Tasmota/tasmota/xsns_18_pms5003.ino

371 lines
13 KiB
C++

/*
xsns_18_pms5003.ino - PMS3003, PMS5003, PMS7003 particle concentration sensor support for Tasmota
Copyright (C) 2021 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_PMS5003
/*********************************************************************************************\
* PlanTower PMS3003, PMS5003, PMS7003 particle concentration sensor
* For background information see http://aqicn.org/sensor/pms5003-7003/ or
* http://aqicn.org/sensor/pms3003/
*
* Hardware Serial will be selected if GPIO3 = [PMS5003]
* You can either support PMS3003 or PMS5003-7003 at one time. To enable the PMS3003 support
* you must enable the define PMS_MODEL_PMS3003 on your configuration file.
\*********************************************************************************************/
#define XSNS_18 18
#include <TasmotaSerial.h>
#ifndef WARMUP_PERIOD
#define WARMUP_PERIOD 30 // Turn on PMSX003 XX-seconds before read in passive mode
#endif
#ifndef MIN_INTERVAL_PERIOD
#define MIN_INTERVAL_PERIOD 60 // minimum interval period in seconds required for passive mode
#endif
TasmotaSerial *PmsSerial;
struct PMS5003 {
uint16_t time = 0;
uint8_t type = 1;
uint8_t valid = 0;
uint8_t wake_mode = 1;
uint8_t ready = 1;
bool discovery_triggered = false;
} Pms;
enum PmsCommands
{
CMD_MODE_ACTIVE,
CMD_SLEEP,
CMD_WAKEUP,
CMD_MODE_PASSIVE,
CMD_READ_DATA
};
const uint8_t kPmsCommands[][7] PROGMEM = {
// 0 1 2 3 4 5 6
{0x42, 0x4D, 0xE1, 0x00, 0x01, 0x01, 0x71}, // pms_set_active_mode
{0x42, 0x4D, 0xE4, 0x00, 0x00, 0x01, 0x73}, // pms_sleep
{0x42, 0x4D, 0xE4, 0x00, 0x01, 0x01, 0x74}, // pms_wake
{0x42, 0x4D, 0xE1, 0x00, 0x00, 0x01, 0x70}, // pms_set_passive_mode
{0x42, 0x4D, 0xE2, 0x00, 0x00, 0x01, 0x71}}; // pms_passive_mode_read
struct pmsX003data {
uint16_t framelen;
uint16_t pm10_standard, pm25_standard, pm100_standard;
uint16_t pm10_env, pm25_env, pm100_env;
#ifdef PMS_MODEL_PMS3003
uint16_t reserved1, reserved2, reserved3;
#else
uint16_t particles_03um, particles_05um, particles_10um, particles_25um, particles_50um, particles_100um;
uint16_t unused;
#endif // PMS_MODEL_PMS3003
uint16_t checksum;
} pms_data;
/*********************************************************************************************/
size_t PmsSendCmd(uint8_t command_id)
{
return PmsSerial->write(kPmsCommands[command_id], sizeof(kPmsCommands[command_id]));
}
/*********************************************************************************************/
bool PmsReadData(void)
{
if (! PmsSerial->available()) {
return false;
}
while ((PmsSerial->peek() != 0x42) && PmsSerial->available()) {
PmsSerial->read();
}
#ifdef PMS_MODEL_PMS3003
if (PmsSerial->available() < 24) {
#else
if (PmsSerial->available() < 32) {
#endif // PMS_MODEL_PMS3003
return false;
}
#ifdef PMS_MODEL_PMS3003
uint8_t buffer[24];
