE_RST], !TSlave.inverted);
delay(1);
digitalWrite(pin[GPIO_TASMOTASLAVE_RST], TSlave.inverted);
delay(1);
digitalWrite(pin[GPIO_TASMOTASLAVE_RST], !TSlave.inverted);
delay(5);
}
}
uint8_t TasmotaSlave_waitForSerialData(int dataCount, int timeout)
{
int timer = 0;
while (timer < timeout) {
if (TasmotaSlave_Serial->available() >= dataCount) {
return 1;
}
delay(1);
timer++;
}
return 0;
}
uint8_t TasmotaSlave_sendBytes(uint8_t* bytes, int count)
{
TasmotaSlave_Serial->write(bytes, count);
TasmotaSlave_waitForSerialData(2, 250);
uint8_t sync = TasmotaSlave_Serial->read();
uint8_t ok = TasmotaSlave_Serial->read();
if ((sync == 0x14) && (ok == 0x10)) {
return 1;
}
return 0;
}
uint8_t TasmotaSlave_execCmd(uint8_t cmd)
{
uint8_t bytes[] = { cmd, CONST_STK_CRC_EOP };
return TasmotaSlave_sendBytes(bytes, 2);
}
uint8_t TasmotaSlave_execParam(uint8_t cmd, uint8_t* params, int count)
{
uint8_t bytes[32];
bytes[0] = cmd;
int i = 0;
while (i < count) {
bytes[i + 1] = params[i];
i++;
}
bytes[i + 1] = CONST_STK_CRC_EOP;
return TasmotaSlave_sendBytes(bytes, i + 2);
}
uint8_t TasmotaSlave_exitProgMode(void)
{
return TasmotaSlave_execCmd(CMND_STK_LEAVE_PROGMODE); // Exit programming mode
}
uint8_t TasmotaSlave_SetupFlash(void)
{
uint8_t ProgParams[] = {0x86, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x03, 0xff, 0xff, 0xff, 0xff, 0x00, 0x80, 0x04, 0x00, 0x00, 0x00, 0x80, 0x00};
uint8_t ExtProgParams[] = {0x05, 0x04, 0xd7, 0xc2, 0x00};
TasmotaSlave_Serial->begin(USE_TASMOTA_SLAVE_FLASH_SPEED);
if (TasmotaSlave_Serial->hardwareSerial()) {
ClaimSerial();
}
TasmotaSlave_Reset();
uint8_t timeout = 0;
uint8_t no_error = 0;
while (50 > timeout) {
if (TasmotaSlave_execCmd(CMND_STK_GET_SYNC)) {
timeout = 200;
no_error = 1;
}
timeout++;
delay(1);
}
if (no_error) {
AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Found bootloader"));
} else {
no_error = 0;
AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Bootloader could not be found"));
}
if (no_error) {
if (TasmotaSlave_execParam(CMND_STK_SET_DEVICE, ProgParams, sizeof(ProgParams))) {
} else {
no_error = 0;
AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Could not configure device for programming (1)"));
}
}
if (no_error) {
if (TasmotaSlave_execParam(CMND_STK_SET_DEVICE_EXT, ExtProgParams, sizeof(ExtProgParams))) {
} else {
no_error = 0;
AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Could not configure device for programming (2)"));
}
}
if (no_error) {
if (TasmotaSlave_execCmd(CMND_STK_ENTER_PROGMODE)) {
} else {
no_error = 0;
AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Failed to put bootloader into programming mode"));
}
}
return no_error;
}
uint8_t TasmotaSlave_loadAddress(uint8_t adrHi, uint8_t adrLo)
{
uint8_t params[] = { adrLo, adrHi };
return TasmotaSlave_execParam(CMND_STK_LOAD_ADDRESS, params, sizeof(params));
}
void TasmotaSlave_FlashPage(uint8_t addr_h, uint8_t addr_l, uint8_t* data)
{
uint8_t Header[] = {CMND_STK_PROG_PAGE, 0x00, 0x80, 0x46};
TasmotaSlave_loadAddress(addr_h, addr_l);
TasmotaSlave_Serial->write(Header, 4);
for (int i = 0; i < 128; i++) {
TasmotaSlave_Serial->write(data[i]);
}
TasmotaSlave_Serial->write(CONST_STK_CRC_EOP);
TasmotaSlave_waitForSerialData(2, 250);
TasmotaSlave_Serial->read();
TasmotaSlave_Serial->read();
}
void TasmotaSlave_Flash(void)
{
bool reading = true;
uint32_t read = 0;
uint32_t processed = 0;
char thishexline[50];
uint8_t position = 0;
char* flash_buffer;
SimpleHexParse hexParse = SimpleHexParse();
if (!TasmotaSlave_SetupFlash()) {
AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Flashing aborted!"));
TSlave.flashing = false;
