Tasmota/tasmota/xdrv_39_heating.ino

1115 lines
44 KiB
C++

/*
xdrv_39_heating.ino - Heating controller for Tasmota
Copyright (C) 2020 Javier Arigita
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_HEATING
#define XDRV_39 39
// Enable/disable debugging
//#define DEBUG_HEATING
#ifdef DEBUG_HEATING
#define DOMOTICZ_IDX1 791
#define DOMOTICZ_IDX2 792
#define DOMOTICZ_IDX3 793
#endif
enum HeatingModes { HEAT_OFF, HEAT_AUTOMATIC_OP, HEAT_MANUAL_OP };
enum ControllerModes { CTR_HYBRID, CTR_PI, CTR_RAMP_UP };
enum ControllerHybridPhases { CTR_HYBRID_RAMP_UP, CTR_HYBRID_PI };
enum InterfaceStates { IFACE_OFF, IFACE_ON };
enum CtrCycleStates { CYCLE_OFF, CYCLE_ON };
enum EmergencyStates { EMERGENCY_OFF, EMERGENCY_ON };
enum HeatingSupportedInputSwitches {
HEATING_INPUT_NONE,
HEATING_INPUT_SWT1 = 1, // Buttons
HEATING_INPUT_SWT2,
HEATING_INPUT_SWT3,
HEATING_INPUT_SWT4
};
enum HeatingSupportedOutputRelays {
HEATING_OUTPUT_NONE,
HEATING_OUTPUT_REL1 = 1, // Relays
HEATING_OUTPUT_REL2,
HEATING_OUTPUT_REL3,
HEATING_OUTPUT_REL4,
HEATING_OUTPUT_REL5,
HEATING_OUTPUT_REL6,
HEATING_OUTPUT_REL7,
HEATING_OUTPUT_REL8
};
typedef union {
uint16_t data;
struct {
uint16_t heating_mode : 2; // Operation mode of the heating system
uint16_t controller_mode : 2; // Operation mode of the heating controller
uint16_t sensor_alive : 1; // Flag stating if temperature sensor is alive (0 = inactive, 1 = active)
uint16_t command_output : 1; // Flag stating state to save the command to the output (0 = inactive, 1 = active)
uint16_t phase_hybrid_ctr : 1; // Phase of the hybrid controller (Ramp-up or PI)
uint16_t status_output : 1; // Status of the output switch
uint16_t status_cycle_active : 1; // Status showing if cycle is active (Output ON) or not (Output OFF)
uint16_t state_emergency : 1; // State for heating emergency
uint16_t counter_seconds : 6; // Second counter used to track minutes
};
} HeatingBitfield;
#ifdef DEBUG_HEATING
const char DOMOTICZ_MES[] PROGMEM = "{\"idx\":%d,\"nvalue\":%d,\"svalue\":\"%s\"}";
#endif
const char kHeatingCommands[] PROGMEM = "|" D_CMND_HEATINGMODESET "|" D_CMND_TEMPFROSTPROTECTSET "|"
D_CMND_CONTROLLERMODESET "|" D_CMND_INPUTSWITCHSET "|" D_CMND_OUTPUTRELAYSET "|" D_CMND_TIMEALLOWRAMPUPSET "|"
D_CMND_TEMPMEASUREDSET "|" D_CMND_TEMPTARGETSET "|" D_CMND_TEMPTARGETREAD "|"
D_CMND_TEMPMEASUREDREAD "|" D_CMND_TEMPMEASUREDGRDREAD "|" D_CMND_TEMPSENSNUMBERSET "|"
D_CMND_STATEEMERGENCYSET "|" D_CMND_POWERMAXSET "|" D_CMND_TIMEMANUALTOAUTOSET "|" D_CMND_TIMEONLIMITSET "|"
D_CMND_PROPBANDSET "|" D_CMND_TIMERESETSET "|" D_CMND_TIMEPICYCLESET "|" D_CMND_TEMPANTIWINDUPRESETSET "|"
D_CMND_TEMPHYSTSET "|" D_CMND_TIMEMAXACTIONSET "|" D_CMND_TIMEMINACTIONSET "|" D_CMND_TIMEMINTURNOFFACTIONSET "|"
D_CMND_TEMPRUPDELTINSET "|" D_CMND_TEMPRUPDELTOUTSET "|" D_CMND_TIMERAMPUPMAXSET "|" D_CMND_TIMERAMPUPCYCLESET "|"
D_CMND_TEMPRAMPUPPIACCERRSET "|" D_CMND_TIMEPIPROPORTREAD "|" D_CMND_TIMEPIINTEGRREAD "|" D_CMND_TIMESENSLOSTSET;
void (* const HeatingCommand[])(void) PROGMEM = {
&CmndHeatingModeSet, &CmndTempFrostProtectSet, &CmndControllerModeSet, &CmndInputSwitchSet, &CmndOutputRelaySet,
&CmndTimeAllowRampupSet, &CmndTempMeasuredSet, &CmndTempTargetSet, &CmndTempTargetRead,
&CmndTempMeasuredRead, &CmndTempMeasuredGrdRead, &CmndTempSensNumberSet, &CmndStateEmergencySet,
&CmndPowerMaxSet, &CmndTimeManualToAutoSet, &CmndTimeOnLimitSet, &CmndPropBandSet, &CmndTimeResetSet,
&CmndTimePiCycleSet, &CmndTempAntiWindupResetSet, &CmndTempHystSet, &CmndTimeMaxActionSet,
&CmndTimeMinActionSet, &CmndTimeMinTurnoffActionSet, &CmndTempRupDeltInSet, &CmndTempRupDeltOutSet,
&CmndTimeRampupMaxSet, &CmndTimeRampupCycleSet, &CmndTempRampupPiAccErrSet, &CmndTimePiProportRead,
&CmndTimePiIntegrRead, &CmndTimeSensLostSet };
struct HEATING {
uint32_t timestamp_temp_measured_update = 0; // Timestamp of latest measurement update
uint32_t timestamp_temp_meas_change_update = 0; // Timestamp of latest measurement value change (> or < to previous)
uint32_t timestamp_output_off = 0; // Timestamp of latest heating output Off state
uint32_t timestamp_input_on = 0; // Timestamp of latest input On state
uint32_t time_heating_total = 0; // Time heating on within a specific timeframe
uint32_t time_ctr_checkpoint = 0; // Time to finalize the control cycle within the PI strategy or to switch to PI from Rampup
uint32_t time_ctr_changepoint = 0; // Time until switching off output within the controller
int32_t temp_measured_gradient = 0; // Temperature measured gradient from sensor in thousandths of degrees per hour
