Tasmota/sonoff/xdrv_snfled.ino

748 lines
22 KiB
C++

/*
xdrv_snfled.ino - WS2812 and sonoff led support for Sonoff-Tasmota
Copyright (C) 2017 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*********************************************************************************************\
* WS2812, Sonoff B1, AiLight, Sonoff Led and BN-SZ01
*
* sfl_flg Module Color ColorTemp
* 1 Sonoff BN-SZ W no
* 2 Sonoff Led CW yes
* 3 +WS2812 RGB no
* 4 AiLight RGBW no
* 5 Sonoff B1 RGBCW yes
*
* led_scheme WS2812 Others Effect
* 0 yes yes Color On/Off
* 1 yes yes Wakeup light
* 2 yes no Clock
* 3 yes no Incandescent
* 4 yes no RGB
* 5 yes no Christmas
* 6 yes no Hanukkah
* 7 yes no Kwanzaa
* 8 yes no Rainbow
* 9 yes no Fire
*
\*********************************************************************************************/
uint8_t ledTable[] = {
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4,
4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8,
8, 8, 9, 9, 9, 10, 10, 10, 11, 11, 12, 12, 12, 13, 13, 14,
14, 15, 15, 15, 16, 16, 17, 17, 18, 18, 19, 19, 20, 20, 21, 22,
22, 23, 23, 24, 25, 25, 26, 26, 27, 28, 28, 29, 30, 30, 31, 32,
33, 33, 34, 35, 36, 36, 37, 38, 39, 40, 40, 41, 42, 43, 44, 45,
46, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62, 63, 64, 65, 67, 68, 69, 70, 71, 72, 73, 75, 76, 77, 78,
80, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 99,
101,102,104,105,107,108,110,111,113,114,116,117,119,121,122,124,
125,127,129,130,132,134,135,137,139,141,142,144,146,148,150,151,
153,155,157,159,161,163,165,166,168,170,172,174,176,178,180,182,
184,186,189,191,193,195,197,199,201,204,206,208,210,212,215,217,
219,221,224,226,228,231,233,235,238,240,243,245,248,250,253,255 };
uint8_t sl_dcolor[5];
uint8_t sl_tcolor[5];
uint8_t sl_lcolor[5];
uint8_t sl_power = 0;
uint8_t sl_any = 0;
uint8_t sl_wakeupActive = 0;
uint8_t sl_wakeupDimmer = 0;
uint16_t sl_wakeupCntr = 0;
unsigned long stripTimerCntr = 0; // Bars and Gradient
/*********************************************************************************************\
* Sonoff B1 and AiLight inspired by OpenLight https://github.com/icamgo/noduino-sdk
\*********************************************************************************************/
extern "C" {
void os_delay_us(unsigned int);
}
uint8_t sl_pdi;
uint8_t sl_pdcki;
void sl_di_pulse(uint8_t times)
{
for (uint8_t i = 0; i < times; i++) {
digitalWrite(sl_pdi, HIGH);
digitalWrite(sl_pdi, LOW);
}
}
void sl_dcki_pulse(uint8_t times)
{
for (uint8_t i = 0; i < times; i++) {
digitalWrite(sl_pdcki, HIGH);
digitalWrite(sl_pdcki, LOW);
}
}
void sl_my92x1_write(uint8_t data)
{
for (uint8_t i = 0; i < 4; i++) { // Send 8bit Data
digitalWrite(sl_pdcki, LOW);
digitalWrite(sl_pdi, (data & 0x80));
digitalWrite(sl_pdcki, HIGH);
data = data << 1;
digitalWrite(sl_pdi, (data & 0x80));
digitalWrite(sl_pdcki, LOW);
digitalWrite(sl_pdi, LOW);
data = data << 1;
}
}
void sl_my92x1_init()
{
uint8_t chips = sfl_flg -3; // 1 (AiLight) or 2 (Sonoff B1)
sl_dcki_pulse(chips * 32); // Clear all duty register
os_delay_us(12); // TStop > 12us.
