Tasmota/sonoff/support.ino

1214 lines
35 KiB
C++

/*
support.ino - support for Sonoff-Tasmota
Copyright (C) 2017 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*********************************************************************************************\
* Watchdog extension (https://github.com/esp8266/Arduino/issues/1532)
\*********************************************************************************************/
Ticker tickerOSWatch;
#define OSWATCH_RESET_TIME 30
static unsigned long osw_last_loop;
byte osw_flag = 0;
#ifndef USE_WS2812_DMA // Collides with Neopixelbus but solves exception
void osw_osWatch() ICACHE_RAM_ATTR;
#endif // USE_WS2812_DMA
void osw_osWatch()
{
unsigned long t = millis();
unsigned long last_run = abs(t - osw_last_loop);
#ifdef DEBUG_THEO
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION D_OSWATCH " FreeRam %d, rssi %d, last_run %d"), ESP.getFreeHeap(), WIFI_getRSSIasQuality(WiFi.RSSI()), last_run);
addLog(LOG_LEVEL_DEBUG);
#endif // DEBUG_THEO
if (last_run >= (OSWATCH_RESET_TIME * 1000)) {
addLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_OSWATCH " " D_BLOCKED_LOOP ". " D_RESTARTING));
rtcMem.osw_flag = 1;
RTC_Save();
// ESP.restart(); // normal reboot
ESP.reset(); // hard reset
}
}
void osw_init()
{
osw_flag = rtcMem.osw_flag;
rtcMem.osw_flag = 0;
osw_last_loop = millis();
tickerOSWatch.attach_ms(((OSWATCH_RESET_TIME / 3) * 1000), osw_osWatch);
}
void osw_loop()
{
osw_last_loop = millis();
// while(1) delay(1000); // this will trigger the os watch
}
String getResetReason()
{
char buff[32];
if (osw_flag) {
strncpy_P(buff, PSTR(D_BLOCKED_LOOP), sizeof(buff));
return String(buff);
} else {
return ESP.getResetReason();
}
}
#ifdef DEBUG_THEO
void exception_tst(byte type)
{
/*
Exception (28):
epc1=0x4000bf64 epc2=0x00000000 epc3=0x00000000 excvaddr=0x00000007 depc=0x00000000
ctx: cont
sp: 3fff1f30 end: 3fff2840 offset: 01a0
>>>stack>>>
3fff20d0: 202c3573 756f7247 2c302070 646e4920
3fff20e0: 40236a6e 7954202c 45206570 00454358
3fff20f0: 00000010 00000007 00000000 3fff2180
3fff2100: 3fff2190 40107bfc 3fff3e4c 3fff22c0
3fff2110: 40261934 000000f0 3fff22c0 401004d8
3fff2120: 40238fcf 00000050 3fff2100 4021fc10
3fff2130: 3fff32bc 4021680c 3ffeade1 4021ff7d
3fff2140: 3fff2190 3fff2180 0000000c 7fffffff
3fff2150: 00000019 00000000 00000000 3fff21c0
3fff2160: 3fff23f3 3ffe8e08 00000000 4021ffb4
3fff2170: 3fff2190 3fff2180 0000000c 40201118
3fff2180: 3fff21c0 0000003c 3ffef840 00000007
3fff2190: 00000000 00000000 00000000 40201128
3fff21a0: 3fff23f3 000000f1 3fff23ec 4020fafb
3fff21b0: 3fff23f3 3fff21c0 3fff21d0 3fff23f6
3fff21c0: 00000000 3fff23fb 4022321b 00000000
Exception 28: LoadProhibited: A load referenced a page mapped with an attribute that does not permit loads
Decoding 14 results
0x40236a6e: ets_vsnprintf at ?? line ?
0x40107bfc: vsnprintf at C:\Data2\Arduino\arduino-1.8.1-esp-2.3.0\portable\packages\esp8266\hardware\esp8266\2.3.0\cores\esp8266/libc_replacements.c line 387
0x40261934: bignum_exptmod at ?? line ?
0x401004d8: malloc at C:\Data2\Arduino\arduino-1.8.1-esp-2.3.0\portable\packages\esp8266\hardware\esp8266\2.3.0\cores\esp8266\umm_malloc/umm_malloc.c line 1664
0x40238fcf: wifi_station_get_connect_status at ?? line ?
0x4021fc10: operator new[](unsigned int) at C:\Data2\Arduino\arduino-1.8.1-esp-2.3.0\portable\packages\esp8266\hardware\esp8266\2.3.0\cores\esp8266/abi.cpp line 57
0x4021680c: ESP8266WiFiSTAClass::status() at C:\Data2\Arduino\arduino-1.8.1-esp-2.3.0\portable\packages\esp8266\hardware\esp8266\2.3.0\libraries\ESP8266WiFi\src/ESP8266WiFiSTA.cpp line 569
0x4021ff7d: vsnprintf_P(char*, unsigned int, char const*, __va_list_tag) at C:\Data2\Arduino\arduino-1.8.1-esp-2.3.0\portable\packages\esp8266\hardware\esp8266\2.3.0\cores\esp8266/pgmspace.cpp line 146
0x4021ffb4: snprintf_P(char*, unsigned int, char const*, ...) at C:\Data2\Arduino\arduino-1.8.1-esp-2.3.0\portable\packages\esp8266\hardware\esp8266\2.3.0\cores\esp8266/pgmspace.cpp line 146
0x40201118: atol at C:\Data2\Arduino\arduino-1.8.1-esp-2.3.0\portable\packages\esp8266\hardware\esp8266\2.3.0\cores\esp8266/core_esp8266_noniso.c line 45
0x40201128: atoi at C:\Data2\Arduino\arduino-1.8.1-esp-2.3.0\portable\packages\esp8266\hardware\esp8266\2.3.0\cores\esp8266/core_esp8266_noniso.c line 45
0x4020fafb: mqttDataCb(char*, unsigned char*, unsigned int) at R:\Arduino\Work-ESP8266\Theo\sonoff\sonoff-4\sonoff/sonoff.ino line 679 (discriminator 1)
0x4022321b: pp_attach at ?? line ?