uint16_t temp_target_level = HEATING_TEMP_INIT; // Target level of the heating in tenths of degrees
uint16_t temp_target_level_ctr = HEATING_TEMP_INIT; // Target level set for the controller
int16_t temp_pi_accum_error = 0; // Temperature accumulated error for the PI controller in tenths of degrees
int16_t temp_pi_error = 0; // Temperature error for the PI controller in tenths of degrees
int32_t time_proportional_pi; // Time proportional part of the PI controller
int32_t time_integral_pi; // Time integral part of the PI controller
int32_t time_total_pi; // Time total (proportional + integral) of the PI controller
uint16_t kP_pi = 0; // kP value for the PI controller
uint16_t kI_pi = 0; // kP value for the PI controller multiplied by 100
int16_t temp_measured = 0; // Temperature measurement received from sensor in tenths of degrees
uint8_t time_output_delay = HEATING_TIME_OUTPUT_DELAY; // Output delay between state change and real actuation event (f.i. valve open/closed)
uint8_t counter_rampup_cycles = 0; // Counter of ramp-up cycles
int32_t temp_rampup_meas_gradient = 0; // Temperature measured gradient from sensor in thousandths of degrees per hour calculated during ramp-up
uint32_t timestamp_rampup_start = 0; // Timestamp where the ramp-up controller mode has been started
uint32_t time_rampup_deadtime = 0; // Time constant of the heating system (step response time)
uint32_t time_rampup_nextcycle = 0; // Time where the ramp-up controller shall start the next cycle
uint8_t output_relay_number = HEATING_RELAY_NUMBER; // Output relay number
uint8_t input_switch_number = HEATING_SWITCH_NUMBER; // Input switch number
uint8_t temp_sens_number = HEAT_TEMP_SENS_NUMBER; // Temperature sensor number
uint8_t temp_rampup_pi_acc_error = HEATING_TEMP_PI_RAMPUP_ACC_E; // Accumulated error when switching from ramp-up controller to PI
uint8_t temp_rampup_delta_out = HEATING_TEMP_RAMPUP_DELTA_OUT; // Minimum delta temperature to target to get out of the rampup mode, in tenths of degrees celsius
uint8_t temp_rampup_delta_in = HEATING_TEMP_RAMPUP_DELTA_IN; // Minimum delta temperature to target to get into rampup mode, in tenths of degrees celsius
int16_t temp_rampup_output_off = 0; // Temperature to swith off relay output within the ramp-up controller in tenths of degrees
int16_t temp_rampup_start = 0; // Temperature at start of ramp-up controller in tenths of degrees celsius
int16_t temp_rampup_cycle = 0; // Temperature set at the beginning of each ramp-up cycle in tenths of degrees
uint16_t time_rampup_max = HEATING_TIME_RAMPUP_MAX; // Time maximum ramp-up controller duration in minutes
uint16_t time_rampup_cycle = HEATING_TIME_RAMPUP_CYCLE; // Time ramp-up cycle in seconds
uint16_t time_allow_rampup = HEATING_TIME_ALLOW_RAMPUP; // Time in minutes after last target update to allow ramp-up controller phase
uint16_t time_sens_lost = HEAT_TIME_SENS_LOST; // Maximum time w/o sensor update to set it as lost
uint16_t time_manual_to_auto = HEAT_TIME_MANUAL_TO_AUTO; // Time without input switch active to change from manual to automatic in minutes
uint16_t time_on_limit = HEAT_TIME_ON_LIMIT; // Maximum time with output active in minutes
uint32_t time_reset = HEAT_TIME_RESET; // Reset time of the PI controller in seconds
uint16_t time_pi_cycle = HEAT_TIME_PI_CYCLE; // Cycle time for the heating controller in seconds
uint16_t time_max_action = HEAT_TIME_MAX_ACTION; // Maximum heating time per cycle in minutes
uint16_t time_min_action = HEAT_TIME_MIN_ACTION; // Minimum heating time per cycle in minutes
uint16_t time_min_turnoff_action = HEAT_TIME_MIN_TURNOFF_ACTION; // Minimum turnoff time in minutes, below it the heating will be held on
uint8_t val_prop_band = HEAT_PROP_BAND; // Proportional band of the PI controller in degrees celsius
uint8_t temp_reset_anti_windup = HEAT_TEMP_RESET_ANTI_WINDUP; // Range where reset antiwindup is disabled, in tenths of degrees celsius
int8_t temp_hysteresis = HEAT_TEMP_HYSTERESIS; // Range hysteresis for temperature PI controller, in tenths of degrees celsius
uint8_t temp_frost_protect = HEAT_TEMP_FROST_PROTECT; // Minimum temperature for frost protection, in tenths of degrees celsius
uint16_t power_max = HEAT_POWER_MAX; // Maximum output power in Watt
uint16_t energy_heating_output_max = HEATING_ENERGY_OUTPUT_MAX; // Maximum allowed energy output for heating valve in Watts
HeatingBitfield status; // Bittfield including states as well as several flags
} Heating;
/*********************************************************************************************/
