Tasmota/lib/IRremoteESP8266-2.7.4/src/ir_LG.cpp

547 lines
18 KiB
C++

// Copyright 2015 Darryl Smith
// Copyright 2015 cheaplin
// Copyright 2017, 2018 David Conran
// Supports:
// Brand: LG, Model: 6711A20083V remote
// Brand: LG, Model: AKB74395308 remote
#include "ir_LG.h"
#include <algorithm>
#include "IRac.h"
#include "IRrecv.h"
#include "IRsend.h"
#include "IRtext.h"
#include "IRutils.h"
using irutils::addBoolToString;
using irutils::addModeToString;
using irutils::addModelToString;
using irutils::addFanToString;
using irutils::addTempToString;
using irutils::setBit;
using irutils::setBits;
// LG decode originally added by Darryl Smith (based on the JVC protocol)
// LG send originally added by https://github.com/chaeplin
// Constants
const uint16_t kLgTick = 50;
const uint16_t kLgHdrMarkTicks = 170;
const uint16_t kLgHdrMark = kLgHdrMarkTicks * kLgTick; // 8500
const uint16_t kLgHdrSpaceTicks = 85;
const uint16_t kLgHdrSpace = kLgHdrSpaceTicks * kLgTick; // 4250
const uint16_t kLgBitMarkTicks = 11;
const uint16_t kLgBitMark = kLgBitMarkTicks * kLgTick; // 550
const uint16_t kLgOneSpaceTicks = 32;
const uint16_t kLgOneSpace = kLgOneSpaceTicks * kLgTick; // 1600
const uint16_t kLgZeroSpaceTicks = 11;
const uint16_t kLgZeroSpace = kLgZeroSpaceTicks * kLgTick; // 550
const uint16_t kLgRptSpaceTicks = 45;
const uint16_t kLgRptSpace = kLgRptSpaceTicks * kLgTick; // 2250
const uint16_t kLgMinGapTicks = 795;
const uint16_t kLgMinGap = kLgMinGapTicks * kLgTick; // 39750
const uint16_t kLgMinMessageLengthTicks = 2161;
const uint32_t kLgMinMessageLength = kLgMinMessageLengthTicks * kLgTick;
const uint16_t kLg32HdrMarkTicks = 90;
const uint16_t kLg32HdrMark = kLg32HdrMarkTicks * kLgTick; // 4500
const uint16_t kLg32HdrSpaceTicks = 89;
const uint16_t kLg32HdrSpace = kLg32HdrSpaceTicks * kLgTick; // 4450
const uint16_t kLg32RptHdrMarkTicks = 179;
const uint16_t kLg32RptHdrMark = kLg32RptHdrMarkTicks * kLgTick; // 8950
const uint16_t kLg2HdrMarkTicks = 64;
const uint16_t kLg2HdrMark = kLg2HdrMarkTicks * kLgTick; // 3200
const uint16_t kLg2HdrSpaceTicks = 197;
const uint16_t kLg2HdrSpace = kLg2HdrSpaceTicks * kLgTick; // 9850
const uint16_t kLg2BitMarkTicks = 10;
const uint16_t kLg2BitMark = kLg2BitMarkTicks * kLgTick; // 500
#if (SEND_LG || DECODE_LG)
// Calculate the rolling 4-bit wide checksum over all of the data.
// Args:
// data: The value to be checksum'ed.
// Returns:
// A 4-bit checksum.
uint8_t calcLGChecksum(uint16_t data) {
return (((data >> 12) + ((data >> 8) & 0xF) + ((data >> 4) & 0xF) +
(data & 0xF)) &
0xF);
}
#endif
#if SEND_LG
// Send an LG formatted message.
//
// Args:
// data: The contents of the message you want to send.
// nbits: The bit size of the message being sent.
// Typically kLgBits or kLg32Bits.
// repeat: The number of times you want the message to be repeated.
//
// Status: Beta / Should be working.
//
// Notes:
// LG has a separate message to indicate a repeat, like NEC does.
// Supports:
// IR Remote models: 6711A20083V
void IRsend::sendLG(uint64_t data, uint16_t nbits, uint16_t repeat) {
uint16_t repeatHeaderMark = 0;
uint8_t duty = kDutyDefault;
if (nbits >= kLg32Bits) {
// LG 32bit protocol is near identical to Samsung except for repeats.
sendSAMSUNG(data, nbits, 0); // Send it as a single Samsung message.
repeatHeaderMark = kLg32RptHdrMark;
duty = 33;
repeat++;
} else {
// LG (28-bit) protocol.
repeatHeaderMark = kLgHdrMark;
sendGeneric(kLgHdrMark, kLgHdrSpace, kLgBitMark, kLgOneSpace, kLgBitMark,
kLgZeroSpace, kLgBitMark, kLgMinGap, kLgMinMessageLength, data,
nbits, 38, true, 0, // Repeats are handled later.
duty);
}
// Repeat
// Protocol has a mandatory repeat-specific code sent after every command.
if (repeat)
sendGeneric(repeatHeaderMark, kLgRptSpace, 0, 0, 0, 0, // No data is sent.
kLgBitMark, kLgMinGap, kLgMinMessageLength, 0, 0, // No data.
38, true, repeat - 1, duty);
}
// Send an LG Variant-2 formatted message.
//
// Args:
// data: The contents of the message you want to send.
// nbits: The bit size of the message being sent.
// Typically kLgBits or kLg32Bits.
// repeat: The number of times you want the message to be repeated.
//
// Status: Beta / Should be working.
//
// Notes:
// LG has a separate message to indicate a repeat, like NEC does.
