Tasmota/lib/Adafruit_SSD1351-gemu-1.0/SSD1351.cpp

547 lines
15 KiB
C++

/***************************************************
This is our library for the Adafruit SSD1351 Breakout and Shield
Check out the links above for our tutorials and wiring diagrams
These displays use SPI to communicate, 4 or 5 pins are required to
interface (RST is optional)
Adafruit invests time and resources providing this open source code,
please support Adafruit and open-source hardware by purchasing
products from Adafruit!
Written by Limor Fried/Ladyada for Adafruit Industries.
MIT license, all text above must be included in any redistribution
****************************************************/
#include <SPI.h>
#include "SSD1351.h"
#include <limits.h>
#include <pgmspace.h>
const uint16_t ssd1351_colors[]={SSD1351_BLACK,SSD1351_WHITE,SSD1351_RED,SSD1351_GREEN,SSD1351_BLUE,SSD1351_CYAN,SSD1351_MAGENTA,\
SSD1351_YELLOW,SSD1351_NAVY,SSD1351_DARKGREEN,SSD1351_DARKCYAN,SSD1351_MAROON,SSD1351_PURPLE,SSD1351_OLIVE,\
SSD1351_LIGHTGREY,SSD1351_DARKGREY,SSD1351_ORANGE,SSD1351_GREENYELLOW,SSD1351_PINK};
// Constructor when using software SPI. All output pins are configurable.
SSD1351::SSD1351(int8_t cs,int8_t mosi,int8_t sclk) : Renderer(SSD1351_WIDTH, SSD1351_HEIGHT) {
_cs = cs;
_mosi = mosi;
_sclk = sclk;
_hwspi = 0;
}
#ifndef ESP32
#include "spi_register.h"
/* CPU Clock = 80 Mhz
max clock of display is 4.545 Mhz (220ns sclk cycle)
so cpu/18 => 4.44 Mhz should be ok
HSPI CLK 5 GPIO14
HSPI /CS 8 GPIO15
HSPI MOSI 7 GPIO13
*/
uint8_t ssd131_start;
uint32_t ssd1351_clock;
uint32_t ssd1351_usr;
uint32_t ssd1351_usr1;
uint32_t ssd1351_usr2;
uint32_t ssd1351_spi1c;
uint32_t ssd1351_spi1p;
//uint32_t ssd1351_gpmux;
uint32_t ssd1351_mtdo;
uint32_t ssd1351_clock_prev;
uint32_t ssd1351_usr_prev;
uint32_t ssd1351_usr1_prev;
uint32_t ssd1351_usr2_prev;
uint32_t ssd1351_spi1c_prev;
uint32_t ssd1351_spi1p_prev;
//uint32_t ssd1351_gpmux_prev;
uint32_t ssd1351_mtdo_prev;
// code from espressif SDK
/******************************************************************************
* FunctionName : spi_lcd_mode_init
* Description : SPI master initial function for driving LCD 3 wire spi
*******************************************************************************/
void SSD1351::spi_lcd_mode_init(void) {
uint32 regvalue;
ssd1351_clock_prev=SPI1CLK;
ssd1351_usr_prev=SPI1U;
ssd1351_usr1_prev=SPI1U1;
ssd1351_usr2_prev=SPI1U2;
ssd1351_spi1c_prev=SPI1C;
ssd1351_spi1p_prev=SPI1P;
//ssd1351_gpmux_prev=GPMUX;
ssd1351_mtdo_prev=READ_PERI_REG(PERIPHS_IO_MUX_MTDO_U);
SPI1U = SPIUMOSI | SPIUDUPLEX | SPIUSSE;
SPI1U1=0;
SPI1C = 0;
//bit9 of PERIPHS_IO_MUX should be cleared when HSPI clock doesn't equal CPU clock
//bit8 of PERIPHS_IO_MUX should be cleared when SPI clock doesn't equal CPU clock
WRITE_PERI_REG(PERIPHS_IO_MUX, 0x105); //clear bit9
//PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDI_U, 2);//configure miso to spi mode
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTCK_U, 2);//configure mosi to spi mode
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTMS_U, 2);//configure sclk to spi mode
PIN_FUNC_SELECT(PERIPHS_IO_MUX_MTDO_U, 2);//configure cs to spi mode
// the current implementation leaves about 1 us between transfers ????