void HeatingInit()
{
ExecuteCommandPower(Heating.output_relay_number, POWER_OFF, SRC_HEATING); // Make sure the Output is OFF
// Init Heating.status bitfield:
Heating.status.heating_mode = HEAT_OFF;
Heating.status.controller_mode = CTR_HYBRID;
Heating.status.sensor_alive = IFACE_OFF;
Heating.status.command_output = IFACE_OFF;
Heating.status.phase_hybrid_ctr = CTR_HYBRID_PI;
Heating.status.status_output = IFACE_OFF;
Heating.status.status_cycle_active = CYCLE_OFF;
Heating.status.state_emergency = EMERGENCY_OFF;
Heating.status.counter_seconds = 0;
}
bool HeatingMinuteCounter()
{
bool result = false;
Heating.status.counter_seconds++; // increment time
if ((Heating.status.counter_seconds % 60) == 0) {
result = true;
Heating.status.counter_seconds = 0;
}
return(result);
}
inline bool HeatingSwitchIdValid(uint8_t switchId)
{
return (switchId >= HEATING_INPUT_SWT1 && switchId <= HEATING_INPUT_SWT4);
}
inline bool HeatingRelayIdValid(uint8_t relayId)
{
return (relayId >= HEATING_OUTPUT_REL1 && relayId <= HEATING_OUTPUT_REL8);
}
uint8_t HeatingSwitchStatus(uint8_t input_switch)
{
bool ifId = HeatingSwitchIdValid(input_switch);
if(ifId) {
return(SwitchGetVirtual(ifId - HEATING_INPUT_SWT1));
}
else return 255;
}
void HeatingSignalProcessingSlow()
{
if ((uptime - Heating.timestamp_temp_measured_update) > ((uint32_t)Heating.time_sens_lost * 60)) { // Check if sensor alive
Heating.status.sensor_alive = IFACE_OFF;
Heating.temp_measured_gradient = 0;
Heating.temp_measured = 0;
}
}
void HeatingSignalProcessingFast()
{
if (HeatingSwitchStatus(Heating.input_switch_number)) { // Check if input switch active and register last update
Heating.timestamp_input_on = uptime;
}
}
void HeatingCtrState()
{
switch (Heating.status.controller_mode) {
case CTR_HYBRID: // Ramp-up phase with gradient control
HeatingHybridCtrPhase();
break;
case CTR_PI:
break;
case CTR_RAMP_UP:
break;
}
}
void HeatingHybridCtrPhase()
{
if (Heating.status.controller_mode == CTR_HYBRID) {
switch (Heating.status.phase_hybrid_ctr) {
case CTR_HYBRID_RAMP_UP: // Ramp-up phase with gradient control
// If ramp-up offtime counter has been initalized
// AND ramp-up offtime counter value reached
if((Heating.time_ctr_checkpoint != 0)
&& (uptime >= Heating.time_ctr_checkpoint)) {
// Reset pause period
Heating.time_ctr_checkpoint = 0;
// Reset timers
Heating.time_ctr_changepoint = 0;
// Set PI controller
Heating.status.phase_hybrid_ctr = CTR_HYBRID_PI;
}
break;
case CTR_HYBRID_PI: // PI controller phase
// If no output action for a pre-defined time
// AND temp target has changed
// AND temp target - target actual bigger than threshold
// then go to ramp-up
if (((uptime - Heating.timestamp_output_off) > (60 * (uint32_t)Heating.time_allow_rampup))
&& (Heating.temp_target_level != Heating.temp_target_level_ctr)
&&((Heating.temp_target_level - Heating.temp_measured) > Heating.temp_rampup_delta_in)) {
Heating.timestamp_rampup_start = uptime;
Heating.temp_rampup_start = Heating.temp_measured;
Heating.temp_rampup_meas_gradient = 0;
Heating.time_rampup_deadtime = 0;
Heating.counter_rampup_cycles = 1;
Heating.time_ctr_changepoint = 0;
Heating.time_ctr_checkpoint = 0;
Heating.status.phase_hybrid_ctr = CTR_HYBRID_RAMP_UP;
}
break;
}
}
#ifdef DEBUG_HEATING
HeatingVirtualSwitchCtrState();
#endif
}
bool HeatStateAutoToManual()
{
bool change_state = false;
// If switch input is active
// OR temperature sensor is not alive
// then go to manual
if ((HeatingSwitchStatus(Heating.input_switch_number) == 1)
|| (Heating.status.sensor_alive == IFACE_OFF)) {
change_state = true;
}
return change_state;
}
bool HeatStateManualToAuto()
{
bool change_state;
// If switch input inactive
// AND no switch input action (time in current state) bigger than a pre-defined time
// then go to automatic
if ((HeatingSwitchStatus(Heating.input_switch_number) == 0)
&& ((uptime - Heating.timestamp_input_on) > ((uint32_t)Heating.time_manual_to_auto * 60))) {
change_state = true;
}
return change_state;
}
bool HeatStateAllToOff()
{
bool change_state;
// If emergency mode then switch OFF the output inmediately
if (Heating.status.state_emergency == EMERGENCY_ON) {
Heating.status.heating_mode = HEAT_OFF; // Emergency switch to HEAT_OFF
}
return change_state;
}
void HeatingState()
{
switch (Heating.status.heating_mode) {
case HEAT_OFF: // State if Off or Emergency
// No change of state possible without external command
break;
case HEAT_AUTOMATIC_OP: // State automatic heating active following to command target temp.