// Send 12 DI pulse, after 6 pulse's falling edge store duty data, and 12
// pulse's rising edge convert to command mode.
sl_di_pulse(12);
os_delay_us(12); // Delay >12us, begin send CMD data
for (uint8_t n = 0; n < chips; n++) { // Send CMD data
sl_my92x1_write(0x18); // ONE_SHOT_DISABLE, REACTION_FAST, BIT_WIDTH_8, FREQUENCY_DIVIDE_1, SCATTER_APDM
}
os_delay_us(12); // TStart > 12us. Delay 12 us.
// Send 16 DI pulse, at 14 pulse's falling edge store CMD data, and
// at 16 pulse's falling edge convert to duty mode.
sl_di_pulse(16);
os_delay_us(12); // TStop > 12us.
}
void sl_my92x1_duty(uint8_t duty_r, uint8_t duty_g, uint8_t duty_b, uint8_t duty_w, uint8_t duty_c)
{
uint8_t channels[2] = { 4, 6 };
uint8_t didx = sfl_flg -4; // 0 or 1
uint8_t duty[2][6] = {{ duty_r, duty_g, duty_b, duty_w, 0, 0 }, // Definition for RGBW channels
{ duty_w, duty_c, 0, duty_g, duty_r, duty_b }}; // Definition for RGBWC channels
os_delay_us(12); // TStop > 12us.
for (uint8_t channel = 0; channel < channels[didx]; channel++) {
sl_my92x1_write(duty[didx][channel]); // Send 8bit Data
}
os_delay_us(12); // TStart > 12us. Ready for send DI pulse.
sl_di_pulse(8); // Send 8 DI pulse. After 8 pulse falling edge, store old data.
os_delay_us(12); // TStop > 12us.
}
/********************************************************************************************/
void sl_init(void)
{
if (sfl_flg < 3) {
if (!my_module.gp.io[4]) {
pinMode(4, OUTPUT); // Stop floating outputs
digitalWrite(4, LOW);
}
if (!my_module.gp.io[5]) {
pinMode(5, OUTPUT); // Stop floating outputs
digitalWrite(5, LOW);
}
if (!my_module.gp.io[14]) {
pinMode(14, OUTPUT); // Stop floating outputs
digitalWrite(14, LOW);
}
sysCfg.pwmvalue[0] = 0; // We use dimmer / led_color
if (2 == sfl_flg) {
sysCfg.pwmvalue[1] = 0; // We use led_color
}
sysCfg.led_scheme = 0;
}
#ifdef USE_WS2812 // ************************************************************************
else if (3 == sfl_flg) {
ws2812_init();
if (1 == sysCfg.led_scheme) {
sysCfg.led_scheme = 0;
}
}
#endif // USE_WS2812 ************************************************************************
else {
sl_pdi = pin[GPIO_DI];
sl_pdcki = pin[GPIO_DCKI];
pinMode(sl_pdi, OUTPUT);
pinMode(sl_pdcki, OUTPUT);
digitalWrite(sl_pdi, LOW);
digitalWrite(sl_pdcki, LOW);
sl_my92x1_init();
sysCfg.led_scheme = 0;
}
sl_power = 0;
sl_any = 0;
sl_wakeupActive = 0;
}
void sl_setColorTemp(uint16_t ct)
{
/* Color Temperature (https://developers.meethue.com/documentation/core-concepts)
*
* ct = 153 = 2000K = Warm = CCWW = 00FF
* ct = 500 = 6500K = Cold = CCWW = FF00
*/
uint16_t my_ct = ct - 153;
if (my_ct > 347) {
my_ct = 347;
}
uint16_t icold = (100 * (347 - my_ct)) / 136;
uint16_t iwarm = (100 * my_ct) / 136;
if (5 == sfl_flg) {
sysCfg.led_color[0] = 0;
sysCfg.led_color[1] = 0;
sysCfg.led_color[2] = 0;
sysCfg.led_color[3] = (uint8_t)icold;
sysCfg.led_color[4] = (uint8_t)iwarm;
} else {
sysCfg.led_color[0] = (uint8_t)icold;
sysCfg.led_color[1] = (uint8_t)iwarm;
}
}
uint16_t sl_getColorTemp()
{
uint8_t ct_idx = 0;
if (5 == sfl_flg) {
ct_idx = 3;
}
uint16_t my_ct = sysCfg.led_color[ct_idx +1];