// due to lack of documentation i could not find the reason
// skipping this would double the speed !!!
//SET_PERI_REG_MASK(SPI_USER(1), SPI_CS_SETUP|SPI_CS_HOLD|SPI_USR_COMMAND);
SET_PERI_REG_MASK(SPI_USER(1), SPI_USR_COMMAND);
CLEAR_PERI_REG_MASK(SPI_USER(1), SPI_FLASH_MODE);
// SPI clock=CPU clock/8 => 10 Mhz
/*
WRITE_PERI_REG(SPI_CLOCK(1),
((1&SPI_CLKDIV_PRE)<<SPI_CLKDIV_PRE_S)|
((3&SPI_CLKCNT_N)<<SPI_CLKCNT_N_S)|
((1&SPI_CLKCNT_H)<<SPI_CLKCNT_H_S)|
((3&SPI_CLKCNT_L)<<SPI_CLKCNT_L_S)); //clear bit 31,set SPI clock div
*/
// will result in 80/18 = 4,4 Mhz
SPI.setFrequency(4500000);
ssd1351_clock=SPI1CLK;
ssd1351_usr=SPI1U;
ssd1351_usr1=SPI1U1;
ssd1351_usr2=SPI1U2;
ssd1351_spi1c=SPI1C;
ssd1351_spi1p=SPI1P;
//ssd1351_gpmux=GPMUX;
ssd1351_mtdo=READ_PERI_REG(PERIPHS_IO_MUX_MTDO_U);
ssd131_start=0;
}
void SSD1351::start(void) {
if (ssd131_start) return;
//while(SPI1CMD & SPIBUSY) {}
while(READ_PERI_REG(SPI_CMD(1))&SPI_USR);
SPI1CLK=ssd1351_clock;
SPI1U=ssd1351_usr;
SPI1U1=ssd1351_usr1;
SPI1U2=ssd1351_usr2;
SPI1C=ssd1351_spi1c;
SPI1P=ssd1351_spi1p;
//GPMUX=ssd1351_gpmux;
WRITE_PERI_REG(PERIPHS_IO_MUX_MTDO_U,ssd1351_mtdo);
ssd131_start=1;
}
void SSD1351::stop(void) {
if (!ssd131_start) return;
//while(SPI1CMD & SPIBUSY) {}
while(READ_PERI_REG(SPI_CMD(1))&SPI_USR);
SPI1CLK=ssd1351_clock_prev;
SPI1U=ssd1351_usr_prev;
SPI1U1=ssd1351_usr1_prev;
SPI1U2=ssd1351_usr2_prev;
SPI1C=ssd1351_spi1c_prev;
SPI1P=ssd1351_spi1p_prev;
//GPMUX=ssd1351_gpmux_prev;
WRITE_PERI_REG(PERIPHS_IO_MUX_MTDO_U,ssd1351_mtdo_prev);
ssd131_start=0;
}
// dc = 0
void SSD1351::writecommand(uint8_t c) {
if (_hwspi) {
uint32_t regvalue;
uint8_t bytetemp;
bytetemp=(c>>1)&0x7f;
start();
//#define SPI_USR_COMMAND_BITLEN 0x0000000F
//#define SPI_USR_COMMAND_BITLEN_S 28
regvalue= ((8&SPI_USR_COMMAND_BITLEN)<<SPI_USR_COMMAND_BITLEN_S)|((uint32)bytetemp); //configure transmission variable,9bit transmission length and first 8 command bit
if(c&0x01) regvalue|=BIT15; //write the 9th bit
while(READ_PERI_REG(SPI_CMD(1))&SPI_USR); //waiting for spi module available
WRITE_PERI_REG(SPI_USER2(1), regvalue); //write command and command length into spi reg
SET_PERI_REG_MASK(SPI_CMD(1), SPI_USR); //transmission start
} else fastSPIwrite(c,0);
}
// dc = 1
void SSD1351::writedata(uint8_t d) {
if (_hwspi) {
uint32_t regvalue;
uint8_t bytetemp;
bytetemp=(d>>1)|0x80;
start();
regvalue= ((8&SPI_USR_COMMAND_BITLEN)<<SPI_USR_COMMAND_BITLEN_S)|((uint32)bytetemp); //configure transmission variable,9bit transmission length and first 8 command bit
if(d&0x01) regvalue|=BIT15; //write the 9th bit
while(READ_PERI_REG(SPI_CMD(1))&SPI_USR); //waiting for spi module available
WRITE_PERI_REG(SPI_USER2(1), regvalue); //write command and command length into spi reg