PmsSerial->readBytes(buffer, 24);
#else
uint8_t buffer[32];
PmsSerial->readBytes(buffer, 32);
#endif // PMS_MODEL_PMS3003
uint16_t sum = 0;
PmsSerial->flush(); // Make room for another burst
#ifdef PMS_MODEL_PMS3003
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, buffer, 24);
#else
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, buffer, 32);
#endif // PMS_MODEL_PMS3003
// get checksum ready
#ifdef PMS_MODEL_PMS3003
for (uint32_t i = 0; i < 22; i++) {
#else
for (uint32_t i = 0; i < 30; i++) {
#endif // PMS_MODEL_PMS3003
sum += buffer[i];
}
// The data comes in endian'd, this solves it so it works on all platforms
#ifdef PMS_MODEL_PMS3003
uint16_t buffer_u16[12];
for (uint32_t i = 0; i < 12; i++) {
#else
uint16_t buffer_u16[15];
for (uint32_t i = 0; i < 15; i++) {
#endif // PMS_MODEL_PMS3003
buffer_u16[i] = buffer[2 + i*2 + 1];
buffer_u16[i] += (buffer[2 + i*2] << 8);
}
#ifdef PMS_MODEL_PMS3003
if (sum != buffer_u16[10]) {
#else
if (sum != buffer_u16[14]) {
#endif // PMS_MODEL_PMS3003
AddLog(LOG_LEVEL_DEBUG, PSTR("PMS: " D_CHECKSUM_FAILURE));
return false;
}
#ifdef PMS_MODEL_PMS3003
memcpy((void *)&pms_data, (void *)buffer_u16, 22);
#else
memcpy((void *)&pms_data, (void *)buffer_u16, 30);
#endif // PMS_MODEL_PMS3003
Pms.valid = 10;
if (!Pms.discovery_triggered) {
TasmotaGlobal.discovery_counter = 1; // Force discovery
Pms.discovery_triggered = true;
}
return true;
}
/*********************************************************************************************\
* Command Sensor18
*
* Warmup time for sensor is 30 seconds, therfore setting interval time to less than 60
* seconds doesn't really make sense.
*
* 0 - 59 - Active Mode (continuous sensor readings)
* 60 .. 65535 - Passive Mode (read sensor every x seconds)
\*********************************************************************************************/
bool PmsCommandSensor(void)
{
if (PinUsed(GPIO_PMS5003_TX) && (XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 32001)) {
if (XdrvMailbox.payload < MIN_INTERVAL_PERIOD) {
// Set Active Mode if interval is less than 60 seconds
Settings->pms_wake_interval = 0;
Pms.wake_mode = 1;
Pms.ready = 1;
PmsSendCmd(CMD_MODE_ACTIVE);
PmsSendCmd(CMD_WAKEUP);
} else {
// Set Passive Mode and schedule read once per interval time
Settings->pms_wake_interval = XdrvMailbox.payload;
PmsSendCmd(CMD_MODE_PASSIVE);
PmsSendCmd(CMD_SLEEP);
Pms.wake_mode = 0;
Pms.ready = 0;
}
}
Response_P(S_JSON_SENSOR_INDEX_NVALUE, XSNS_18, Settings->pms_wake_interval);
return true;
}
/*********************************************************************************************/
void PmsSecond(void) // Every second
{
if (Settings->pms_wake_interval >= MIN_INTERVAL_PERIOD) {
// Passive Mode
Pms.time++;
if ((Settings->pms_wake_interval - Pms.time <= WARMUP_PERIOD) && !Pms.wake_mode) {
// wakeup sensor WARMUP_PERIOD before read interval