if (HeatStateAllToOff()) {
Heating.status.heating_mode = HEAT_OFF; // Emergency switch to HEAT_OFF
}
if (HeatStateAutoToManual()) {
Heating.status.heating_mode = HEAT_MANUAL_OP; // If sensor not alive change to HEAT_MANUAL_OP
}
HeatingCtrState();
break;
case HEAT_MANUAL_OP: // State manual operation following input switch
if (HeatStateAllToOff()) {
Heating.status.heating_mode = HEAT_OFF; // Emergency switch to HEAT_OFF
}
if (HeatStateManualToAuto()) {
Heating.status.heating_mode = HEAT_AUTOMATIC_OP; // Input switch inactive and timeout reached change to HEAT_AUTOMATIC_OP
}
break;
}
}
void HeatingOutputRelay(bool active)
{
// TODO: See if the real output state can be read by f.i. bitRead(power, Heating.output_relay_number))
// If command received to enable output
// AND current output status is OFF
// then switch output to ON
if ((active == true)
&& (Heating.status.status_output == IFACE_OFF)) {
ExecuteCommandPower(Heating.output_relay_number, POWER_ON, SRC_HEATING);
Heating.status.status_output = IFACE_ON;
#ifdef DEBUG_HEATING
HeatingVirtualSwitch();
#endif
}
// If command received to disable output
// AND current output status is ON
// then switch output to OFF
else if ((active == false) && (Heating.status.status_output == IFACE_ON)) {
ExecuteCommandPower(Heating.output_relay_number, POWER_OFF, SRC_HEATING);
Heating.timestamp_output_off = uptime;
Heating.status.status_output = IFACE_OFF;
#ifdef DEBUG_HEATING
HeatingVirtualSwitch();
#endif
}
}
void HeatingCalculatePI()
{
// Calculate error
Heating.temp_pi_error = Heating.temp_target_level_ctr - Heating.temp_measured;
// Kp = 100/PI.propBand. PI.propBand(Xp) = Proportional range (4K in 4K/200 controller)
Heating.kP_pi = 100 / (uint16_t)(Heating.val_prop_band);
// Calculate proportional
Heating.time_proportional_pi = ((int32_t)(Heating.temp_pi_error * (int16_t)Heating.kP_pi) * ((int32_t)Heating.time_pi_cycle * 60)) / 1000;
// Minimum proportional action limiter
// If proportional action is less than the minimum action time
// AND proportional > 0
// then adjust to minimum value
if ((Heating.time_proportional_pi < abs(((int32_t)Heating.time_min_action * 60)))
&& (Heating.time_proportional_pi > 0)) {
Heating.time_proportional_pi = ((int32_t)Heating.time_min_action * 60);
}
if (Heating.time_proportional_pi < 0) {
Heating.time_proportional_pi = 0;
}
else if (Heating.time_proportional_pi > ((int32_t)Heating.time_pi_cycle * 60)) {
Heating.time_proportional_pi = ((int32_t)Heating.time_pi_cycle * 60);
}
// Calculate integral
Heating.kI_pi = (uint16_t)(((float)Heating.kP_pi * ((float)((uint32_t)Heating.time_pi_cycle * 60) / (float)Heating.time_reset)) * 100);
// Reset of antiwindup
// If error does not lay within the integrator scope range, do not use the integral
// and accumulate error = 0
if (abs(Heating.temp_pi_error) > Heating.temp_reset_anti_windup) {
Heating.time_integral_pi = 0;
Heating.temp_pi_accum_error = 0;
}
// Normal use of integrator
// result will be calculated with the cummulated previous error anterior
// and current error will be cummulated to the previous one
else {
// Hysteresis limiter
// If error is less than or equal than hysteresis, limit output to 0, when temperature
// is rising, never when falling. Limit cummulated error. If this is not done,
// there will be very strong control actions from the integral part due to a
// very high cummulated error when beingin hysteresis. This triggers high
// integral actions
// If we are under setpoint
// AND we are within the hysteresis
// AND we are rising
if ((Heating.temp_pi_error >= 0)
&& (abs(Heating.temp_pi_error) <= (int16_t)Heating.temp_hysteresis)
&& (Heating.temp_measured_gradient > 0)) {
Heating.temp_pi_accum_error += Heating.temp_pi_error;
// Reduce accumulator error 20% in each cycle
Heating.temp_pi_accum_error *= 0.8;
}
// If we are over setpoint
// AND temperature is rising
else if ((Heating.temp_pi_error < 0)
&& (Heating.temp_measured_gradient > 0)) {
Heating.temp_pi_accum_error += Heating.temp_pi_error;
// Reduce accumulator error 20% in each cycle
Heating.temp_pi_accum_error *= 0.8;
}
else {
Heating.temp_pi_accum_error += Heating.temp_pi_error;
}
// Limit lower limit of acumErr to 0
if (Heating.temp_pi_accum_error < 0) {
Heating.temp_pi_accum_error = 0;
}
// Integral calculation
Heating.time_integral_pi = (((int32_t)Heating.temp_pi_accum_error * (int32_t)Heating.kI_pi) * (int32_t)((uint32_t)Heating.time_pi_cycle * 60)) / 100000;
// Antiwindup of the integrator
// If integral calculation is bigger than cycle time, adjust result
// to the cycle time and error will not be cummulated]]
if (Heating.time_integral_pi > ((uint32_t)Heating.time_pi_cycle * 60)) {
Heating.time_integral_pi = ((uint32_t)Heating.time_pi_cycle * 60);