restart_flag = 2;
return;
}
flash_buffer = new char[SPI_FLASH_SEC_SIZE];
uint32_t flash_start = TasmotaSlave_FlashStart() * SPI_FLASH_SEC_SIZE;
while (reading) {
ESP.flashRead(flash_start + read, (uint32_t*)flash_buffer, SPI_FLASH_SEC_SIZE);
read = read + SPI_FLASH_SEC_SIZE;
if (read >= TSlave.spi_hex_size) {
reading = false;
}
for (uint32_t ca = 0; ca < SPI_FLASH_SEC_SIZE; ca++) {
processed++;
if ((processed <= TSlave.spi_hex_size) && (!hexParse.EndOfFile)) {
if (':' == flash_buffer[ca]) {
position = 0;
}
if (0x0D == flash_buffer[ca]) {
thishexline[position] = 0;
hexParse.parseLine(thishexline);
if (hexParse.PageIsReady) {
TasmotaSlave_FlashPage(hexParse.ptr_h, hexParse.ptr_l, hexParse.FlashPage);
hexParse.PageIsReady = false;
hexParse.FlashPageIdx = 0;
}
} else {
if (0x0A != flash_buffer[ca]) {
thishexline[position] = flash_buffer[ca];
position++;
}
}
}
}
}
TasmotaSlave_exitProgMode();
AddLog_P2(LOG_LEVEL_INFO, PSTR("TasmotaSlave: Flash done!"));
TSlave.flashing = false;
restart_flag = 2;
}
void TasmotaSlave_SetFlagFlashing(bool value)
{
TSlave.flashing = value;
}
bool TasmotaSlave_GetFlagFlashing(void)
{
return TSlave.flashing;
}
void TasmotaSlave_WriteBuffer(uint8_t *buf, size_t size)
{
if (0 == TSlave.spi_sector_cursor) { // Starting a new sector write so we need to erase it first
ESP.flashEraseSector(TSlave.spi_sector_counter);
}
TSlave.spi_sector_cursor++;
ESP.flashWrite((TSlave.spi_sector_counter * SPI_FLASH_SEC_SIZE) + ((TSlave.spi_sector_cursor-1)*2048), (uint32_t*)buf, size);
TSlave.spi_hex_size = TSlave.spi_hex_size + size;
if (2 == TSlave.spi_sector_cursor) { // The web upload sends 2048 bytes at a time so keep track of the cursor position to reset it for the next flash sector erase
TSlave.spi_sector_cursor = 0;
TSlave.spi_sector_counter++;
}
}
void TasmotaSlave_Init(void)
{
if (TSlave.type) {
return;
}
if (10 > TSlave.waitstate) {
TSlave.waitstate++;
return;
}
if (!TSlave.SerialEnabled) {
if ((pin[GPIO_TASMOTASLAVE_RXD] < 99) && (pin[GPIO_TASMOTASLAVE_TXD] < 99) &&
((pin[GPIO_TASMOTASLAVE_RST] < 99) || (pin[GPIO_TASMOTASLAVE_RST_INV] < 99))) {
TasmotaSlave_Serial = new TasmotaSerial(pin[GPIO_TASMOTASLAVE_RXD], pin[GPIO_TASMOTASLAVE_TXD], 1, 0, 200);
if (TasmotaSlave_Serial->begin(USE_TASMOTA_SLAVE_SERIAL_SPEED)) {
if (TasmotaSlave_Serial->hardwareSerial()) {
ClaimSerial();
}
TasmotaSlave_Serial->setTimeout(50);
if (pin[GPIO_TASMOTASLAVE_RST_INV] < 99) {
pin[GPIO_TASMOTASLAVE_RST] = pin[GPIO_TASMOTASLAVE_RST_INV];
pin[GPIO_TASMOTASLAVE_RST_INV] = 99;
TSlave.inverted = HIGH;
}
pinMode(pin[GPIO_TASMOTASLAVE_RST], OUTPUT);
TSlave.SerialEnabled = true;
TasmotaSlave_Reset();
AddLog_P2(LOG_LEVEL_INFO, PSTR("Tasmota Slave Enabled"));
}
}
}
if (TSlave.SerialEnabled) { // All go for hardware now we need to detect features if there are any
TasmotaSlave_sendCmnd(CMND_FEATURES, 0);
char buffer[32];
TasmotaSlave_Serial->readBytesUntil(char(PARAM_DATA_START), buffer, sizeof(buffer));
uint8_t len = TasmotaSlave_Serial->readBytesUntil(char(PARAM_DATA_END), buffer, sizeof(buffer));
memcpy(&TSlaveSettings, &buffer, sizeof(TSlaveSettings));
if (20191129 == TSlaveSettings.features_version) {
TSlave.type = true;
AddLog_P2(LOG_LEVEL_INFO, PSTR("Tasmota Slave Version %u"), TSlaveSettings.features_version);
} else {
if ((!TSlave.unsupported) && (TSlaveSettings.features_version > 0)) {
AddLog_P2(LOG_LEVEL_INFO, PSTR("Tasmota Slave Version %u not supported!"), TSlaveSettings.features_version);
TSlave.unsupported = true;
}
}
}
}
void TasmotaSlave_Show(void)
{
if ((TSlave.type) && (TSlaveSettings.features.func_json_append)) {
char buffer[100];