00:00:08 MQTT: tele/sonoff/INFO3 = {"Started":"Fatal exception:28 flag:2 (EXCEPTION) epc1:0x4000bf64 epc2:0x00000000 epc3:0x00000000 excvaddr:0x00000007 depc:0x00000000"}
*/
if (1 == type) {
char svalue[10];
snprintf_P(svalue, sizeof(svalue), PSTR("%s"), 7); // Exception 28 as number in string (7 in excvaddr)
}
/*
14:50:52 osWatch: FreeRam 25896, rssi 68, last_run 0
14:51:02 osWatch: FreeRam 25896, rssi 58, last_run 0
14:51:03 CMND: exception 2
14:51:12 osWatch: FreeRam 25360, rssi 60, last_run 8771
14:51:22 osWatch: FreeRam 25360, rssi 62, last_run 18771
14:51:32 osWatch: FreeRam 25360, rssi 62, last_run 28771
14:51:42 osWatch: FreeRam 25360, rssi 62, last_run 38771
14:51:42 osWatch: Warning, loop blocked. Restart now
*/
if (2 == type) {
while(1) delay(1000); // this will trigger the os watch
}
}
#endif // DEBUG_THEO
/*********************************************************************************************\
* General
\*********************************************************************************************/
char* _dtostrf(double number, unsigned char prec, char *s, bool i18n)
{
bool negative = false;
if (isnan(number)) {
strcpy_P(s, PSTR("nan"));
return s;
}
if (isinf(number)) {
strcpy_P(s, PSTR("inf"));
return s;
}
char decimal = '.';
if (i18n) {
decimal = D_DECIMAL_SEPARATOR[0];
}
char* out = s;
// Handle negative numbers
if (number < 0.0) {
negative = true;
number = -number;
}
// Round correctly so that print(1.999, 2) prints as "2.00"
// I optimized out most of the divisions
double rounding = 2.0;
for (uint8_t i = 0; i < prec; ++i) {
rounding *= 10.0;
}
rounding = 1.0 / rounding;
number += rounding;
// Figure out how big our number really is
double tenpow = 1.0;
int digitcount = 1;
while (number >= 10.0 * tenpow) {
tenpow *= 10.0;
digitcount++;
}
number /= tenpow;
// Handle negative sign
if (negative) {
*out++ = '-';
}
// Print the digits, and if necessary, the decimal point
digitcount += prec;
int8_t digit = 0;
while (digitcount-- > 0) {
digit = (int8_t)number;
if (digit > 9) {
digit = 9; // insurance
}
*out++ = (char)('0' | digit);
if ((digitcount == prec) && (prec > 0)) {
*out++ = decimal;
}
number -= digit;
number *= 10.0;
}
// make sure the string is terminated
*out = 0;
return s;
}
char* dtostrfd(double number, unsigned char prec, char *s) // Always decimal dot
{
return _dtostrf(number, prec, s, 0);
}
char* dtostrfi(double number, unsigned char prec, char *s) // Use localized decimal dot
{
return _dtostrf(number, prec, s, 1);
}
boolean parseIP(uint32_t* addr, const char* str)
{
uint8_t *part = (uint8_t*)addr;
byte i;
*addr = 0;
for (i = 0; i < 4; i++) {
part[i] = strtoul(str, NULL, 10); // Convert byte
str = strchr(str, '.');
if (str == NULL || *str == '\0') {
break; // No more separators, exit
}
str++; // Point to next character after separator
}
return (3 == i);
}
void mqttfy(byte option, char* str)
{
// option 0 = replace by underscore
// option 1 = delete character
uint16_t i = 0;
while (str[i] > 0) {
// if ((str[i] == '/') || (str[i] == '+') || (str[i] == '#') || (str[i] == ' ')) {
if ((str[i] == '+') || (str[i] == '#') || (str[i] == ' ')) {
if (option) {
uint16_t j = i;
while (str[j] > 0) {
str[j] = str[j +1];
j++;
}
i--;
} else {
str[i] = '_';
}
}
i++;
}
}
// Function to parse & check if version_str is newer than our currently installed version.
bool newerVersion(char* version_str)
{
uint32_t version = 0;
uint8_t i = 0;
char *str_ptr;
char* version_dup = strdup(version_str); // Duplicate the version_str as strtok_r will modify it.
if (!version_dup) {
return false; // Bail if we can't duplicate. Assume bad.