Pms.wake_mode = 1;
PmsSendCmd(CMD_WAKEUP);
}
if (Pms.time >= Settings->pms_wake_interval) {
// sensor is awake and warmed up, set up for reading
PmsSendCmd(CMD_READ_DATA);
Pms.ready = 1;
Pms.time = 0;
}
}
if (Pms.ready) {
if (PmsReadData()) {
Pms.valid = 10;
if (Settings->pms_wake_interval >= MIN_INTERVAL_PERIOD) {
PmsSendCmd(CMD_SLEEP);
Pms.wake_mode = 0;
Pms.ready = 0;
}
} else {
if (Pms.valid) {
Pms.valid--;
if (Settings->pms_wake_interval >= MIN_INTERVAL_PERIOD) {
PmsSendCmd(CMD_READ_DATA);
Pms.ready = 1;
}
}
}
}
}
/*********************************************************************************************/
void PmsInit(void)
{
Pms.type = 0;
if (PinUsed(GPIO_PMS5003_RX)) {
PmsSerial = new TasmotaSerial(Pin(GPIO_PMS5003_RX), (PinUsed(GPIO_PMS5003_TX)) ? Pin(GPIO_PMS5003_TX) : -1, 1);
if (PmsSerial->begin(9600)) {
if (PmsSerial->hardwareSerial()) { ClaimSerial(); }
if (!PinUsed(GPIO_PMS5003_TX)) { // setting interval not supported if TX pin not connected
Settings->pms_wake_interval = 0;
Pms.ready = 1;
} else {
if (Settings->pms_wake_interval >= MIN_INTERVAL_PERIOD) {
// Passive Mode
PmsSendCmd(CMD_MODE_PASSIVE);
Pms.wake_mode = 0;
Pms.ready = 0;
Pms.time = Settings->pms_wake_interval - WARMUP_PERIOD; // Let it wake up in the next second
}
}
Pms.type = 1;
}
}
}
#ifdef USE_WEBSERVER
#ifdef PMS_MODEL_PMS3003
const char HTTP_PMS3003_SNS[] PROGMEM =
// "{s}PMS3003 " D_STANDARD_CONCENTRATION " 1 " D_UNIT_MICROMETER "{m}%d " D_UNIT_MICROGRAM_PER_CUBIC_METER "{e}"
// "{s}PMS3003 " D_STANDARD_CONCENTRATION " 2.5 " D_UNIT_MICROMETER "{m}%d " D_UNIT_MICROGRAM_PER_CUBIC_METER "{e}"
// "{s}PMS3003 " D_STANDARD_CONCENTRATION " 10 " D_UNIT_MICROMETER "{m}%d " D_UNIT_MICROGRAM_PER_CUBIC_METER "{e}"
"{s}PMS3003 " D_ENVIRONMENTAL_CONCENTRATION " 1 " D_UNIT_MICROMETER "{m}%d " D_UNIT_MICROGRAM_PER_CUBIC_METER "{e}"
"{s}PMS3003 " D_ENVIRONMENTAL_CONCENTRATION " 2.5 " D_UNIT_MICROMETER "{m}%d " D_UNIT_MICROGRAM_PER_CUBIC_METER "{e}"
"{s}PMS3003 " D_ENVIRONMENTAL_CONCENTRATION " 10 " D_UNIT_MICROMETER "{m}%d " D_UNIT_MICROGRAM_PER_CUBIC_METER "{e}";
#else
const char HTTP_PMS5003_SNS[] PROGMEM =
// "{s}PMS5003 " D_STANDARD_CONCENTRATION " 1 " D_UNIT_MICROMETER "{m}%d " D_UNIT_MICROGRAM_PER_CUBIC_METER "{e}"
// "{s}PMS5003 " D_STANDARD_CONCENTRATION " 2.5 " D_UNIT_MICROMETER "{m}%d " D_UNIT_MICROGRAM_PER_CUBIC_METER "{e}"
// "{s}PMS5003 " D_STANDARD_CONCENTRATION " 10 " D_UNIT_MICROMETER "{m}%d " D_UNIT_MICROGRAM_PER_CUBIC_METER "{e}"
"{s}PMS5003 " D_ENVIRONMENTAL_CONCENTRATION " 1 " D_UNIT_MICROMETER "{m}%d " D_UNIT_MICROGRAM_PER_CUBIC_METER "{e}"
"{s}PMS5003 " D_ENVIRONMENTAL_CONCENTRATION " 2.5 " D_UNIT_MICROMETER "{m}%d " D_UNIT_MICROGRAM_PER_CUBIC_METER "{e}"
"{s}PMS5003 " D_ENVIRONMENTAL_CONCENTRATION " 10 " D_UNIT_MICROMETER "{m}%d " D_UNIT_MICROGRAM_PER_CUBIC_METER "{e}"
