Tasmota/tasmota/xdrv_23_zigbee_4a_eeprom.ino

188 lines
5.7 KiB
C++

/*
xdrv_23_zigbee_4a_eeprom.ino - zigbee support for Tasmota - saving configuration in I2C Eeprom of ZBBridge
Copyright (C) 2020 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ZIGBEE
// =======================
// ZbData v1
// File structure:
//
// uint8 - number of devices, 0=none, 0xFF=invalid entry (probably Flash was erased)
//
// [Array of devices]
// [Offset = 2]
// uint8 - length of device record (excluding the length byte)
// uint16 - short address
//
// [Device specific data first]
// uint8 - length of structure (excluding the length byte)
// uint8[] - device wide data
//
// [Array of data structures]
// uint8 - length of structure
// uint8[] - list of data
//
void dumpZigbeeDevicesData(void) {
#ifdef USE_ZIGBEE_EZSP
if (zigbee.eeprom_present) {
SBuffer buf(192);
zigbee.eeprom.readBytes(64, 192, buf.getBuffer());
AddLogBuffer(LOG_LEVEL_INFO, buf.getBuffer(), 192);
}
#endif // USE_ZIGBEE_EZSP
}
// returns the lenght of consumed buffer, or -1 if error
int32_t hydrateDeviceWideData(class Z_Device & device, const SBuffer & buf, size_t start, size_t len) {
size_t segment_len = buf.get8(start);
if ((segment_len < 6) || (segment_len > len)) {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "invalid device wide data length=%d"), segment_len);
return -1;
}
device.last_seen = buf.get32(start+1);
device.lqi = buf.get8(start + 5);
device.batterypercent = buf.get8(start + 6);
return segment_len + 1;
}
// return true if success
bool hydrateDeviceData(class Z_Device & device, const SBuffer & buf, size_t start, size_t len) {
// First hydrate device wide data
int32_t ret = hydrateDeviceWideData(device, buf, start, len);
if (ret < 0) { return false; }
size_t offset = 0 + ret;
while (offset + 5 <= len) { // each entry is at least 5 bytes
uint8_t data_len = buf.get8(start + offset);
Z_Data & data_elt = device.data.createFromBuffer(buf, offset + 1, data_len);
(void)data_elt; // avoid compiler warning
offset += data_len + 1;
}
return true;
}
// negative means error
// positive is the segment length
int32_t hydrateSingleDevice(const class SBuffer & buf, size_t start, size_t len) {
uint8_t segment_len = buf.get8(start);
if ((segment_len < 4) || (start + segment_len > len)) {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "invalid segment_len=%d"), segment_len);
return -1;
}
// read shortaddr
uint16_t shortaddr = buf.get16(start + 1);
if (shortaddr >= 0xFFF0) {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "invalid shortaddr=0x%04X"), shortaddr);
return -1;
}
// check if the device exists, if not skip the record
Z_Device & device = zigbee_devices.findShortAddr(shortaddr);
if (&device != nullptr) {
// parse the rest
bool ret = hydrateDeviceData(device, buf, start + 3, segment_len - 3);
if (!ret) { return -1; }
}
return segment_len + 1;
}
// Parse the entire blob
// return true if ok
bool hydrateDevicesDataBlob(const class SBuffer & buf, size_t start, size_t len) {
// read number of devices
uint8_t num_devices = buf.get8(start);
if (num_devices > 0x80) {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "wrong number of devices=%d"), num_devices);
return false;
}
size_t offset = 0;
for (uint32_t cur_dev_num = 0; (cur_dev_num < num_devices) && (offset + 4 <= len); cur_dev_num++) {
int32_t segment_len = hydrateSingleDevice(buf, offset, len);
// advance buffer
if (segment_len <= 0) { return false; }
offset += segment_len;
}
return true;
}
class SBuffer hibernateDeviceData(const struct Z_Device & device, bool log = false) {
SBuffer buf(192);
// If we have zero information about the device, just skip ir
if (device.validLqi() ||
device.validBatteryPercent() ||
device.validLastSeen() ||
!device.data.isEmpty()) {
buf.add8(0x00); // overall length, will be updated later
buf.add16(device.shortaddr);
// device wide data
buf.add8(6); // 6 bytes
buf.add32(device.last_seen);
buf.add8(device.lqi);
buf.add8(device.batterypercent);
for (const auto & data_elt : device.data) {
size_t item_len = data_elt.DataTypeToLength(data_elt.getType());
buf.add8(item_len); // place-holder for length
buf.addBuffer((uint8_t*) &data_elt, item_len);
}
// update overall length
buf.set8(0, buf.len() - 1);
if (log) {
size_t buf_len = buf.len() - 3;
char hex[2*buf_len + 1];
// skip first 3 bytes
ToHex_P(buf.buf(3), buf_len, hex, sizeof(hex));
Response_P(PSTR("{\"" D_PRFX_ZB D_CMND_ZIGBEE_DATA "\":\"ZbData 0x%04X,%s\"}"), device.shortaddr, hex);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_PRFX_ZB D_CMND_ZIGBEE_DATA));
}
}
return buf;
}
void hibernateAllData(void) {
// first prefix is number of devices
uint8_t device_num = zigbee_devices.devicesSize();
for (const auto & device : zigbee_devices.getDevices()) {
// allocte a buffer for a single device
SBuffer buf = hibernateDeviceData(device, true); // log
if (buf.len() > 0) {
// TODO store in EEPROM
}
}
}
#endif // USE_ZIGBEE