}
// Loop through the version string, splitting on '.' seperators.
for (char *str = strtok_r(version_dup, ".", &str_ptr); str && i < sizeof(VERSION); str = strtok_r(NULL, ".", &str_ptr), i++) {
int field = atoi(str);
// The fields in a version string can only range from 0-255.
if ((field < 0) || (field > 255)) {
free(version_dup);
return false;
}
// Shuffle the accumulated bytes across, and add the new byte.
version = (version << 8) + field;
// Check alpha delimiter after 1.2.3 only
if ((2 == i) && isalpha(str[strlen(str)-1])) {
field = str[strlen(str)-1] & 0x1f;
version = (version << 8) + field;
i++;
}
}
free(version_dup); // We no longer need this.
// A version string should have 2-4 fields. e.g. 1.2, 1.2.3, or 1.2.3a (= 1.2.3.1).
// If not, then don't consider it a valid version string.
if ((i < 2) || (i > sizeof(VERSION))) {
return false;
}
// Keep shifting the parsed version until we hit the maximum number of tokens.
// VERSION stores the major number of the version in the most significant byte of the uint32_t.
while (i < sizeof(VERSION)) {
version <<= 8;
i++;
}
// Now we should have a fully constructed version number in uint32_t form.
return (version > VERSION);
}
char* getPowerDevice(char* dest, uint8_t idx, size_t size, uint8_t option)
{
char sidx[8];
strncpy_P(dest, S_RSLT_POWER, size);
if ((Maxdevice + option) > 1) {
snprintf_P(sidx, sizeof(sidx), PSTR("%d"), idx);
strncat(dest, sidx, size);
}
return dest;
}
char* getPowerDevice(char* dest, uint8_t idx, size_t size)
{
return getPowerDevice(dest, idx, size, 0);
}
/*********************************************************************************************\
* Wifi
\*********************************************************************************************/
#define WIFI_CONFIG_SEC 180 // seconds before restart
#define WIFI_MANAGER_SEC 180 // seconds before restart
#define WIFI_CHECK_SEC 20 // seconds
#define WIFI_RETRY_SEC 30 // seconds
uint8_t _wificounter;
uint8_t _wifiretry;
uint8_t _wifistatus;
uint8_t _wpsresult;
uint8_t _wificonfigflag = 0;
uint8_t _wifiConfigCounter = 0;
int WIFI_getRSSIasQuality(int RSSI)
{
int quality = 0;
if (RSSI <= -100) {
quality = 0;
} else if (RSSI >= -50) {
quality = 100;
} else {
quality = 2 * (RSSI + 100);
}
return quality;
}
boolean WIFI_configCounter()
{
if (_wifiConfigCounter) {
_wifiConfigCounter = WIFI_MANAGER_SEC;
}
return (_wifiConfigCounter);
}
extern "C" {
#include "user_interface.h"
}
void WIFI_wps_status_cb(wps_cb_status status);
void WIFI_wps_status_cb(wps_cb_status status)
{
/* from user_interface.h:
enum wps_cb_status {
WPS_CB_ST_SUCCESS = 0,
WPS_CB_ST_FAILED,
WPS_CB_ST_TIMEOUT,
WPS_CB_ST_WEP, // WPS failed because that WEP is not supported
WPS_CB_ST_SCAN_ERR, // can not find the target WPS AP
};
*/
_wpsresult = status;
if (WPS_CB_ST_SUCCESS == _wpsresult) {
wifi_wps_disable();
} else {
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_WIFI D_WPS_FAILED_WITH_STATUS " %d"), _wpsresult);
addLog(LOG_LEVEL_DEBUG);
_wifiConfigCounter = 2;
}
}
boolean WIFI_WPSConfigDone(void)
{
return (!_wpsresult);
}
boolean WIFI_beginWPSConfig(void)
{
_wpsresult = 99;
if (!wifi_wps_disable()) {
return false;
}
if (!wifi_wps_enable(WPS_TYPE_PBC)) {
return false; // so far only WPS_TYPE_PBC is supported (SDK 2.0.0)
}
if (!wifi_set_wps_cb((wps_st_cb_t) &WIFI_wps_status_cb)) {
return false;
}
if (!wifi_wps_start()) {
return false;
}
return true;
}
void WIFI_config(uint8_t type)
{
if (!_wificonfigflag) {
if (type >= WIFI_RETRY) { // WIFI_RETRY and WIFI_WAIT
return;
}
#ifdef USE_EMULATION
UDP_Disconnect();
#endif // USE_EMULATION
WiFi.disconnect(); // Solve possible Wifi hangs
_wificonfigflag = type;
_wifiConfigCounter = WIFI_CONFIG_SEC; // Allow up to WIFI_CONFIG_SECS seconds for phone to provide ssid/pswd
_wificounter = _wifiConfigCounter +5;
blinks = 1999;
if (WIFI_RESTART == _wificonfigflag) {
restartflag = 2;
}
else if (WIFI_SMARTCONFIG == _wificonfigflag) {
addLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_WCFG_1_SMARTCONFIG D_ACTIVE_FOR_1_MINUTE));
WiFi.beginSmartConfig();
}