SET_PERI_REG_MASK(SPI_CMD(1), SPI_USR); //transmission start
} else fastSPIwrite(d,1);
}
void ICACHE_RAM_ATTR SSD1351::fastSPIwrite(uint8_t d,uint8_t dc) {
WRITE_PERI_REG( PIN_OUT_CLEAR, 1<<_cs);
WRITE_PERI_REG( PIN_OUT_CLEAR, 1<<_sclk);
if(dc) WRITE_PERI_REG( PIN_OUT_SET, 1<<_mosi);
else WRITE_PERI_REG( PIN_OUT_CLEAR, 1<<_mosi);
WRITE_PERI_REG( PIN_OUT_SET, 1<<_sclk);
for(uint8_t bit = 0x80; bit; bit >>= 1) {
WRITE_PERI_REG( PIN_OUT_CLEAR, 1<<_sclk);
if(d&bit) WRITE_PERI_REG( PIN_OUT_SET, 1<<_mosi);
else WRITE_PERI_REG( PIN_OUT_CLEAR, 1<<_mosi);
WRITE_PERI_REG( PIN_OUT_SET, 1<<_sclk);
}
WRITE_PERI_REG( PIN_OUT_SET, 1<<_cs);
}
#else
// ESP32 section
uint8_t ssd131_start;
void SSD1351::writedata(uint8_t d) {
fastSPIwrite(d,1);
}
void SSD1351::writecommand(uint8_t c) {
fastSPIwrite(c,0);
}
#include "soc/spi_reg.h"
#include "soc/spi_struct.h"
#include "esp32-hal-spi.h"
#include "esp32-hal.h"
#include "soc/spi_struct.h"
SPISettings oled_spiSettings;
// diconnect from spi
void SSD1351::start(void) {
if (ssd131_start) return;
SPI.beginTransaction(oled_spiSettings);
ssd131_start = 1;
}
// reconnect to spi
void SSD1351::stop(void) {
if (!ssd131_start) return;
SPI.endTransaction();
ssd131_start = 0;
}
// since ardunio transferBits ia completely disfunctional
// we use our own hardware driver for 9 bit spi
void SSD1351::fastSPIwrite(uint8_t d,uint8_t dc) {
digitalWrite( _cs, LOW);
uint32_t regvalue=d>>1;
if (dc) regvalue|=0x80;
else regvalue&=0x7f;
if (d&1) regvalue|=0x8000;
REG_SET_BIT(SPI_USER_REG(3), SPI_USR_MOSI);
REG_WRITE(SPI_MOSI_DLEN_REG(3), 9 - 1);
uint32_t *dp=(uint32_t*)SPI_W0_REG(3);
*dp=regvalue;
REG_SET_BIT(SPI_CMD_REG(3), SPI_USR);
while (REG_GET_FIELD(SPI_CMD_REG(3), SPI_USR));
digitalWrite( _cs, HIGH);
}
#endif
static const uint8_t PROGMEM initList[] = {
SSD1351_CMD_COMMANDLOCK, 1, // Set command lock, 1 arg
0x12,
SSD1351_CMD_COMMANDLOCK, 1, // Set command lock, 1 arg
0xB1,
SSD1351_CMD_DISPLAYOFF, 0, // Display off, no args
SSD1351_CMD_CLOCKDIV, 1,
0xF1, // 7:4 = Oscillator Freq, 3:0 = CLK Div Ratio (A[3:0]+1 = 1..16)
SSD1351_CMD_MUXRATIO, 1,
127,
SSD1351_CMD_DISPLAYOFFSET, 1,
0x0,
SSD1351_CMD_SETGPIO, 1,
0x00,
SSD1351_CMD_FUNCTIONSELECT, 1,
0x01, // internal (diode drop)
SSD1351_CMD_PRECHARGE, 1,
0x32,
SSD1351_CMD_VCOMH, 1,
0x05,
SSD1351_CMD_STARTLINE, 1,
0x00,
SSD1351_CMD_NORMALDISPLAY, 0,
SSD1351_CMD_CONTRASTABC, 3,
0xC8, 0x80, 0xC8,
SSD1351_CMD_CONTRASTMASTER, 1,
0x0F,
SSD1351_CMD_SETVSL, 3,
0xA0, 0xB5, 0x55,
SSD1351_CMD_PRECHARGE2, 1,
0x01,
SSD1351_CMD_HORIZSCROLL, 1,
0x00,
SSD1351_CMD_STOPSCROLL, 0,
SSD1351_CMD_DISPLAYON, 0, // Main screen turn on
0 }; // END OF COMMAND LIST
void SSD1351::begin(void) {
pinMode(_cs, OUTPUT);
