Tasmota/tasmota/xnrg_06_pzem_dc.ino

175 lines
5.7 KiB
C++

/*
xnrg_06_pzem_dc.ino - PZEM-003,017 Modbus DC energy sensor support for Tasmota
Copyright (C) 2020 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ENERGY_SENSOR
#ifdef USE_PZEM_DC
/*********************************************************************************************\
* PZEM-003 - DC 300V 10A Energy
* PZEM-017 - DC 300V 50A - 300A Energy
*
* Based on:
* PZEM-003,017 docs Https://pan.baidu.com/s/1V9bDWj3RK2u6_fbBJ3GtqQ password rq37
*
* Hardware Serial will be selected if GPIO1 = [62 PZEM0XX Tx] and GPIO3 = [99 PZEM017 Rx]
\*********************************************************************************************/
#define XNRG_06 6
const uint8_t PZEM_DC_DEVICE_ADDRESS = 0x01; // PZEM default address
const uint32_t PZEM_DC_STABILIZE = 30; // Number of seconds to stabilize configuration
#include <TasmotaModbus.h>
TasmotaModbus *PzemDcModbus;
struct PZEMDC {
float energy = 0;
float last_energy = 0;
uint8_t send_retry = 0;
uint8_t channel = 0;
uint8_t address = 0;
uint8_t address_step = ADDR_IDLE;
} PzemDc;
void PzemDcEverySecond(void)
{
bool data_ready = PzemDcModbus->ReceiveReady();
if (data_ready) {
uint8_t buffer[26]; // At least 5 + (2 * 8) = 21
uint8_t registers = 8;
if (ADDR_RECEIVE == PzemDc.address_step) {
registers = 2; // Need 1 byte extra as response is F8 06 00 02 00 01 FD A3
PzemDc.address_step--;
}
uint8_t error = PzemDcModbus->ReceiveBuffer(buffer, registers);
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, buffer, PzemDcModbus->ReceiveCount());
if (error) {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("PDC: PzemDc %d error %d"), PZEM_DC_DEVICE_ADDRESS + PzemDc.channel, error);
} else {
Energy.data_valid[PzemDc.channel] = 0;
if (8 == registers) {
// 0 1 2 3 4 5 6 7 = ModBus register
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 = Buffer index
// 01 04 10 05 40 00 0A 00 0D 00 00 00 02 00 00 00 00 00 00 D6 29
// Id Cc Sz Volt- Curre Power------ Energy----- HiAlm LoAlm Crc--
Energy.voltage[PzemDc.channel] = (float)((buffer[3] << 8) + buffer[4]) / 100.0; // 655.00 V
Energy.current[PzemDc.channel] = (float)((buffer[5] << 8) + buffer[6]) / 100.0; // 655.00 A
Energy.active_power[PzemDc.channel] = (float)((buffer[9] << 24) + (buffer[10] << 16) + (buffer[7] << 8) + buffer[8]) / 10.0; // 429496729.0 W
PzemDc.energy += (float)((buffer[13] << 24) + (buffer[14] << 16) + (buffer[11] << 8) + buffer[12]); // 4294967295 Wh
if (PzemDc.channel == Energy.phase_count -1) {
if (PzemDc.energy > PzemDc.last_energy) { // Handle missed channel
if (uptime > PZEM_DC_STABILIZE) {
EnergyUpdateTotal(PzemDc.energy, false);
}
PzemDc.last_energy = PzemDc.energy;
}
PzemDc.energy = 0;
}
}
}
}
if (0 == PzemDc.send_retry || data_ready) {
if (0 == PzemDc.channel) {
PzemDc.channel = Energy.phase_count -1;
} else {
PzemDc.channel--;
}
PzemDc.send_retry = ENERGY_WATCHDOG;
if (ADDR_SEND == PzemDc.address_step) {
PzemDcModbus->Send(0xF8, 0x06, 0x0002, (uint16_t)PzemDc.address);
PzemDc.address_step--;
} else {
PzemDcModbus->Send(PZEM_DC_DEVICE_ADDRESS + PzemDc.channel, 0x04, 0, 8);
}
}
else {
PzemDc.send_retry--;
if ((Energy.phase_count > 1) && (0 == PzemDc.send_retry) && (uptime < PZEM_DC_STABILIZE)) {
Energy.phase_count--; // Decrement channels if no response after retry within 30 seconds after restart
}
}
}
void PzemDcSnsInit(void)
{
PzemDcModbus = new TasmotaModbus(pin[GPIO_PZEM017_RX], pin[GPIO_PZEM0XX_TX]);
uint8_t result = PzemDcModbus->Begin(9600, 2); // Uses two stop bits!!
if (result) {
if (2 == result) { ClaimSerial(); }
Energy.type_dc = true;
Energy.phase_count = 3; // Start off with three channels
PzemDc.channel = 0;
} else {
energy_flg = ENERGY_NONE;
}
}
void PzemDcDrvInit(void)
{
if ((pin[GPIO_PZEM017_RX] < 99) && (pin[GPIO_PZEM0XX_TX] < 99)) {
energy_flg = XNRG_06;
}
}
bool PzemDcCommand(void)
{
bool serviced = true;
if (CMND_MODULEADDRESS == Energy.command_code) {
PzemDc.address = XdrvMailbox.payload; // Valid addresses are 1, 2 and 3
PzemDc.address_step = ADDR_SEND;
}
else serviced = false; // Unknown command
return serviced;
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xnrg06(uint8_t function)
{
bool result = false;
switch (function) {
case FUNC_ENERGY_EVERY_SECOND:
if (uptime > 4) { PzemDcEverySecond(); } // Fix start up issue #5875
break;
case FUNC_COMMAND:
result = PzemDcCommand();
break;
case FUNC_INIT:
PzemDcSnsInit();
break;
case FUNC_PRE_INIT:
PzemDcDrvInit();
break;
}
return result;
}
#endif // USE_PZEM_DC
#endif // USE_ENERGY_SENSOR