else if (WIFI_WPSCONFIG == _wificonfigflag) {
if (WIFI_beginWPSConfig()) {
addLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_WCFG_3_WPSCONFIG D_ACTIVE_FOR_1_MINUTE));
} else {
addLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_WCFG_3_WPSCONFIG D_FAILED_TO_START));
_wifiConfigCounter = 3;
}
}
#ifdef USE_WEBSERVER
else if (WIFI_MANAGER == _wificonfigflag) {
addLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_WCFG_2_WIFIMANAGER D_ACTIVE_FOR_1_MINUTE));
beginWifiManager();
}
#endif // USE_WEBSERVER
}
}
void WIFI_begin(uint8_t flag)
{
const char PhyMode[] = " BGN";
#ifdef USE_EMULATION
UDP_Disconnect();
#endif // USE_EMULATION
if (!strncmp_P(ESP.getSdkVersion(),PSTR("1.5.3"),5)) {
addLog_P(LOG_LEVEL_DEBUG, S_LOG_WIFI, PSTR(D_PATCH_ISSUE_2186));
WiFi.mode(WIFI_OFF); // See https://github.com/esp8266/Arduino/issues/2186
}
WiFi.disconnect();
WiFi.mode(WIFI_STA); // Disable AP mode
if (sysCfg.sleep) {
WiFi.setSleepMode(WIFI_LIGHT_SLEEP); // Allow light sleep during idle times
}
// if (WiFi.getPhyMode() != WIFI_PHY_MODE_11N) {
// WiFi.setPhyMode(WIFI_PHY_MODE_11N);
// }
if (!WiFi.getAutoConnect()) {
WiFi.setAutoConnect(true);
}
// WiFi.setAutoReconnect(true);
switch (flag) {
case 0: // AP1
case 1: // AP2
sysCfg.sta_active = flag;
break;
case 2: // Toggle
sysCfg.sta_active ^= 1;
} // 3: Current AP
if (0 == strlen(sysCfg.sta_ssid[1])) {
sysCfg.sta_active = 0;
}
if (sysCfg.ip_address[0]) {
WiFi.config(sysCfg.ip_address[0], sysCfg.ip_address[1], sysCfg.ip_address[2], sysCfg.ip_address[3]); // Set static IP
}
WiFi.hostname(Hostname);
WiFi.begin(sysCfg.sta_ssid[sysCfg.sta_active], sysCfg.sta_pwd[sysCfg.sta_active]);
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_WIFI D_CONNECTING_TO_AP "%d %s " D_IN_MODE " 11%c " D_AS " %s..."),
sysCfg.sta_active +1, sysCfg.sta_ssid[sysCfg.sta_active], PhyMode[WiFi.getPhyMode() & 0x3], Hostname);
addLog(LOG_LEVEL_INFO);
}
void WIFI_check_ip()
{
if ((WL_CONNECTED == WiFi.status()) && (static_cast<uint32_t>(WiFi.localIP()) != 0)) {
_wificounter = WIFI_CHECK_SEC;
_wifiretry = WIFI_RETRY_SEC;
addLog_P((_wifistatus != WL_CONNECTED) ? LOG_LEVEL_INFO : LOG_LEVEL_DEBUG_MORE, S_LOG_WIFI, PSTR(D_CONNECTED));
if (_wifistatus != WL_CONNECTED) {
// addLog_P(LOG_LEVEL_INFO, PSTR("Wifi: Set IP addresses"));
sysCfg.ip_address[1] = (uint32_t)WiFi.gatewayIP();
sysCfg.ip_address[2] = (uint32_t)WiFi.subnetMask();
sysCfg.ip_address[3] = (uint32_t)WiFi.dnsIP();
}
_wifistatus = WL_CONNECTED;
} else {
_wifistatus = WiFi.status();
switch (_wifistatus) {
case WL_CONNECTED:
addLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_CONNECT_FAILED_NO_IP_ADDRESS));
_wifistatus = 0;
_wifiretry = WIFI_RETRY_SEC;
break;
case WL_NO_SSID_AVAIL:
addLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_CONNECT_FAILED_AP_NOT_REACHED));
if (WIFI_WAIT == sysCfg.sta_config) {
_wifiretry = WIFI_RETRY_SEC;
} else {
if (_wifiretry > (WIFI_RETRY_SEC / 2)) {
_wifiretry = WIFI_RETRY_SEC / 2;
}
else if (_wifiretry) {
_wifiretry = 0;
}
}
break;
case WL_CONNECT_FAILED:
addLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_CONNECT_FAILED_WRONG_PASSWORD));
if (_wifiretry > (WIFI_RETRY_SEC / 2)) {
_wifiretry = WIFI_RETRY_SEC / 2;
}
else if (_wifiretry) {
_wifiretry = 0;
}
break;
default: // WL_IDLE_STATUS and WL_DISCONNECTED
if (!_wifiretry || ((WIFI_RETRY_SEC / 2) == _wifiretry)) {
addLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_CONNECT_FAILED_AP_TIMEOUT));
} else {
addLog_P(LOG_LEVEL_DEBUG, S_LOG_WIFI, PSTR(D_ATTEMPTING_CONNECTION));
}
}
if (_wifiretry) {
if (WIFI_RETRY_SEC == _wifiretry) {
WIFI_begin(3); // Select default SSID
}
if ((sysCfg.sta_config != WIFI_WAIT) && ((WIFI_RETRY_SEC / 2) == _wifiretry)) {
WIFI_begin(2); // Select alternate SSID
}
_wificounter = 1;
_wifiretry--;
} else {
WIFI_config(sysCfg.sta_config);
_wificounter = 1;
_wifiretry = WIFI_RETRY_SEC;
}
}
}
void WIFI_Check(uint8_t param)
{
_wificounter--;
switch (param) {
case WIFI_SMARTCONFIG:
case WIFI_MANAGER:
case WIFI_WPSCONFIG:
WIFI_config(param);
break;
default:
if (_wifiConfigCounter) {