if (my_ct > 0) {
return ((my_ct * 136) / 100) + 154;
} else {
my_ct = sysCfg.led_color[ct_idx];
return 499 - ((my_ct * 136) / 100);
}
}
void sl_setDim(uint8_t myDimmer)
{
float temp;
if ((1 == sfl_flg) && (100 == myDimmer)) {
myDimmer = 99; // BN-SZ01 starts flickering at dimmer = 100
}
float newDim = 100 / (float)myDimmer;
for (byte i = 0; i < sfl_flg; i++) {
temp = (float)sysCfg.led_color[i] / newDim;
sl_dcolor[i] = (uint8_t)temp;
}
}
void sl_setColor()
{
uint8_t highest = 0;
float temp;
for (byte i = 0; i < sfl_flg; i++) {
if (highest < sl_dcolor[i]) {
highest = sl_dcolor[i];
}
}
float mDim = (float)highest / 2.55;
sysCfg.led_dimmer[0] = (uint8_t)mDim;
float newDim = 100 / mDim;
for (byte i = 0; i < sfl_flg; i++) {
temp = (float)sl_dcolor[i] * newDim;
sysCfg.led_color[i] = (uint8_t)temp;
}
}
char* sl_getColor(char* scolor)
{
sl_setDim(sysCfg.led_dimmer[0]);
scolor[0] = '\0';
for (byte i = 0; i < sfl_flg; i++) {
snprintf_P(scolor, 11, PSTR("%s%02X"), scolor, sl_dcolor[i]);
}
return scolor;
}
void sl_prepPower()
{
char scolor[11];
// do_cmnd_power(index, (sysCfg.led_dimmer[0]>0));
if (sysCfg.led_dimmer[0] && !(sl_power)) {
do_cmnd_power(Maxdevice, 7); // No publishPowerState
}
else if (!sysCfg.led_dimmer[0] && sl_power) {
do_cmnd_power(Maxdevice, 6); // No publishPowerState
}
#ifdef USE_DOMOTICZ
// mqtt_publishDomoticzPowerState(1);
domoticz_updatePowerState(Maxdevice);
#endif // USE_DOMOTICZ
if (sfl_flg > 1) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_RSLT_POWER "\":\"%s\", \"" D_CMND_DIMMER "\":%d, \"" D_CMND_COLOR "\":\"%s\"}"),
getStateText(sl_power), sysCfg.led_dimmer[0], sl_getColor(scolor));
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_RSLT_POWER "\":\"%s\", \"" D_CMND_DIMMER "\":%d}"),
getStateText(sl_power), sysCfg.led_dimmer[0]);
}
}
void sl_setPower(uint8_t mpower)
{
sl_power = ((mpower & (0x01 << (Maxdevice -1))) != 0);
if (sl_wakeupActive) {
sl_wakeupActive--;
}
if (sl_power) {
sl_any = 1;
}
sl_animate();
}
void sl_animate()
{
// {"Wakeup":"Done"}
uint8_t fadeValue;
uint8_t cur_col[5];
stripTimerCntr++;
if (!sl_power) { // Power Off
sleep = sysCfg.sleep;
stripTimerCntr = 0;
for (byte i = 0; i < sfl_flg; i++) {
sl_tcolor[i] = 0;
}
}
else {
sleep = 0;
switch (sysCfg.led_scheme) {
case 0: // Power On
sl_setDim(sysCfg.led_dimmer[0]); // Power On
if (0 == sysCfg.led_fade) {
for (byte i = 0; i < sfl_flg; i++) {
sl_tcolor[i] = sl_dcolor[i];
}
} else {
for (byte i = 0; i < sfl_flg; i++) {
if (sl_tcolor[i] != sl_dcolor[i]) {
if (sl_tcolor[i] < sl_dcolor[i]) {
sl_tcolor[i] += ((sl_dcolor[i] - sl_tcolor[i]) >> sysCfg.led_speed) +1;
}
if (sl_tcolor[i] > sl_dcolor[i]) {
sl_tcolor[i] -= ((sl_tcolor[i] - sl_dcolor[i]) >> sysCfg.led_speed) +1;
}
}
}
}
break;
case 1: // Power On using wake up duration
if (2 == sl_wakeupActive) {
sl_wakeupActive = 1;
for (byte i = 0; i < sfl_flg; i++) {
sl_tcolor[i] = 0;
}
sl_wakeupCntr = 0;
sl_wakeupDimmer = 0;
}
sl_wakeupCntr++;
if (sl_wakeupCntr > ((sysCfg.led_wakeup * STATES) / sysCfg.led_dimmer[0])) {
sl_wakeupCntr = 0;
sl_wakeupDimmer++;
if (sl_wakeupDimmer <= sysCfg.led_dimmer[0]) {
