Tasmota/lib/IRremoteESP8266-2.2.1.02/src/ir_NEC.cpp

211 lines
7.8 KiB
C++

// Copyright 2009 Ken Shirriff
// Copyright 2017 David Conran
#define __STDC_LIMIT_MACROS
#include <stdint.h>
#include <algorithm>
#include "IRrecv.h"
#include "IRsend.h"
#include "IRtimer.h"
#include "IRutils.h"
// N N EEEEE CCCC
// NN N E C
// N N N EEE C
// N NN E C
// N N EEEEE CCCC
// NEC originally added from https://github.com/shirriff/Arduino-IRremote/
// Constants
// Ref:
// http://www.sbprojects.com/knowledge/ir/nec.php
#define NEC_TICK 560U
#define NEC_HDR_MARK_TICKS 16U
#define NEC_HDR_MARK (NEC_HDR_MARK_TICKS * NEC_TICK)
#define NEC_HDR_SPACE_TICKS 8U
#define NEC_HDR_SPACE (NEC_HDR_SPACE_TICKS * NEC_TICK)
#define NEC_BIT_MARK_TICKS 1U
#define NEC_BIT_MARK (NEC_BIT_MARK_TICKS * NEC_TICK)
#define NEC_ONE_SPACE_TICKS 3U
#define NEC_ONE_SPACE (NEC_TICK * NEC_ONE_SPACE_TICKS)
#define NEC_ZERO_SPACE_TICKS 1U
#define NEC_ZERO_SPACE (NEC_TICK * NEC_ZERO_SPACE_TICKS)
#define NEC_RPT_SPACE_TICKS 4U
#define NEC_RPT_SPACE (NEC_RPT_SPACE_TICKS * NEC_TICK)
#define NEC_RPT_LENGTH 4U
#define NEC_MIN_COMMAND_LENGTH_TICKS 193U
#define NEC_MIN_COMMAND_LENGTH (NEC_MIN_COMMAND_LENGTH_TICKS * NEC_TICK)
#define NEC_MIN_GAP (NEC_MIN_COMMAND_LENGTH - \
(NEC_HDR_MARK + NEC_HDR_SPACE + NEC_BITS * (NEC_BIT_MARK + NEC_ONE_SPACE) \
+ NEC_BIT_MARK))
#define NEC_MIN_GAP_TICKS (NEC_MIN_COMMAND_LENGTH_TICKS - \
(NEC_HDR_MARK_TICKS + NEC_HDR_SPACE_TICKS + \
NEC_BITS * (NEC_BIT_MARK_TICKS + NEC_ONE_SPACE_TICKS) + \
NEC_BIT_MARK_TICKS))
#if (SEND_NEC || SEND_SHERWOOD || SEND_AIWA_RC_T501 || SEND_SANYO)
// Send a raw NEC(Renesas) formatted message.
//
// Args:
// data: The message to be sent.
// nbits: The number of bits of the message to be sent. Typically NEC_BITS.
// repeat: The number of times the command is to be repeated.
//
// Status: STABLE / Known working.
//
// Ref:
// http://www.sbprojects.com/knowledge/ir/nec.php
void IRsend::sendNEC(uint64_t data, uint16_t nbits, uint16_t repeat) {
// Set 38kHz IR carrier frequency & a 1/3 (33%) duty cycle.
enableIROut(38, 33);
IRtimer usecs = IRtimer();
// Header
mark(NEC_HDR_MARK);
space(NEC_HDR_SPACE);
// Data
sendData(NEC_BIT_MARK, NEC_ONE_SPACE, NEC_BIT_MARK, NEC_ZERO_SPACE,
data, nbits, true);
// Footer
mark(NEC_BIT_MARK);
// Gap to next command.
space(std::max(NEC_MIN_GAP, NEC_MIN_COMMAND_LENGTH - usecs.elapsed()));
// Optional command repeat sequence.
for (uint16_t i = 0; i < repeat; i++) {
usecs.reset();
mark(NEC_HDR_MARK);
space(NEC_RPT_SPACE);
mark(NEC_BIT_MARK);
// Gap till next command.
space(std::max(NEC_MIN_GAP, NEC_MIN_COMMAND_LENGTH - usecs.elapsed()));
}
}
// Calculate the raw NEC data based on address and command.
// Args:
// address: An address value.
// command: An 8-bit command value.
// Returns:
// A raw 32-bit NEC message.
//
// Status: BETA / Expected to work.
//
// Ref:
// http://www.sbprojects.com/knowledge/ir/nec.php
uint32_t IRsend::encodeNEC(uint16_t address, uint16_t command) {
command &= 0xFF; // We only want the least significant byte of command.