digitalWrite(_cs,HIGH);
pinMode(_sclk, OUTPUT);
digitalWrite(_sclk, LOW);
pinMode(_mosi, OUTPUT);
digitalWrite(_mosi, LOW);
#ifndef ESP32
if ((_sclk==14) && (_mosi==13) && (_cs==15)) {
// we use hardware spi
_hwspi=1;
SPI.begin();
spi_lcd_mode_init();
} else {
// we must use software spi
_hwspi=0;
}
#else
_hwspi=1;
SPI.begin(_sclk,-1,_mosi, -1);
oled_spiSettings = SPISettings(4500000, MSBFIRST, SPI_MODE3);
#endif
const uint8_t *addr = (const uint8_t *)initList;
uint8_t cmd, x, numArgs;
while ((cmd = pgm_read_byte(addr++)) > 0) { // '0' command ends list
x = pgm_read_byte(addr++);
numArgs = x & 0x7F;
if (cmd != 0xFF) { // '255' is ignored
sendcommand(cmd, addr, numArgs);
}
addr += numArgs;
}
delay(100);
setRotation(0);
stop();
}
void SSD1351::sendcommand(uint8_t commandByte, const uint8_t *dataBytes, uint8_t numDataBytes) {
writecommand(commandByte);
for (int i=0; i<numDataBytes; i++) {
writedata(pgm_read_byte(dataBytes++)); // Send the data bytes
}
}
void SSD1351::sendcommand(uint8_t commandByte,uint8_t *dataBytes, uint8_t numDataBytes) {
writecommand(commandByte);
for (int i=0; i<numDataBytes; i++) {
writedata(*dataBytes++); // Send the data bytes
}
}
uint16_t SSD1351::GetColorFromIndex(uint8_t index) {
if (index>=sizeof(ssd1351_colors)/2) index=0;
return ssd1351_colors[index];
}
void SSD1351::DisplayInit(int8_t p,int8_t size,int8_t rot,int8_t font) {
setRotation(rot);
invertDisplay(false);
setTextWrap(false); // Allow text to run off edges
cp437(true);
setTextFont(font&3);
setTextSize(size&7);
setTextColor(SSD1351_WHITE,SSD1351_BLACK);
setCursor(0,0);
fillScreen(SSD1351_BLACK);
stop();
}
void SSD1351::DisplayOnff(int8_t on) {
if (on) {
writecommand(SSD1351_CMD_DISPLAYON); //Display on
} else {
writecommand(SSD1351_CMD_DISPLAYOFF);
}
stop();
}
// dimmer 0-100
void SSD1351::dim(uint8_t contrast) {
writecommand(SSD1351_CMD_CONTRASTMASTER);
if (contrast>15) contrast=15;
writedata(contrast);
stop();
}
#define ssd1351_swap(a, b) (((a) ^= (b)), ((b) ^= (a)), ((a) ^= (b))) ///< No-temp-var swap operation
void SSD1351::setAddrWindow_i(uint16_t x1, uint16_t y1, uint16_t w, uint16_t h) {
uint16_t x2 = x1 + w - 1,
y2 = y1 + h - 1;
if (rotation&1) { // Vertical address increment mode
ssd1351_swap(x1,y1);
ssd1351_swap(x2,y2);
}
writecommand(SSD1351_CMD_SETCOLUMN); // X range
writedata(x1);
writedata(x2);
writecommand(SSD1351_CMD_SETROW); // Y range
writedata(y1);
writedata(y2);
writecommand(SSD1351_CMD_WRITERAM); // Begin write
}
void SSD1351::write16BitColor(uint16_t color){
writedata(color>>8);
writedata(color&0xff);
}
#define MADCTL_MY 0x80
#define MADCTL_MX 0x40
#define MADCTL_MV 0x20
#define MADCTL_ML 0x10
#define MADCTL_RGB 0x00
#define MADCTL_BGR 0x08
#define MADCTL_MH 0x04