sl_setDim(sl_wakeupDimmer);
for (byte i = 0; i < sfl_flg; i++) {
sl_tcolor[i] = sl_dcolor[i];
}
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_WAKEUP "\":\"" D_DONE "\"}"));
mqtt_publish_topic_P(2, PSTR(D_CMND_WAKEUP));
sl_wakeupActive = 0;
sysCfg.led_scheme = 0;
}
}
break;
#ifdef USE_WS2812 // ************************************************************************
default:
if (3 == sfl_flg) {
ws2812_showScheme(sysCfg.led_scheme -2);
}
#endif // USE_WS2812 ************************************************************************
}
}
if ((sysCfg.led_scheme < 2) || !sl_power) {
for (byte i = 0; i < sfl_flg; i++) {
if (sl_lcolor[i] != sl_tcolor[i]) {
sl_any = 1;
}
}
if (sl_any) {
sl_any = 0;
for (byte i = 0; i < sfl_flg; i++) {
sl_lcolor[i] = sl_tcolor[i];
cur_col[i] = (sysCfg.led_table) ? ledTable[sl_lcolor[i]] : sl_lcolor[i];
if (sfl_flg < 3) {
if (pin[GPIO_PWM1 +i] < 99) {
analogWrite(pin[GPIO_PWM1 +i], cur_col[i] * (PWM_RANGE / 255));
}
}
}
#ifdef USE_WS2812 // ************************************************************************
if (3 == sfl_flg) {
ws2812_setColor(0, cur_col[0], cur_col[1], cur_col[2]);
}
#endif // USE_ES2812 ************************************************************************
if (sfl_flg > 3) {
sl_my92x1_duty(cur_col[0], cur_col[1], cur_col[2], cur_col[3], cur_col[4]);
}
}
}
}
/*********************************************************************************************\
* Hue support
\*********************************************************************************************/
float sl_Hue = 0.0;
float sl_Sat = 0.0;
float sl_Bri = 0.0;
void sl_rgb2hsb()
{
sl_setDim(sysCfg.led_dimmer[0]);
// convert colors to float between (0.0 - 1.0)
float r = sl_dcolor[0] / 255.0f;
float g = sl_dcolor[1] / 255.0f;
float b = sl_dcolor[2] / 255.0f;
float max = (r > g && r > b) ? r : (g > b) ? g : b;
float min = (r < g && r < b) ? r : (g < b) ? g : b;
float d = max - min;
sl_Hue = 0.0;
sl_Bri = max;
sl_Sat = (0.0f == sl_Bri) ? 0 : (d / sl_Bri);
if (d != 0.0f)
{
if (r == max) {
sl_Hue = (g - b) / d + (g < b ? 6.0f : 0.0f);
} else if (g == max) {
sl_Hue = (b - r) / d + 2.0f;
} else {
sl_Hue = (r - g) / d + 4.0f;
}
sl_Hue /= 6.0f;
}
}
void sl_hsb2rgb()
{
float r;
float g;
float b;
float h = sl_Hue;
float s = sl_Sat;
float v = sl_Bri;
if (0.0f == sl_Sat) {
r = g = b = v; // achromatic or black
} else {
if (h < 0.0f) {
h += 1.0f;
}
else if (h >= 1.0f) {
h -= 1.0f;
}
h *= 6.0f;
int i = (int)h;
float f = h - i;
float q = v * (1.0f - s * f);
float p = v * (1.0f - s);
float t = v * (1.0f - s * (1.0f - f));
switch (i) {
case 0:
r = v;
g = t;
b = p;
break;
case 1:
r = q;
g = v;
b = p;
break;
case 2:
r = p;
g = v;
b = t;
break;
case 3:
r = p;
g = q;
b = v;
break;
case 4:
r = t;
g = p;
b = v;
break;
default:
r = v;
g = p;
b = q;
break;
}
}
sl_dcolor[0] = (uint8_t)(r * 255.0f);
sl_dcolor[1] = (uint8_t)(g * 255.0f);
sl_dcolor[2] = (uint8_t)(b * 255.0f);
}
/********************************************************************************************/
void sl_replaceHSB(String *response)
{
if (sfl_flg > 2) {
sl_rgb2hsb();