}
}
// Calculate output
Heating.time_total_pi = Heating.time_proportional_pi + Heating.time_integral_pi;
// Antiwindup of the output
// If result is bigger than cycle time, the result will be adjusted
// to the cylce time minus safety time and error will not be cummulated]]
if (Heating.time_total_pi >= ((int32_t)Heating.time_pi_cycle * 60)) {
// Limit to cycle time //at least switch down a minimum time
Heating.time_total_pi = ((int32_t)Heating.time_pi_cycle * 60);
}
else if (Heating.time_total_pi < 0) {
Heating.time_total_pi = 0;
}
// Target value limiter
// If target value has been reached or we are over it]]
if (Heating.temp_pi_error <= 0) {
// If we are over the hysteresis or the gradient is positive
if ((abs(Heating.temp_pi_error) > Heating.temp_hysteresis)
|| (Heating.temp_measured_gradient >= 0)) {
Heating.time_total_pi = 0;
}
}
// If target value has not been reached
// AND we are withing the histeresis
// AND gradient is positive
// then set value to 0
else if ((Heating.temp_pi_error > 0)
&& (abs(Heating.temp_pi_error) <= Heating.temp_hysteresis)
&& (Heating.temp_measured_gradient > 0)) {
Heating.time_total_pi = 0;
}
// Minimum action limiter
// If result is less than the minimum action time, adjust to minimum value]]
if ((Heating.time_total_pi <= abs(((uint32_t)Heating.time_min_action * 60)))
&& (Heating.time_total_pi != 0)) {
Heating.time_total_pi = ((int32_t)Heating.time_min_action * 60);
}
// Maximum action limiter
// If result is more than the maximum action time, adjust to maximum value]]
else if (Heating.time_total_pi > abs(((int32_t)Heating.time_max_action * 60))) {
Heating.time_total_pi = ((int32_t)Heating.time_max_action * 60);
}
// If switched off less time than safety time, do not switch off
else if (Heating.time_total_pi > (((int32_t)Heating.time_pi_cycle * 60) - ((int32_t)Heating.time_min_turnoff_action * 60))) {
Heating.time_total_pi = ((int32_t)Heating.time_pi_cycle * 60);
}
// Adjust output switch point
Heating.time_ctr_changepoint = uptime + (uint32_t)Heating.time_total_pi;
// Adjust next cycle point
Heating.time_ctr_checkpoint = uptime + ((uint32_t)Heating.time_pi_cycle * 60);
}
void HeatingWorkAutomaticPI()
{
char result_chr[FLOATSZ]; // Remove!
if ((uptime >= Heating.time_ctr_checkpoint)
|| (Heating.temp_target_level != Heating.temp_target_level_ctr)
|| ((Heating.temp_measured < Heating.temp_target_level)
&& (Heating.temp_measured_gradient < 0)
&& (Heating.status.status_cycle_active == CYCLE_OFF))) {
Heating.temp_target_level_ctr = Heating.temp_target_level;
HeatingCalculatePI();
// Reset cycle active
Heating.status.status_cycle_active = CYCLE_OFF;
}
if (uptime < Heating.time_ctr_changepoint) {
Heating.status.status_cycle_active = CYCLE_ON;
Heating.status.command_output = IFACE_ON;
}
else {
Heating.status.command_output = IFACE_OFF;
}
}
void HeatingWorkAutomaticRampUp()
{
uint32_t time_in_rampup;
int16_t temp_delta_rampup;
// Update timestamp for temperature at start of ramp-up if temperature still dropping
if (Heating.temp_measured < Heating.temp_rampup_start) {
Heating.temp_rampup_start = Heating.temp_measured;
}
// Update time in ramp-up as well as delta temp
time_in_rampup = uptime - Heating.timestamp_rampup_start;
temp_delta_rampup = Heating.temp_measured - Heating.temp_rampup_start;
// Init command output status to true
Heating.status.command_output = IFACE_ON;
// Update temperature target level for controller
Heating.temp_target_level_ctr = Heating.temp_target_level;
// If time in ramp-up < max time
// AND temperature measured < target
if ((time_in_rampup <= (60 * (uint32_t)Heating.time_rampup_max))
&& (Heating.temp_measured < Heating.temp_target_level)) {
// DEADTIME point reached
// If temperature measured minus temperature at start of ramp-up >= threshold
// AND deadtime still 0
if ((temp_delta_rampup >= Heating.temp_rampup_delta_out)
&& (Heating.time_rampup_deadtime == 0)) {
// Set deadtime, assuming it is half of the time until slope, since thermal inertia of the temp. fall needs to be considered
// minus open time of the valve (arround 3 minutes). If rise very fast limit it to delay of output valve
int32_t time_aux;
time_aux = ((time_in_rampup / 2) - Heating.time_output_delay);
if (time_aux >= Heating.time_output_delay) {
Heating.time_rampup_deadtime = (uint32_t)time_aux;
}
else {
Heating.time_rampup_deadtime = Heating.time_output_delay;
}
// Calculate gradient since start of ramp-up (considering deadtime) in thousandths of º/hour
Heating.temp_rampup_meas_gradient = (int32_t)((360000 * (int32_t)temp_delta_rampup) / (int32_t)time_in_rampup);
Heating.time_rampup_nextcycle = uptime + (uint32_t)Heating.time_rampup_cycle;
// Set auxiliary variables