_wifiConfigCounter--;
_wificounter = _wifiConfigCounter +5;
if (_wifiConfigCounter) {
if ((WIFI_SMARTCONFIG == _wificonfigflag) && WiFi.smartConfigDone()) {
_wifiConfigCounter = 0;
}
if ((WIFI_WPSCONFIG == _wificonfigflag) && WIFI_WPSConfigDone()) {
_wifiConfigCounter = 0;
}
if (!_wifiConfigCounter) {
if (strlen(WiFi.SSID().c_str())) {
strlcpy(sysCfg.sta_ssid[0], WiFi.SSID().c_str(), sizeof(sysCfg.sta_ssid[0]));
}
if (strlen(WiFi.psk().c_str())) {
strlcpy(sysCfg.sta_pwd[0], WiFi.psk().c_str(), sizeof(sysCfg.sta_pwd[0]));
}
sysCfg.sta_active = 0;
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_WIFI D_WCFG_1_SMARTCONFIG D_CMND_SSID "1 %s, " D_CMND_PASSWORD "1 %s"), sysCfg.sta_ssid[0], sysCfg.sta_pwd[0]);
addLog(LOG_LEVEL_INFO);
}
}
if (!_wifiConfigCounter) {
if (WIFI_SMARTCONFIG == _wificonfigflag) {
WiFi.stopSmartConfig();
}
restartflag = 2;
}
} else {
if (_wificounter <= 0) {
addLog_P(LOG_LEVEL_DEBUG_MORE, S_LOG_WIFI, PSTR(D_CHECKING_CONNECTION));
_wificounter = WIFI_CHECK_SEC;
WIFI_check_ip();
}
if ((WL_CONNECTED == WiFi.status()) && (static_cast<uint32_t>(WiFi.localIP()) != 0) && !_wificonfigflag) {
#ifdef USE_DISCOVERY
if (!mDNSbegun) {
mDNSbegun = MDNS.begin(Hostname);
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_MDNS "%s"), (mDNSbegun) ? D_INITIALIZED : D_FAILED);
addLog(LOG_LEVEL_INFO);
}
#endif // USE_DISCOVERY
#ifdef USE_WEBSERVER
if (sysCfg.webserver) {
startWebserver(sysCfg.webserver, WiFi.localIP());
#ifdef USE_DISCOVERY
#ifdef WEBSERVER_ADVERTISE
MDNS.addService("http", "tcp", 80);
#endif // WEBSERVER_ADVERTISE
#endif // USE_DISCOVERY
} else {
stopWebserver();
}
#ifdef USE_EMULATION
if (sysCfg.flag.emulation) {
UDP_Connect();
}
#endif // USE_EMULATION
#endif // USE_WEBSERVER
} else {
#ifdef USE_EMULATION
UDP_Disconnect();
#endif // USE_EMULATION
mDNSbegun = false;
}
}
}
}
int WIFI_State()
{
int state;
if ((WL_CONNECTED == WiFi.status()) && (static_cast<uint32_t>(WiFi.localIP()) != 0)) {
state = WIFI_RESTART;
}
if (_wificonfigflag) {
state = _wificonfigflag;
}
return state;
}
void WIFI_Connect()
{
WiFi.persistent(false); // Solve possible wifi init errors
_wifistatus = 0;
_wifiretry = WIFI_RETRY_SEC;
_wificounter = 1;
}
#ifdef USE_DISCOVERY
/*********************************************************************************************\
* mDNS
\*********************************************************************************************/
#ifdef MQTT_HOST_DISCOVERY
boolean mdns_discoverMQTTServer()
{
char ip_str[20];
int n;
if (!mDNSbegun) {
return false;
}
n = MDNS.queryService("mqtt", "tcp"); // Search for mqtt service
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_MDNS D_QUERY_DONE " %d"), n);
addLog(LOG_LEVEL_INFO);
if (n > 0) {
// Note: current strategy is to get the first MQTT service (even when many are found)
IPtoCharArray(MDNS.IP(0), ip_str, 20);
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_MDNS D_MQTT_SERVICE_FOUND " %s, " D_IP_ADDRESS " %s, " D_PORT " %d"),
MDNS.hostname(0).c_str(), ip_str, MDNS.port(0));
addLog(LOG_LEVEL_INFO);
strlcpy(sysCfg.mqtt_host, ip_str, sizeof(sysCfg.mqtt_host));
sysCfg.mqtt_port = MDNS.port(0);
}
return n > 0;
}
#endif // MQTT_HOST_DISCOVERY
void IPtoCharArray(IPAddress address, char *ip_str, size_t size)
{
String str = String(address[0]);
str += ".";
str += String(address[1]);
str += ".";
str += String(address[2]);
str += ".";
str += String(address[3]);
str.toCharArray(ip_str, size);
}
#endif // USE_DISCOVERY
/*********************************************************************************************\
* Basic I2C routines
\*********************************************************************************************/
#ifdef USE_I2C
#define I2C_RETRY_COUNTER 3
int32_t i2c_read(uint8_t addr, uint8_t reg, uint8_t size)
{
byte x = 0;
int32_t data = 0;
do {
Wire.beginTransmission(addr); // start transmission to device
Wire.write(reg); // sends register address to read from
if (0 == Wire.endTransmission(false)) { // Try to become I2C Master, send data and collect bytes, keep master status for next request...