// sendNEC() sends MSB first, but protocol says this is LSB first.
command = reverseBits(command, 8);
command = (command << 8) + (command ^ 0xFF); // Calculate the new command.
if (address > 0xFF) { // Is it Extended NEC?
address = reverseBits(address, 16);
return ((address << 16) + command); // Extended.
} else {
address = reverseBits(address, 8);
return (address << 24) + ((address ^ 0xFF) << 16) + command; // Normal.
}
}
#endif
#if (DECODE_NEC || DECODE_SHERWOOD || DECODE_AIWA_RC_T501 || DECODE_SANYO)
// Decode the supplied NEC message.
//
// Args:
// results: Ptr to the data to decode and where to store the decode result.
// nbits: The number of data bits to expect. Typically NEC_BITS.
// strict: Flag indicating if we should perform strict matching.
// Returns:
// boolean: True if it can decode it, false if it can't.
//
// Status: STABLE / Known good.
//
// Notes:
// NEC protocol has three varients/forms.
// Normal: a 8 bit address & a 8 bit command in 32 bit data form.
// i.e. address + inverted(address) + command + inverted(command)
// Extended: a 16 bit address & a 8 bit command in 32 bit data form.
// i.e. address + command + inverted(command)
// Repeat: a 0-bit code. i.e. No data bits. Just the header + footer.
//
// Ref:
// http://www.sbprojects.com/knowledge/ir/nec.php
bool IRrecv::decodeNEC(decode_results *results, uint16_t nbits, bool strict) {
if (results->rawlen < 2 * nbits + HEADER + FOOTER - 1 &&
results->rawlen != NEC_RPT_LENGTH)
return false; // Can't possibly be a valid NEC message.
if (strict && nbits != NEC_BITS)
return false; // Not strictly an NEC message.
uint64_t data = 0;
uint16_t offset = OFFSET_START;
// Header
if (!matchMark(results->rawbuf[offset], NEC_HDR_MARK)) return false;
// Calculate how long the lowest tick time is based on the header mark.
uint32_t mark_tick = results->rawbuf[offset++] * RAWTICK /
NEC_HDR_MARK_TICKS;
// Check if it is a repeat code.
if (results->rawlen == NEC_RPT_LENGTH &&
matchSpace(results->rawbuf[offset], NEC_RPT_SPACE) &&
matchMark(results->rawbuf[offset + 1], NEC_BIT_MARK_TICKS * mark_tick)) {
results->value = REPEAT;
results->decode_type = NEC;
results->bits = 0;
results->address = 0;
results->command = 0;
results->repeat = true;
return true;
}
// Header (cont.)
if (!matchSpace(results->rawbuf[offset], NEC_HDR_SPACE)) return false;
// Calculate how long the common tick time is based on the header space.
uint32_t space_tick = results->rawbuf[offset++] * RAWTICK /
NEC_HDR_SPACE_TICKS;
// Data
match_result_t data_result = matchData(&(results->rawbuf[offset]), nbits,
NEC_BIT_MARK_TICKS * mark_tick,
NEC_ONE_SPACE_TICKS * space_tick,
NEC_BIT_MARK_TICKS * mark_tick,
NEC_ZERO_SPACE_TICKS * space_tick);
if (data_result.success == false) return false;
data = data_result.data;
offset += data_result.used;
// Footer
if (!matchMark(results->rawbuf[offset++], NEC_BIT_MARK_TICKS * mark_tick))
return false;
if (offset <= results->rawlen &&
!matchAtLeast(results->rawbuf[offset], NEC_MIN_GAP_TICKS * space_tick))
return false;
// Compliance
// Calculate command and optionally enforce integrity checking.
uint8_t command = (data & 0xFF00) >> 8;
// Command is sent twice, once as plain and then inverted.
if ((command ^ 0xFF) != (data & 0xFF)) {
if (strict)
return false; // Command integrity failed.
command = 0; // The command value isn't valid, so default to zero.
}
// Success
results->bits = nbits;
results->value = data;
results->decode_type = NEC;
// NEC command and address are technically in LSB first order so the
// final versions have to be reversed.
results->command = reverseBits(command, 8);
// Normal NEC protocol has an 8 bit address sent, followed by it inverted.
uint8_t address = (data & 0xFF000000) >> 24;
uint8_t address_inverted = (data & 0x00FF0000) >> 16;
if (address == (address_inverted ^ 0xFF))
// Inverted, so it is normal NEC protocol.
results->address = reverseBits(address, 8);
else // Not inverted, so must be Extended NEC protocol, thus 16 bit address.
results->address = reverseBits((data >> 16) & UINT16_MAX, 16);
return true;
}
#endif