Heating.temp_rampup_cycle = Heating.temp_measured;
Heating.time_ctr_changepoint = uptime + (60 * (uint32_t)Heating.time_rampup_max);
Heating.temp_rampup_output_off = Heating.temp_target_level_ctr;
}
// Gradient calculation every time_rampup_cycle
else if ((Heating.time_rampup_deadtime > 0) && (uptime >= Heating.time_rampup_nextcycle)) {
// Calculate temp. gradient in º/hour and set again time_rampup_nextcycle and temp_rampup_cycle
// temp_rampup_meas_gradient = ((3600 * temp_delta_rampup) / (os.time() - time_rampup_nextcycle))
temp_delta_rampup = Heating.temp_measured - Heating.temp_rampup_cycle;
uint32_t time_total_rampup = (uint32_t)Heating.time_rampup_cycle * Heating.counter_rampup_cycles;
// Translate into gradient per hour (thousandths of ° per hour)
Heating.temp_rampup_meas_gradient = int32_t((360000 * (int32_t)temp_delta_rampup) / (int32_t)time_total_rampup);
if (Heating.temp_rampup_meas_gradient > 0) {
// Calculate time to switch Off and come out of ramp-up
// y-y1 = m(x-x1) -> x = ((y-y1) / m) + x1 -> y1 = temp_rampup_cycle, x1 = (time_rampup_nextcycle - time_rampup_cycle), m = gradient in º/sec
// Better Alternative -> (y-y1)/(x-x1) = ((y2-y1)/(x2-x1)) -> where y = temp (target) and x = time (to switch off, what its needed)
// x = ((y-y1)/(y2-y1))*(x2-x1) + x1 - deadtime
// Heating.time_ctr_changepoint = (uint32_t)(((float)(Heating.temp_target_level_ctr - Heating.temp_rampup_cycle) / (float)temp_delta_rampup) * (float)(time_total_rampup)) + (uint32_t)(Heating.time_rampup_nextcycle - (time_total_rampup)) - Heating.time_rampup_deadtime;
Heating.time_ctr_changepoint = (uint32_t)(((float)(Heating.temp_target_level_ctr - Heating.temp_rampup_cycle) * (float)(time_total_rampup)) / (float)temp_delta_rampup) + (uint32_t)(Heating.time_rampup_nextcycle - (time_total_rampup)) - Heating.time_rampup_deadtime;
// Calculate temperature for switching off the output
// y = (((y2-y1)/(x2-x1))*(x-x1)) + y1
// Heating.temp_rampup_output_off = (int16_t)(((float)(temp_delta_rampup) / (float)(time_total_rampup * Heating.counter_rampup_cycles)) * (float)(Heating.time_ctr_changepoint - (uptime - (time_total_rampup)))) + Heating.temp_rampup_cycle;
Heating.temp_rampup_output_off = (int16_t)(((float)temp_delta_rampup * (float)(Heating.time_ctr_changepoint - (uptime - (time_total_rampup)))) / (float)(time_total_rampup * Heating.counter_rampup_cycles)) + Heating.temp_rampup_cycle;
// Set auxiliary variables
Heating.time_rampup_nextcycle = uptime + (uint32_t)Heating.time_rampup_cycle;
Heating.temp_rampup_cycle = Heating.temp_measured;
// Reset period counter
Heating.counter_rampup_cycles = 1;
}
else {
// Increase the period counter
Heating.counter_rampup_cycles++;
// Set another period
Heating.time_rampup_nextcycle = uptime + (uint32_t)Heating.time_rampup_cycle;
// Reset time_ctr_changepoint and temp_rampup_output_off
Heating.time_ctr_changepoint = uptime + (60 * (uint32_t)Heating.time_rampup_max) - time_in_rampup;
Heating.temp_rampup_output_off = Heating.temp_target_level_ctr;
}
// Set time to get out of calibration
Heating.time_ctr_checkpoint = Heating.time_ctr_changepoint + Heating.time_rampup_deadtime;
}
// Set output switch ON or OFF
// If deadtime has not been calculated
// or checkpoint has not been calculated
// or it is not yet time and temperature to switch it off acc. to calculations
// or gradient is <= 0
if ((Heating.time_rampup_deadtime == 0)
|| (Heating.time_ctr_checkpoint == 0)
|| (uptime < Heating.time_ctr_changepoint)
|| (Heating.temp_measured < Heating.temp_rampup_output_off)
|| (Heating.temp_rampup_meas_gradient <= 0)) {
Heating.status.command_output = IFACE_ON;
}
else {
Heating.status.command_output = IFACE_OFF;
}
}
else {
// If we have not reached the temperature, start with an initial value for accumulated error for the PI controller
if (Heating.temp_measured < Heating.temp_target_level_ctr) {
Heating.temp_pi_accum_error = Heating.temp_rampup_pi_acc_error;
}
// Set to now time to get out of calibration
Heating.time_ctr_checkpoint = uptime;
// Switch Off output
Heating.status.command_output = IFACE_OFF;
}
}
void HeatingCtrWork()
{
switch (Heating.status.controller_mode) {
case CTR_HYBRID: // Ramp-up phase with gradient control
switch (Heating.status.phase_hybrid_ctr) {
case CTR_HYBRID_RAMP_UP:
HeatingWorkAutomaticRampUp();
break;
case CTR_HYBRID_PI:
HeatingWorkAutomaticPI();
break;
}
break;
case CTR_PI:
HeatingWorkAutomaticPI();
break;
case CTR_RAMP_UP:
HeatingWorkAutomaticRampUp();
break;
}
}
void HeatingWork()
{
switch (Heating.status.heating_mode) {
case HEAT_OFF: // State if Off or Emergency
Heating.status.command_output = IFACE_OFF;
break;
case HEAT_AUTOMATIC_OP: // State automatic heating active following to command target temp.