void SSD1351::setRotation(uint8_t r) {
// madctl bits:
// 6,7 Color depth (01 = 64K)
// 5 Odd/even split COM (0: disable, 1: enable)
// 4 Scan direction (0: top-down, 1: bottom-up)
// 3 Reserved
// 2 Color remap (0: A->B->C, 1: C->B->A)
// 1 Column remap (0: 0-127, 1: 127-0)
// 0 Address increment (0: horizontal, 1: vertical)
uint8_t madctl = 0b01100100; // 64K, enable split, CBA
rotation = r & 3; // Clip input to valid range
switch(rotation) {
case 0:
madctl |= 0b00010000; // Scan bottom-up
_width = SSD1351_WIDTH;
_height = SSD1351_HEIGHT;
break;
case 1:
madctl |= 0b00010011; // Scan bottom-up, column remap 127-0, vertical
_width = SSD1351_HEIGHT;
_height = SSD1351_WIDTH;
break;
case 2:
madctl |= 0b00000010; // Column remap 127-0
_width = SSD1351_WIDTH;
_height = SSD1351_HEIGHT;
break;
case 3:
madctl |= 0b00000001; // Vertical
_width = SSD1351_HEIGHT;
_height = SSD1351_WIDTH;
break;
}
sendcommand(SSD1351_CMD_SETREMAP, &madctl, 1);
uint8_t startline = (rotation < 2) ? SSD1351_HEIGHT : 0;
sendcommand(SSD1351_CMD_STARTLINE, &startline, 1);
stop();
}
void SSD1351::invertDisplay(boolean i) {
writecommand(i ? SSD1351_CMD_INVERTDISPLAY : SSD1351_CMD_NORMALDISPLAY);
stop();
}
void SSD1351::drawPixel(int16_t x, int16_t y, uint16_t color) {
if((x < 0) ||(x >= _width) || (y < 0) || (y >= _height)) return;
setAddrWindow_i(x,y,1,1);
write16BitColor(color);
stop();
}
void SSD1351::setAddrWindow(uint16_t x1, uint16_t y1, uint16_t x2, uint16_t y2) {
// uint16_t x2 = x1 + w - 1,
// y2 = y1 + h - 1;
uint8_t flag=0;
if (!x1 && !y1 && !x2 && !y2) {
x1=0;
y1=0;
x2=_width;
y2=_height;
flag=1;
}
if (x2>_width) x2=_width;
if (y2>_height) y2=_height;
x2--;
y2--;
if (rotation&1) { // Vertical address increment mode
ssd1351_swap(x1,y1);
ssd1351_swap(x2,y2);
}
//Serial.printf("x1:%d x2:%d y1:%d y2:%d\n",x1,x2,y1,y2);
writecommand(SSD1351_CMD_SETCOLUMN); // X range
writedata(x1);
writedata(x2);
writecommand(SSD1351_CMD_SETROW); // Y range
writedata(y1);
writedata(y2);
writecommand(SSD1351_CMD_WRITERAM); // Begin write
if (flag) stop();
}
void SSD1351::pushColors(uint16_t *data, uint8_t len, boolean first) {
for (uint16_t b=0; b<len; b++){
write16BitColor(*data++);
}
stop();
}
void SSD1351::drawFastVLine(int16_t x,int16_t y,int16_t h,uint16_t color) {
// Rudimentary clipping
if ((x >= _width) || (y >= _height)) return;
if ((y+h-1) >= _height) h = _height-y;
setAddrWindow_i(x,y,1,h);
while (h--) {
write16BitColor(color);
}
stop();
}
void SSD1351::drawFastHLine(int16_t x,int16_t y,int16_t w,uint16_t color) {
// Rudimentary clipping
if ((x >= _width) || (y >= _height)) return;
if ((x+w-1) >= _width) w = _width-x;
setAddrWindow_i(x,y,w,1);
while (w--) {
write16BitColor(color);
}
stop();
}