response->replace("{h}", String((uint16_t)(65535.0f * sl_Hue)));
response->replace("{s}", String((uint8_t)(254.0f * sl_Sat)));
response->replace("{b}", String((uint8_t)(254.0f * sl_Bri)));
} else {
response->replace("{h}", "0");
response->replace("{s}", "0");
// response->replace("{b}", String((uint8_t)(2.54f * (float)sysCfg.led_dimmer[0])));
response->replace("{b}", String((uint8_t)(0.01f * (float)sysCfg.led_dimmer[0])));
}
}
void sl_getHSB(float *hue, float *sat, float *bri)
{
if (sfl_flg > 2) {
sl_rgb2hsb();
*hue = sl_Hue;
*sat = sl_Sat;
*bri = sl_Bri;
} else {
*hue = 0;
*sat = 0;
// *bri = (2.54f * (float)sysCfg.led_dimmer[0]);
*bri = (0.01f * (float)sysCfg.led_dimmer[0]);
}
}
void sl_setHSB(float hue, float sat, float bri, uint16_t ct)
{
/*
char stemp1[10];
char stemp2[10];
char stemp3[10];
dtostrfi(hue, 3, stemp1);
dtostrfi(sat, 3, stemp2);
dtostrfi(bri, 3, stemp3);
snprintf_P(log_data, sizeof(log_data), PSTR("HUE: Set Hue %s, Sat %s, Bri %s, Ct %d"), stemp1, stemp2, stemp3, ct);
addLog(LOG_LEVEL_DEBUG);
*/
if (sfl_flg > 2) {
if ((5 == sfl_flg) && (ct > 0)) {
sl_setColorTemp(ct);
} else {
sl_Hue = hue;
sl_Sat = sat;
sl_Bri = bri;
sl_hsb2rgb();
sl_setColor();
}
sl_prepPower();
mqtt_publish_topic_P(5, PSTR(D_CMND_COLOR));
} else {
uint8_t tmp = (uint8_t)(bri * 100);
sysCfg.led_dimmer[0] = tmp;
if (2 == sfl_flg) {
if (ct > 0) {
sl_setColorTemp(ct);
}
sl_prepPower();
mqtt_publish_topic_P(5, PSTR(D_CMND_COLOR));
} else {
sl_prepPower();
mqtt_publish_topic_P(5, PSTR(D_CMND_DIMMER));
}
}
}
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
boolean sl_command(char *type, uint16_t index, char *dataBuf, uint16_t data_len, int16_t payload)
{
boolean serviced = true;
boolean coldim = false;
char scolor[11];
char *p;
if ((sfl_flg > 1) && !strcasecmp_P(type, PSTR(D_CMND_COLOR))) {
if (dataBuf[0] == '#') {
dataBuf++;
data_len--;
}
if ((2 * sfl_flg) == data_len) {
for (byte i = 0; i < sfl_flg; i++) {
strlcpy(scolor, dataBuf + (i *2), 3);
sl_dcolor[i] = (uint8_t)strtol(scolor, &p, 16);
}
sl_setColor();
coldim = true;
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_COLOR "\":\"%s\"}"), sl_getColor(scolor));
}
}
#ifdef USE_WS2812 // ***********************************************************************
else if ((3 == sfl_flg) && !strcasecmp_P(type, PSTR(D_CMND_LED)) && (index > 0) && (index <= sysCfg.led_pixels)) {
if (dataBuf[0] == '#') {
dataBuf++;
data_len--;
}
uint8_t sl_ledcolor[3];
if ((2 * sfl_flg) == data_len) {
for (byte i = 0; i < sfl_flg; i++) {
strlcpy(scolor, dataBuf + (i *2), 3);
sl_ledcolor[i] = (uint8_t)strtol(scolor, &p, 16);
}
ws2812_setColor(index, sl_ledcolor[0], sl_ledcolor[1], sl_ledcolor[2]);
}
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_LED "%d\":\"%s\"}"), index, ws2812_getColor(index, scolor));
}
else if ((3 == sfl_flg) && !strcasecmp_P(type, PSTR(D_CMND_PIXELS))) {
if ((payload > 0) && (payload <= WS2812_MAX_LEDS)) {
sysCfg.led_pixels = payload;
ws2812_clear();
sl_any = 1;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_PIXELS "\":%d}"), sysCfg.led_pixels);
}
else if ((3 == sfl_flg) && !strcasecmp_P(type, PSTR(D_CMND_WIDTH))) {