Wire.requestFrom((int)addr, (int)size); // send data n-bytes read
if (Wire.available() == size) {
for(byte i = 0; i < size; i++) {
data <<= 8;
data |= Wire.read(); // receive DATA
}
}
}
x++;
} while (Wire.endTransmission(true) != 0 && x <= I2C_RETRY_COUNTER); // end transmission
return data;
}
uint8_t i2c_read8(uint8_t addr, uint8_t reg)
{
return i2c_read(addr, reg, 1);
}
uint16_t i2c_read16(uint8_t addr, uint8_t reg)
{
return i2c_read(addr, reg, 2);
}
int16_t i2c_readS16(uint8_t addr, uint8_t reg)
{
return (int16_t)i2c_read(addr, reg, 2);
}
uint16_t i2c_read16_LE(uint8_t addr, uint8_t reg)
{
uint16_t temp = i2c_read(addr, reg, 2);
return (temp >> 8) | (temp << 8);
}
int16_t i2c_readS16_LE(uint8_t addr, uint8_t reg)
{
return (int16_t)i2c_read16_LE(addr, reg);
}
int32_t i2c_read24(uint8_t addr, uint8_t reg)
{
return i2c_read(addr, reg, 3);
}
void i2c_write8(uint8_t addr, uint8_t reg, uint8_t val)
{
byte x = I2C_RETRY_COUNTER;
do {
Wire.beginTransmission((uint8_t)addr); // start transmission to device
Wire.write(reg); // sends register address to read from
Wire.write(val); // write data
x--;
} while (Wire.endTransmission(true) != 0 && x != 0); // end transmission
}
void i2c_scan(char *devs, unsigned int devs_len)
{
byte error;
byte address;
byte any = 0;
char tstr[10];
snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"" D_I2CSCAN_DEVICES_FOUND_AT));
for (address = 1; address <= 127; address++) {
Wire.beginTransmission(address);
error = Wire.endTransmission();
if (0 == error) {
snprintf_P(tstr, sizeof(tstr), PSTR(" 0x%2x"), address);
strncat(devs, tstr, devs_len);
any = 1;
}
else if (4 == error) {
snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"" D_I2CSCAN_UNKNOWN_ERROR_AT " 0x%2x\"}"), address);
}
}
if (any) {
strncat(devs, "\"}", devs_len);
} else {
snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"" D_I2CSCAN_NO_DEVICES_FOUND "\"}"));
}
}
#endif // USE_I2C
/*********************************************************************************************\
* Real Time Clock
*
* Sources: Time by Michael Margolis and Paul Stoffregen (https://github.com/PaulStoffregen/Time)
* Timezone by Jack Christensen (https://github.com/JChristensen/Timezone)
\*********************************************************************************************/
extern "C" {
#include "sntp.h"
}
#define SECS_PER_MIN ((uint32_t)(60UL))
#define SECS_PER_HOUR ((uint32_t)(3600UL))
#define SECS_PER_DAY ((uint32_t)(SECS_PER_HOUR * 24UL))
#define LEAP_YEAR(Y) (((1970+Y)>0) && !((1970+Y)%4) && (((1970+Y)%100) || !((1970+Y)%400)))
Ticker tickerRTC;
static const uint8_t monthDays[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; // API starts months from 1, this array starts from 0
uint32_t utctime = 0;
uint32_t loctime = 0;
uint32_t dsttime = 0;
uint32_t stdtime = 0;
uint32_t ntptime = 0;
uint32_t midnight = 1451602800;
uint8_t midnightnow = 0;
String getBuildDateTime()
{
// "2017-03-07T11:08:02" - ISO8601:2004
char bdt[21];
char *str;
char *p;
char *smonth;
char mdate[] = __DATE__; // "Mar 7 2017"
int month;
int day;
int year;
// sscanf(mdate, "%s %d %d", bdt, &day, &year); // Not implemented in 2.3.0 and probably too many code
byte i = 0;
for (str = strtok_r(mdate, " ", &p); str && i < 3; str = strtok_r(NULL, " ", &p)) {
switch (i++) {
case 0: // Month
smonth = str;
break;
case 1: // Day
day = atoi(str);
break;
case 2: // Year
year = atoi(str);
}
}
month = (strstr(monthNames, smonth) -monthNames) /3 +1;
snprintf_P(bdt, sizeof(bdt), PSTR("%d" D_YEAR_MONTH_SEPARATOR "%02d" D_MONTH_DAY_SEPARATOR "%02d" D_DATE_TIME_SEPARATOR "%s"), year, month, day, __TIME__);
return String(bdt);
}
String getDateTime()
{
// "2017-03-07T11:08:02" - ISO8601:2004
char dt[21];
snprintf_P(dt, sizeof(dt), PSTR("%04d" D_YEAR_MONTH_SEPARATOR "%02d" D_MONTH_DAY_SEPARATOR "%02d" D_DATE_TIME_SEPARATOR "%02d" D_HOUR_MINUTE_SEPARATOR "%02d" D_MINUTE_SECOND_SEPARATOR "%02d"),
rtcTime.Year, rtcTime.Month, rtcTime.Day, rtcTime.Hour, rtcTime.Minute, rtcTime.Second);
return String(dt);
}
String getUTCDateTime()
{
// "2017-03-07T11:08:02" - ISO8601:2004
char dt[21];
TIME_T tmpTime;
breakTime(utctime, tmpTime);
tmpTime.Year += 1970;
snprintf_P(dt, sizeof(dt), PSTR("%04d" D_YEAR_MONTH_SEPARATOR "%02d" D_MONTH_DAY_SEPARATOR "%02d" D_DATE_TIME_SEPARATOR "%02d" D_HOUR_MINUTE_SEPARATOR "%02d" D_MINUTE_SECOND_SEPARATOR "%02d"),
tmpTime.Year, tmpTime.Month, tmpTime.Day, tmpTime.Hour, tmpTime.Minute, tmpTime.Second);
return String(dt);
}
void breakTime(uint32_t timeInput, TIME_T &tm)
{
// break the given timeInput into time components
// this is a more compact version of the C library localtime function
// note that year is offset from 1970 !!!