HeatingCtrWork();
break;
case HEAT_MANUAL_OP: // State manual operation following input switch
Heating.time_ctr_checkpoint = 0;
break;
}
bool output_command;
if (Heating.status.command_output == IFACE_OFF) {
output_command = false;
}
else {
output_command = true;
}
HeatingOutputRelay(output_command);
}
void HeatingDiagnostics()
{
// TODOs:
// 1. Check time max for output switch on not exceeded
// 2. Check state of output corresponds to command
// 3. Check maximum power at output switch not exceeded
}
void HeatingController()
{
HeatingState();
HeatingWork();
}
#ifdef DEBUG_HEATING
void HeatingVirtualSwitch()
{
char domoticz_in_topic[] = DOMOTICZ_IN_TOPIC;
Response_P(DOMOTICZ_MES, DOMOTICZ_IDX1, (0 == Heating.status.status_output) ? 0 : 1, "");
MqttPublish(domoticz_in_topic);
}
void HeatingVirtualSwitchCtrState()
{
char domoticz_in_topic[] = DOMOTICZ_IN_TOPIC;
Response_P(DOMOTICZ_MES, DOMOTICZ_IDX2, (0 == Heating.status.phase_hybrid_ctr) ? 0 : 1, "");
MqttPublish(domoticz_in_topic);
//Response_P(DOMOTICZ_MES, DOMOTICZ_IDX3, (0 == Heating.time_ctr_changepoint) ? 0 : 1, "");
//MqttPublish(domoticz_in_topic);
}
#endif
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
void CmndHeatingModeSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data));
if ((value >= HEAT_OFF) && (value <= HEAT_MANUAL_OP)) {
Heating.status.heating_mode = value;
Heating.timestamp_input_on = 0; // Reset last manual switch timer if command set externally
}
}
ResponseCmndNumber((int)Heating.status.heating_mode);
}
void CmndTempFrostProtectSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data) * 10);
if ((value >= 0) && (value <= 255)) {
Heating.temp_frost_protect = value;
}
}
ResponseCmndFloat((float)(Heating.temp_frost_protect) / 10, 1);
}
void CmndControllerModeSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= CTR_RAMP_UP)) {
Heating.status.controller_mode = value;
}
}
ResponseCmndNumber((int)Heating.status.controller_mode);
}
void CmndInputSwitchSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(XdrvMailbox.payload);
if (HeatingSwitchIdValid(value)) {
Heating.input_switch_number = value;
Heating.timestamp_input_on = uptime;
}
}
ResponseCmndNumber((int)Heating.input_switch_number);
}
void CmndOutputRelaySet(void)
{
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(XdrvMailbox.payload);
if (HeatingRelayIdValid(value)) {
Heating.output_relay_number = value;
}
}
ResponseCmndNumber((int)Heating.output_relay_number);
}
void CmndTimeAllowRampupSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value < 86400)) {
Heating.time_allow_rampup = (uint16_t)(value / 60);
}
}
ResponseCmndNumber((int)((uint32_t)Heating.time_allow_rampup * 60));
}
void CmndTempMeasuredSet(void)
{
if (XdrvMailbox.data_len > 0) {
int16_t value = (int16_t)(CharToFloat(XdrvMailbox.data) * 10);
if ((value >= -1000) && (value <= 1000)) {
uint32_t timestamp = uptime;
// Calculate temperature gradient if temperature value has changed
if (value != Heating.temp_measured) {
int16_t temp_delta = (value - Heating.temp_measured); // in tenths of degrees
uint32_t time_delta = (timestamp - Heating.timestamp_temp_meas_change_update); // in seconds
Heating.temp_measured_gradient = (int32_t)((360000 * (int32_t)temp_delta) / (int32_t)time_delta); // hundreths of degrees per hour
Heating.temp_measured = value;
Heating.timestamp_temp_meas_change_update = timestamp;
}
Heating.timestamp_temp_measured_update = timestamp;
Heating.status.sensor_alive = IFACE_ON;
}
}
ResponseCmndFloat(((float)Heating.temp_measured) / 10, 1);
}
void CmndTempTargetSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint16_t value = (uint16_t)(CharToFloat(XdrvMailbox.data) * 10);
if ((value >= -1000)
&& (value <= 1000)
&& (value >= Heating.temp_frost_protect)) {
Heating.temp_target_level = value;
}
}
ResponseCmndFloat(((float)Heating.temp_target_level) / 10, 1);
}
void CmndTempTargetRead(void)
{
ResponseCmndFloat(((float)Heating.temp_target_level) / 10, 1);
}
void CmndTempMeasuredRead(void)
{
ResponseCmndFloat((float)(Heating.temp_measured) / 10, 1);
}
void CmndTempMeasuredGrdRead(void)
{
ResponseCmndFloat((float)(Heating.temp_measured_gradient) / 1000, 1);
}
void CmndTempSensNumberSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 255)) {
Heating.temp_sens_number = value;
}
}
ResponseCmndNumber((int)Heating.temp_sens_number);
}
void CmndStateEmergencySet(void)
{
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 1)) {
Heating.status.state_emergency = (uint16_t)value;
}
}
ResponseCmndNumber((int)Heating.status.state_emergency);
}
void CmndPowerMaxSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint16_t value = (uint16_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 1300)) {
Heating.power_max = value;
}
}
ResponseCmndNumber((int)Heating.power_max);
}
void CmndTimeManualToAutoSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Heating.time_manual_to_auto = (uint16_t)(value / 60);
}
}
ResponseCmndNumber((int)((uint32_t)Heating.time_manual_to_auto * 60));
}
void CmndTimeOnLimitSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Heating.time_on_limit = (uint16_t)(value / 60);
}
}
ResponseCmndNumber((int)((uint32_t)Heating.time_on_limit * 60));
}
void CmndPropBandSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 20)) {
Heating.val_prop_band = value;
}
}
ResponseCmndNumber((int)Heating.val_prop_band);
}
void CmndTimeResetSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Heating.time_reset = value;
}
}
ResponseCmndNumber((int)Heating.time_reset);
}
void CmndTimePiCycleSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Heating.time_pi_cycle = (uint16_t)(value / 60);
}
}
ResponseCmndNumber((int)((uint32_t)Heating.time_pi_cycle * 60));
}
void CmndTempAntiWindupResetSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data) * 10);
if ((value >= (float)(0)) && (value <= (float)(100.0))) {
Heating.temp_reset_anti_windup = value;
}
}
ResponseCmndFloat((float)(Heating.temp_reset_anti_windup) / 10, 1);
}
void CmndTempHystSet(void)
{
if (XdrvMailbox.data_len > 0) {
int8_t value = (int8_t)(CharToFloat(XdrvMailbox.data) * 10);
if ((value >= -100) && (value <= 100)) {
Heating.temp_hysteresis = value;
}
}
ResponseCmndFloat((float)(Heating.temp_hysteresis) / 10, 1);
}
void CmndTimeMaxActionSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Heating.time_max_action = (uint16_t)(value / 60);
}
}
ResponseCmndNumber((int)((uint32_t)Heating.time_max_action * 60));
}
void CmndTimeMinActionSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Heating.time_min_action = (uint16_t)(value / 60);
}
}
ResponseCmndNumber((int)((uint32_t)Heating.time_min_action * 60));
}
void CmndTimeSensLostSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Heating.time_sens_lost = (uint16_t)(value / 60);
}
}
ResponseCmndNumber((int)((uint32_t)Heating.time_sens_lost * 60));
}
void CmndTimeMinTurnoffActionSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Heating.time_min_turnoff_action = (uint16_t)(value / 60);
}
}
ResponseCmndNumber((int)((uint32_t)Heating.time_min_turnoff_action * 60));
}
void CmndTempRupDeltInSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data) * 10);
if ((value >= 0) && (value <= 100)) {
Heating.temp_rampup_delta_in = value;
}
}
ResponseCmndFloat((float)(Heating.temp_rampup_delta_in) / 10, 1);
}
void CmndTempRupDeltOutSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data) * 10);
if ((value >= 0) && (value <= 100)) {
Heating.temp_rampup_delta_out = value;
}
}
ResponseCmndFloat((float)(Heating.temp_rampup_delta_out) / 10, 1);
}
void CmndTimeRampupMaxSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 86400)) {
Heating.time_rampup_max = (uint16_t)(value / 60);
}
}
ResponseCmndNumber((int)(((uint32_t)Heating.time_rampup_max) * 60));
}
void CmndTimeRampupCycleSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint32_t value = (uint32_t)(XdrvMailbox.payload);
if ((value >= 0) && (value <= 54000)) {
Heating.time_rampup_cycle = (uint16_t)value;
}
}
ResponseCmndNumber((int)Heating.time_rampup_cycle);
}
void CmndTempRampupPiAccErrSet(void)
{
if (XdrvMailbox.data_len > 0) {
uint8_t value = (uint8_t)(CharToFloat(XdrvMailbox.data) * 10);
if ((value >= 0) && (value <= 250)) {
Heating.temp_rampup_pi_acc_error = value;
}
}
ResponseCmndFloat((float)(Heating.temp_rampup_pi_acc_error) / 10, 1);
}
void CmndTimePiProportRead(void)
{
ResponseCmndNumber((int)Heating.time_proportional_pi);
}
void CmndTimePiIntegrRead(void)
{
ResponseCmndNumber((int)Heating.time_integral_pi);
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv39(uint8_t function)
{
#ifdef DEBUG_HEATING
char result_chr[FLOATSZ];
#endif
bool result = false;
switch (function) {
case FUNC_INIT:
HeatingInit();
break;
case FUNC_LOOP:
HeatingSignalProcessingFast();
HeatingDiagnostics();
break;
case FUNC_SERIAL:
break;
case FUNC_EVERY_SECOND:
if (HeatingMinuteCounter()) {
HeatingSignalProcessingSlow();
HeatingController();
#ifdef DEBUG_HEATING
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(""));
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("------ Heating Start ------"));
dtostrfd(Heating.status.counter_seconds, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Heating.status.counter_seconds: %s"), result_chr);
dtostrfd(Heating.status.heating_mode, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Heating.status.heating_mode: %s"), result_chr);
dtostrfd(Heating.status.controller_mode, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Heating.status.controller_mode: %s"), result_chr);
dtostrfd(Heating.status.phase_hybrid_ctr, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Heating.status.phase_hybrid_ctr: %s"), result_chr);
dtostrfd(Heating.status.sensor_alive, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Heating.status.sensor_alive: %s"), result_chr);
dtostrfd(Heating.status.status_output, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Heating.status.status_output: %s"), result_chr);
dtostrfd(Heating.status.status_cycle_active, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Heating.status.status_cycle_active: %s"), result_chr);
dtostrfd(Heating.time_proportional_pi, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Heating.time_proportional_pi: %s"), result_chr);
dtostrfd(Heating.time_integral_pi, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Heating.time_integral_pi: %s"), result_chr);
dtostrfd(Heating.time_total_pi, 0, result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Heating.time_total_pi: %s"), result_chr);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("------ Heating End ------"));
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(""));
#endif
}
break;
case FUNC_COMMAND:
result = DecodeCommand(kHeatingCommands, HeatingCommand);
break;
}
return result;
}
#endif // USE_HEATING