if ((payload >= 0) && (payload <= 4)) {
sysCfg.led_width = payload;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_WIDTH "\":%d}"), sysCfg.led_width);
}
else if ((3 == sfl_flg) && !strcasecmp_P(type, PSTR(D_CMND_SCHEME))) {
if ((payload >= 0) && (payload <= 9)) {
sysCfg.led_scheme = payload;
if (1 == sysCfg.led_scheme) {
sl_wakeupActive = 3;
}
do_cmnd_power(Maxdevice, 1);
stripTimerCntr = 0;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_SCHEME "\":%d}"), sysCfg.led_scheme);
}
#endif // USE_WS2812 ************************************************************************
else if (!strcasecmp_P(type, PSTR(D_CMND_WAKEUP))) {
if ((payload >= 0) && (payload <= 100)) {
sysCfg.led_dimmer[0] = payload;
}
sl_wakeupActive = 3;
sysCfg.led_scheme = 1;
do_cmnd_power(Maxdevice, 1);
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_WAKEUP "\":\"" D_STARTED "\"}"));
}
else if (!strcasecmp_P(type, PSTR(D_CMND_COLORTEMPERATURE)) && ((2 == sfl_flg) || (5 == sfl_flg))) { // ColorTemp
if ((payload >= 153) && (payload <= 500)) { // https://developers.meethue.com/documentation/core-concepts
sl_setColorTemp(payload);
coldim = true;
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_COLORTEMPERATURE "\":%d}"), sl_getColorTemp());
}
}
else if (!strcasecmp_P(type, PSTR(D_CMND_DIMMER))) {
if ((payload >= 0) && (payload <= 100)) {
sysCfg.led_dimmer[0] = payload;
coldim = true;
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_DIMMER "\":%d}"), sysCfg.led_dimmer[0]);
}
}
else if (!strcasecmp_P(type, PSTR(D_CMND_LEDTABLE))) {
if ((payload >= 0) && (payload <= 2)) {
switch (payload) {
case 0: // Off
case 1: // On
sysCfg.led_table = payload;
break;
case 2: // Toggle
sysCfg.led_table ^= 1;
break;
}
sl_any = 1;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_LEDTABLE "\":\"%s\"}"), getStateText(sysCfg.led_table));
}
else if (!strcasecmp_P(type, PSTR(D_CMND_FADE))) {
switch (payload) {
case 0: // Off
case 1: // On
sysCfg.led_fade = payload;
break;
case 2: // Toggle
sysCfg.led_fade ^= 1;
break;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_FADE "\":\"%s\"}"), getStateText(sysCfg.led_fade));
}
else if (!strcasecmp_P(type, PSTR(D_CMND_SPEED))) { // 1 - fast, 8 - slow
if ((payload > 0) && (payload <= 8)) {
sysCfg.led_speed = payload;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_SPEED "\":%d}"), sysCfg.led_speed);
}
else if (!strcasecmp_P(type, PSTR(D_CMND_WAKEUPDURATION))) {
if ((payload > 0) && (payload < 3001)) {
sysCfg.led_wakeup = payload;
sl_wakeupActive = 0;
}
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"" D_CMND_WAKEUPDURATION "\":%d}"), sysCfg.led_wakeup);
}
else if (!strcasecmp_P(type, PSTR("UNDOCA"))) { // Theos legacy status
sl_getColor(scolor);
scolor[6] = '\0'; // RGB only
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s, %d, %d, %d, %d, %d"),
scolor, sysCfg.led_fade, sysCfg.led_table, sysCfg.led_scheme, sysCfg.led_speed, sysCfg.led_width);
mqtt_publish_topic_P(1, type);
mqtt_data[0] = '\0';
}
else {
serviced = false; // Unknown command
}
if (coldim) {
sl_prepPower();
}
return serviced;
}