uint8_t year;
uint8_t month;
uint8_t monthLength;
uint32_t time;
unsigned long days;
time = timeInput;
tm.Second = time % 60;
time /= 60; // now it is minutes
tm.Minute = time % 60;
time /= 60; // now it is hours
tm.Hour = time % 24;
time /= 24; // now it is days
tm.Wday = ((time + 4) % 7) + 1; // Sunday is day 1
year = 0;
days = 0;
while((unsigned)(days += (LEAP_YEAR(year) ? 366 : 365)) <= time) {
year++;
}
tm.Year = year; // year is offset from 1970
days -= LEAP_YEAR(year) ? 366 : 365;
time -= days; // now it is days in this year, starting at 0
tm.DayOfYear = time;
days = 0;
month = 0;
monthLength = 0;
for (month = 0; month < 12; month++) {
if (1 == month) { // february
if (LEAP_YEAR(year)) {
monthLength = 29;
} else {
monthLength = 28;
}
} else {
monthLength = monthDays[month];
}
if (time >= monthLength) {
time -= monthLength;
} else {
break;
}
}
strlcpy(tm.MonthName, monthNames + (month *3), 4);
tm.Month = month + 1; // jan is month 1
tm.Day = time + 1; // day of month
tm.Valid = (timeInput > 1451602800); // 2016-01-01
}
uint32_t makeTime(TIME_T &tm)
{
// assemble time elements into time_t
// note year argument is offset from 1970
int i;
uint32_t seconds;
// seconds from 1970 till 1 jan 00:00:00 of the given year
seconds = tm.Year * (SECS_PER_DAY * 365);
for (i = 0; i < tm.Year; i++) {
if (LEAP_YEAR(i)) {
seconds += SECS_PER_DAY; // add extra days for leap years
}
}
// add days for this year, months start from 1
for (i = 1; i < tm.Month; i++) {
if ((2 == i) && LEAP_YEAR(tm.Year)) {
seconds += SECS_PER_DAY * 29;
} else {
seconds += SECS_PER_DAY * monthDays[i-1]; // monthDay array starts from 0
}
}
seconds+= (tm.Day - 1) * SECS_PER_DAY;
seconds+= tm.Hour * SECS_PER_HOUR;
seconds+= tm.Minute * SECS_PER_MIN;
seconds+= tm.Second;
return seconds;
}
uint32_t toTime_t(TimeChangeRule r, int yr)
{
TIME_T tm;
uint32_t t;
uint8_t m;
uint8_t w; // temp copies of r.month and r.week
m = r.month;
w = r.week;
if (0 == w) { // Last week = 0
if (++m > 12) { // for "Last", go to the next month
m = 1;
yr++;
}
w = 1; // and treat as first week of next month, subtract 7 days later
}
tm.Hour = r.hour;
tm.Minute = 0;
tm.Second = 0;
tm.Day = 1;
tm.Month = m;
tm.Year = yr - 1970;
t = makeTime(tm); // First day of the month, or first day of next month for "Last" rules
breakTime(t, tm);
t += (7 * (w - 1) + (r.dow - tm.Wday + 7) % 7) * SECS_PER_DAY;
if (0 == r.week) {
t -= 7 * SECS_PER_DAY; //back up a week if this is a "Last" rule
}
return t;
}
String rtc_time(int type)
{
char stime[25]; // Skip newline
uint32_t time = utctime;
if (1 == type) time = loctime;
if (2 == type) time = dsttime;
if (3 == type) time = stdtime;
snprintf_P(stime, sizeof(stime), sntp_get_real_time(time));
return String(stime);
}
uint32_t rtc_loctime()
{
return loctime;
}
uint32_t rtc_midnight()
{
return midnight;
}
boolean rtc_midnight_now()
{
boolean mnflg = midnightnow;
if (mnflg) {
midnightnow = 0;
}
return mnflg;
}
void rtc_second()
{
byte ntpsync;
uint32_t stdoffset;
uint32_t dstoffset;
TIME_T tmpTime;
ntpsync = 0;
if (rtcTime.Year < 2016) {
if (WL_CONNECTED == WiFi.status()) {
ntpsync = 1; // Initial NTP sync
}
} else {
if ((1 == rtcTime.Minute) && (1 == rtcTime.Second)) {
ntpsync = 1; // Hourly NTP sync at xx:01:01
}
}
if (ntpsync) {
ntptime = sntp_get_current_timestamp();
if (ntptime) {
utctime = ntptime;
breakTime(utctime, tmpTime);
rtcTime.Year = tmpTime.Year + 1970;
dsttime = toTime_t(myDST, rtcTime.Year);
stdtime = toTime_t(mySTD, rtcTime.Year);
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION "(" D_UTC_TIME ") %s"), rtc_time(0).c_str());
addLog(LOG_LEVEL_DEBUG);
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION "(" D_DST_TIME ") %s"), rtc_time(2).c_str());