"{s}PMS5003 " D_PARTICALS_BEYOND " 0.3 " D_UNIT_MICROMETER "{m}%d " D_UNIT_PARTS_PER_DECILITER "{e}"
"{s}PMS5003 " D_PARTICALS_BEYOND " 0.5 " D_UNIT_MICROMETER "{m}%d " D_UNIT_PARTS_PER_DECILITER "{e}"
"{s}PMS5003 " D_PARTICALS_BEYOND " 1 " D_UNIT_MICROMETER "{m}%d " D_UNIT_PARTS_PER_DECILITER "{e}"
"{s}PMS5003 " D_PARTICALS_BEYOND " 2.5 " D_UNIT_MICROMETER "{m}%d " D_UNIT_PARTS_PER_DECILITER "{e}"
"{s}PMS5003 " D_PARTICALS_BEYOND " 5 " D_UNIT_MICROMETER "{m}%d " D_UNIT_PARTS_PER_DECILITER "{e}"
"{s}PMS5003 " D_PARTICALS_BEYOND " 10 " D_UNIT_MICROMETER "{m}%d " D_UNIT_PARTS_PER_DECILITER "{e}"; // {s} = <tr><th>, {m} = </th><td>, {e} = </td></tr>
#endif // PMS_MODEL_PMS3003
#endif // USE_WEBSERVER
void PmsShow(bool json)
{
if (Pms.valid) {
if (json) {
#ifdef PMS_MODEL_PMS3003
ResponseAppend_P(PSTR(",\"PMS3003\":{\"CF1\":%d,\"CF2.5\":%d,\"CF10\":%d,\"PM1\":%d,\"PM2.5\":%d,\"PM10\":%d}"),
pms_data.pm10_standard, pms_data.pm25_standard, pms_data.pm100_standard,
pms_data.pm10_env, pms_data.pm25_env, pms_data.pm100_env);
#else
ResponseAppend_P(PSTR(",\"PMS5003\":{\"CF1\":%d,\"CF2.5\":%d,\"CF10\":%d,\"PM1\":%d,\"PM2.5\":%d,\"PM10\":%d,\"PB0.3\":%d,\"PB0.5\":%d,\"PB1\":%d,\"PB2.5\":%d,\"PB5\":%d,\"PB10\":%d}"),
pms_data.pm10_standard, pms_data.pm25_standard, pms_data.pm100_standard,
pms_data.pm10_env, pms_data.pm25_env, pms_data.pm100_env,
pms_data.particles_03um, pms_data.particles_05um, pms_data.particles_10um, pms_data.particles_25um, pms_data.particles_50um, pms_data.particles_100um);
#endif // PMS_MODEL_PMS3003
#ifdef USE_DOMOTICZ
if (0 == TasmotaGlobal.tele_period) {
DomoticzSensor(DZ_COUNT, pms_data.pm10_env); // PM1
DomoticzSensor(DZ_VOLTAGE, pms_data.pm25_env); // PM2.5
DomoticzSensor(DZ_CURRENT, pms_data.pm100_env); // PM10
}
#endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER
} else {
#ifdef PMS_MODEL_PMS3003
WSContentSend_PD(HTTP_PMS3003_SNS,
// pms_data.pm10_standard, pms_data.pm25_standard, pms_data.pm100_standard,
pms_data.pm10_env, pms_data.pm25_env, pms_data.pm100_env);
#else
WSContentSend_PD(HTTP_PMS5003_SNS,
// pms_data.pm10_standard, pms_data.pm25_standard, pms_data.pm100_standard,
pms_data.pm10_env, pms_data.pm25_env, pms_data.pm100_env,
pms_data.particles_03um, pms_data.particles_05um, pms_data.particles_10um, pms_data.particles_25um, pms_data.particles_50um, pms_data.particles_100um);
#endif // PMS_MODEL_PMS3003
#endif // USE_WEBSERVER
}
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns18(uint8_t function)
{
bool result = false;
if (Pms.type) {
switch (function) {
case FUNC_INIT:
PmsInit();
break;
case FUNC_EVERY_SECOND:
PmsSecond();
break;
case FUNC_COMMAND_SENSOR:
if (XSNS_18 == XdrvMailbox.index) {
result = PmsCommandSensor();
}
break;
case FUNC_JSON_APPEND:
PmsShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
PmsShow(0);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_PMS5003