Tasmota/lib/esp-knx-ip-0.5.2/examples/environment-sensor/environment-sensor.ino

160 lines
3.6 KiB
C++

/*
* This is an example showing a simple environment sensor based on a BME280 attached via I2C.
* This sketch was tested on a WeMos D1 mini
*/
#include <Adafruit_BME280.h>
#include <esp-knx-ip.h>
// WiFi config here
const char* ssid = "myssid";
const char* pass = "mypassword";
#define LED_PIN D4
#define UPDATE_INTERVAL 10000
unsigned long next_change = 0;
float last_temp = 0.0;
float last_hum = 0.0;
float last_pres = 0.0;
config_id_t temp_ga, hum_ga, pres_ga;
config_id_t hostname_id;
config_id_t update_rate_id, send_rate_id;
config_id_t enable_sending_id;
config_id_t enable_reading_id;
Adafruit_BME280 bme;
void setup() {
pinMode(LED_PIN, OUTPUT);
Serial.begin(115200);
hostname_id = knx.config_register_string("Hostname", 20, String("env"));
enable_sending_id = knx.config_register_bool("Send on update", true);
update_rate_id = knx.config_register_int("Update rate (ms)", UPDATE_INTERVAL);
temp_ga = knx.config_register_ga("Temperature", show_periodic_options);
hum_ga = knx.config_register_ga("Humidity", show_periodic_options);
pres_ga = knx.config_register_ga("Pressure", show_periodic_options);
knx.callback_register("Read Temperature", temp_cb);
knx.callback_register("Read Humidity", hum_cb);
knx.callback_register("Read Pressure", pres_cb);
knx.feedback_register_float("Temperature (°C)", &last_temp);
knx.feedback_register_float("Humidity (%)", &last_hum);
knx.feedback_register_float("Pressure (hPa)", &last_pres, 0);
// Load previous config from EEPROM
knx.load();
// Init sensor
if (!bme.begin(0x76)) {
Serial.println("Could not find a valid BME280 sensor, check wiring!");
}
// Init WiFi
WiFi.hostname(knx.config_get_string(hostname_id));
WiFi.begin(ssid, pass);
Serial.println("");
Serial.print("[Connecting]");
Serial.print(ssid);
digitalWrite(LED_PIN, LOW);
while (WiFi.status() != WL_CONNECTED) {
digitalWrite(LED_PIN, HIGH);
delay(250);
Serial.print(".");
digitalWrite(LED_PIN, LOW);
delay(250);
}
digitalWrite(LED_PIN, HIGH);
// Start knx
knx.start();
Serial.println();
Serial.println("Connected to wifi");
Serial.println(WiFi.localIP());
}
void loop() {
knx.loop();
unsigned long now = millis();
if (next_change < now)
{
next_change = now + knx.config_get_int(update_rate_id);
last_temp = bme.readTemperature();
last_hum = bme.readHumidity();
last_pres = bme.readPressure()/100.0f;
Serial.print("T: ");
Serial.print(last_temp);
Serial.print("°C H: ");
Serial.print(last_hum);
Serial.print("% P: ");
Serial.print(last_pres);
Serial.println("hPa");
if (knx.config_get_bool(enable_sending_id))
{
knx.write_2byte_float(knx.config_get_ga(temp_ga), last_temp);
knx.write_2byte_float(knx.config_get_ga(hum_ga), last_hum);
knx.write_2byte_float(knx.config_get_ga(pres_ga), last_pres);
}
}
delay(50);
}
bool show_periodic_options()
{
return knx.config_get_bool(enable_sending_id);
}
bool enable_reading_callback()
{
return knx.config_get_bool(enable_reading_id);
}
void temp_cb(message_t const &msg, void *arg)
{
switch (msg.ct)
{
case KNX_CT_READ:
{
knx.answer_2byte_float(msg.received_on, last_temp);
break;
}
}
}
void hum_cb(message_t const &msg, void *arg)
{
switch (msg.ct)
{
case KNX_CT_READ:
{
knx.answer_2byte_float(msg.received_on, last_hum);
break;
}
}
}
void pres_cb(message_t const &msg, void *arg)
{
switch (msg.ct)
{
case KNX_CT_READ:
{
knx.answer_2byte_float(msg.received_on, last_pres);
break;
}
}
}