addLog(LOG_LEVEL_DEBUG);
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION "(" D_STD_TIME ") %s"), rtc_time(3).c_str());
addLog(LOG_LEVEL_DEBUG);
}
}
utctime++;
loctime = utctime;
if (loctime > 1451602800) { // 2016-01-01
if (99 == sysCfg.timezone) {
dstoffset = myDST.offset * SECS_PER_MIN;
stdoffset = mySTD.offset * SECS_PER_MIN;
if ((utctime >= (dsttime - stdoffset)) && (utctime < (stdtime - dstoffset))) {
loctime += dstoffset; // Daylight Saving Time
} else {
loctime += stdoffset; // Standard Time
}
} else {
loctime += sysCfg.timezone * SECS_PER_HOUR;
}
}
breakTime(loctime, rtcTime);
if (!rtcTime.Hour && !rtcTime.Minute && !rtcTime.Second && rtcTime.Valid) {
midnight = loctime;
midnightnow = 1;
}
rtcTime.Year += 1970;
}
void rtc_init()
{
sntp_setservername(0, sysCfg.ntp_server[0]);
sntp_setservername(1, sysCfg.ntp_server[1]);
sntp_setservername(2, sysCfg.ntp_server[2]);
sntp_stop();
sntp_set_timezone(0); // UTC time
sntp_init();
utctime = 0;
breakTime(utctime, rtcTime);
tickerRTC.attach(1, rtc_second);
}
/*********************************************************************************************\
* Miscellaneous
\*********************************************************************************************/
float convertTemp(float c)
{
float result = c;
if (!isnan(c) && sysCfg.flag.temperature_conversion) {
result = c * 1.8 + 32; // Fahrenheit
}
return result;
}
char tempUnit()
{
return (sysCfg.flag.temperature_conversion) ? 'F' : 'C';
}
uint16_t getAdc0()
{
uint16_t alr = 0;
for (byte i = 0; i < 32; i++) {
alr += analogRead(A0);
delay(1);
}
return alr >> 5;
}
/*********************************************************************************************\
* Syslog
\*********************************************************************************************/
void syslog()
{
// Destroys log_data
char syslog_preamble[64]; // Hostname + Id
yield(); // Fix possible UDP syslog blocking
if (portUDP.beginPacket(sysCfg.syslog_host, sysCfg.syslog_port)) {
snprintf_P(syslog_preamble, sizeof(syslog_preamble), PSTR("%s ESP-"), Hostname);
memmove(log_data + strlen(syslog_preamble), log_data, sizeof(log_data) - strlen(syslog_preamble));
log_data[sizeof(log_data) -1] = '\0';
memcpy(log_data, syslog_preamble, strlen(syslog_preamble));
portUDP.write(log_data);
portUDP.endPacket();
} else {
syslog_level = 0;
syslog_timer = SYSLOG_TIMER;
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION D_SYSLOG_HOST_NOT_FOUND ". " D_RETRY_IN " %d " D_UNIT_SECOND), SYSLOG_TIMER);
addLog(LOG_LEVEL_INFO);
}
}
void addLog(byte loglevel)
{
char mxtime[9]; // 13:45:21
snprintf_P(mxtime, sizeof(mxtime), PSTR("%02d" D_HOUR_MINUTE_SEPARATOR "%02d" D_MINUTE_SECOND_SEPARATOR "%02d"), rtcTime.Hour, rtcTime.Minute, rtcTime.Second);
if (loglevel <= seriallog_level) {
Serial.printf("%s %s\n", mxtime, log_data);
}
#ifdef USE_WEBSERVER
if (sysCfg.webserver && (loglevel <= sysCfg.weblog_level)) {
Log[logidx] = String(mxtime) + " " + String(log_data);
logidx++;
if (logidx > MAX_LOG_LINES -1) {
logidx = 0;
}
}
#endif // USE_WEBSERVER
if ((WL_CONNECTED == WiFi.status()) && (loglevel <= syslog_level)) {
syslog();
}
}
void addLog_P(byte loglevel, const char *formatP)
{
snprintf_P(log_data, sizeof(log_data), formatP);
addLog(loglevel);
}
void addLog_P(byte loglevel, const char *formatP, const char *formatP2)
{
char message[100];
snprintf_P(log_data, sizeof(log_data), formatP);
snprintf_P(message, sizeof(message), formatP2);
strncat(log_data, message, sizeof(log_data));
addLog(loglevel);
}
/*********************************************************************************************\
*
\*********************************************************************************************/