TasmotaSlave_sendCmnd(CMND_JSON, 0);
TasmotaSlave_Serial->readBytesUntil(char(PARAM_DATA_START), buffer, sizeof(buffer)-1);
uint8_t len = TasmotaSlave_Serial->readBytesUntil(char(PARAM_DATA_END), buffer, sizeof(buffer)-1);
buffer[len] = '\0';
ResponseAppend_P(PSTR(",\"TasmotaSlave\":%s"), buffer);
}
}
void TasmotaSlave_sendCmnd(uint8_t cmnd, uint8_t param)
{
TSlaveCommand.command = cmnd;
TSlaveCommand.parameter = param;
char buffer[sizeof(TSlaveCommand)+2];
buffer[0] = CMND_START;
memcpy(&buffer[1], &TSlaveCommand, sizeof(TSlaveCommand));
buffer[sizeof(TSlaveCommand)+1] = CMND_END;
for (uint8_t ca = 0; ca < sizeof(buffer); ca++) {
TasmotaSlave_Serial->write(buffer[ca]);
}
}
#define D_PRFX_SLAVE "Slave"
#define D_CMND_SLAVE_RESET "Reset"
#define D_CMND_SLAVE_SEND "Send"
const char kTasmotaSlaveCommands[] PROGMEM = D_PRFX_SLAVE "|"
D_CMND_SLAVE_RESET "|" D_CMND_SLAVE_SEND;
void (* const TasmotaSlaveCommand[])(void) PROGMEM = {
&CmndTasmotaSlaveReset, &CmndTasmotaSlaveSend };
void CmndTasmotaSlaveReset(void)
{
TasmotaSlave_Reset();
TSlave.type = false; // Force redetection
TSlave.waitstate = 7; // give it at least 3 seconds to restart from bootloader
TSlave.unsupported = false; // Reset unsupported flag
ResponseCmndDone();
}
void CmndTasmotaSlaveSend(void)
{
if (0 < XdrvMailbox.data_len) {
TasmotaSlave_sendCmnd(CMND_SLAVE_SEND, XdrvMailbox.data_len);
TasmotaSlave_Serial->write(char(PARAM_DATA_START));
for (uint8_t idx = 0; idx < XdrvMailbox.data_len; idx++) {
TasmotaSlave_Serial->write(XdrvMailbox.data[idx]);
}
TasmotaSlave_Serial->write(char(PARAM_DATA_END));
}
ResponseCmndDone();
}
void TasmotaSlave_ProcessIn(void)
{
uint8_t cmnd = TasmotaSlave_Serial->read();
switch (cmnd) {
case CMND_START:
TasmotaSlave_waitForSerialData(sizeof(TSlaveCommand),50);
uint8_t buffer[sizeof(TSlaveCommand)];
for (uint8_t idx = 0; idx < sizeof(TSlaveCommand); idx++) {
buffer[idx] = TasmotaSlave_Serial->read();
}
TasmotaSlave_Serial->read(); // read trailing byte of command
memcpy(&TSlaveCommand, &buffer, sizeof(TSlaveCommand));
char inbuf[TSlaveCommand.parameter+1];
TasmotaSlave_waitForSerialData(TSlaveCommand.parameter, 50);
TasmotaSlave_Serial->read(); // Read leading byte
for (uint8_t idx = 0; idx < TSlaveCommand.parameter; idx++) {
inbuf[idx] = TasmotaSlave_Serial->read();
}
TasmotaSlave_Serial->read(); // Read trailing byte
inbuf[TSlaveCommand.parameter] = '\0';
if (CMND_PUBLISH_TELE == TSlaveCommand.command) { // We need to publish stat/ with incoming stream as content
Response_P(PSTR("{\"TasmotaSlave\":"));
ResponseAppend_P("%s", inbuf);
ResponseJsonEnd();
MqttPublishPrefixTopic_P(RESULT_OR_TELE, mqtt_data);
XdrvRulesProcess();
}
if (CMND_EXECUTE_CMND == TSlaveCommand.command) { // We need to execute the incoming command
ExecuteCommand(inbuf, SRC_IGNORE);
}
break;
default:
break;
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv31(uint8_t function)
{
bool result = false;
switch (function) {
case FUNC_EVERY_100_MSECOND:
if (TSlave.type) {
if (TasmotaSlave_Serial->available()) {
TasmotaSlave_ProcessIn();
}
if (TSlaveSettings.features.func_every_100_msecond) {
TasmotaSlave_sendCmnd(CMND_FUNC_EVERY_100_MSECOND, 0);
}
}
break;
case FUNC_EVERY_SECOND:
if ((TSlave.type) && (TSlaveSettings.features.func_every_second)) {
TasmotaSlave_sendCmnd(CMND_FUNC_EVERY_SECOND, 0);
}
TasmotaSlave_Init();
break;
case FUNC_JSON_APPEND:
if ((TSlave.type) && (TSlaveSettings.features.func_json_append)) {
TasmotaSlave_Show();
}
break;
case FUNC_COMMAND:
result = DecodeCommand(kTasmotaSlaveCommands, TasmotaSlaveCommand);
break;
}
return result;
}
#endif // USE_TASMOTA_SLAVE