// Supports:
// IR Remote models: AKB74395308
void IRsend::sendLG2(uint64_t data, uint16_t nbits, uint16_t repeat) {
if (nbits >= kLg32Bits) {
// Let the original routine handle it.
sendLG(data, nbits, repeat); // Send it as a single Samsung message.
return;
}
// LGv2 (28-bit) protocol.
sendGeneric(kLg2HdrMark, kLg2HdrSpace, kLgBitMark, kLgOneSpace, kLgBitMark,
kLgZeroSpace, kLgBitMark, kLgMinGap, kLgMinMessageLength, data,
nbits, 38, true, 0, // Repeats are handled later.
50);
// TODO(crackn): Verify the details of what repeat messages look like.
// Repeat
// Protocol has a mandatory repeat-specific code sent after every command.
if (repeat)
sendGeneric(kLg2HdrMark, kLgRptSpace, 0, 0, 0, 0, // No data is sent.
kLgBitMark, kLgMinGap, kLgMinMessageLength, 0, 0, // No data.
38, true, repeat - 1, 50);
}
// Construct a raw 28-bit LG message code from the supplied address & command.
//
// Args:
// address: The address code.
// command: The command code.
// Returns:
// A raw 28-bit LG message code suitable for sendLG() etc.
//
// Status: BETA / Should work.
//
// Notes:
// e.g. Sequence of bits = address + command + checksum.
uint32_t IRsend::encodeLG(uint16_t address, uint16_t command) {
return ((address << 20) | (command << 4) | calcLGChecksum(command));
}
#endif
#if DECODE_LG
// Decode the supplied LG message.
// LG protocol has a repeat code which is 4 items long.
// Even though the protocol has 28/32 bits of data, only 24/28 bits are
// distinct.
// In transmission order, the 28/32 bits are constructed as follows:
// 8/12 bits of address + 16 bits of command + 4 bits of checksum.
//
// Args:
// results: Ptr to the data to decode and where to store the decode result.
// offset: The starting index to use when attempting to decode the raw data.
// Typically/Defaults to kStartOffset.
// nbits: Nr. of bits to expect in the data portion.
// Typically kLgBits or kLg32Bits.
// strict: Flag to indicate if we strictly adhere to the specification.
// Returns:
// boolean: True if it can decode it, false if it can't.
//
// Status: STABLE / Working.
//
// Note:
// LG 32bit protocol appears near identical to the Samsung protocol.
// They possibly differ on how they repeat and initial HDR mark.
//
// Supports:
// IR Remote models: 6711A20083V, AKB74395308
// Ref:
// https://funembedded.wordpress.com/2014/11/08/ir-remote-control-for-lg-conditioner-using-stm32f302-mcu-on-mbed-platform/
bool IRrecv::decodeLG(decode_results *results, uint16_t offset,
const uint16_t nbits, const bool strict) {
if (nbits >= kLg32Bits) {
if (results->rawlen <= 2 * nbits + 2 * (kHeader + kFooter) - 1 + offset)
return false; // Can't possibly be a valid LG32 message.
} else {
if (results->rawlen <= 2 * nbits + kHeader - 1 + offset)
return false; // Can't possibly be a valid LG message.
}
if (strict && nbits != kLgBits && nbits != kLg32Bits)
return false; // Doesn't comply with expected LG protocol.
uint64_t data = 0;
bool isLg2 = false;
// Header
uint32_t m_tick;
if (matchMark(results->rawbuf[offset], kLgHdrMark)) {
m_tick = results->rawbuf[offset++] * kRawTick / kLgHdrMarkTicks;
} else if (matchMark(results->rawbuf[offset], kLg2HdrMark)) {
m_tick = results->rawbuf[offset++] * kRawTick / kLg2HdrMarkTicks;
isLg2 = true;
} else if (matchMark(results->rawbuf[offset], kLg32HdrMark)) {
m_tick = results->rawbuf[offset++] * kRawTick / kLg32HdrMarkTicks;
} else {
return false;
}
uint32_t s_tick;
if (isLg2) {
if (matchSpace(results->rawbuf[offset], kLg2HdrSpace))
s_tick = results->rawbuf[offset++] * kRawTick / kLg2HdrSpaceTicks;
else
return false;
} else {
if (matchSpace(results->rawbuf[offset], kLgHdrSpace))
s_tick = results->rawbuf[offset++] * kRawTick / kLgHdrSpaceTicks;
else if (matchSpace(results->rawbuf[offset], kLg2HdrSpace))
s_tick = results->rawbuf[offset++] * kRawTick / kLg32HdrSpaceTicks;
else
return false;
}
// Set up the expected tick sizes based on variant.
uint16_t bitmarkticks;
if (isLg2) {
bitmarkticks = kLg2BitMarkTicks;
} else {
bitmarkticks = kLgBitMarkTicks;
}
// Data
match_result_t data_result =
matchData(&(results->rawbuf[offset]), nbits, bitmarkticks * m_tick,
kLgOneSpaceTicks * s_tick, bitmarkticks * m_tick,
kLgZeroSpaceTicks * s_tick, _tolerance, 0);
if (data_result.success == false) return false;
data = data_result.data;
offset += data_result.used;
// Footer
if (!matchMark(results->rawbuf[offset++], bitmarkticks * m_tick))
return false;
if (offset < results->rawlen &&
!matchAtLeast(results->rawbuf[offset], kLgMinGapTicks * s_tick))
return false;
// Repeat
if (nbits >= kLg32Bits) {
// If we are expecting the LG 32-bit protocol, there is always
// a repeat message. So, check for it.
offset++;
if (!matchMark(results->rawbuf[offset++], kLg32RptHdrMarkTicks * m_tick))
return false;
if (!matchSpace(results->rawbuf[offset++], kLgRptSpaceTicks * s_tick))
return false;
if (!matchMark(results->rawbuf[offset++], bitmarkticks * m_tick))
return false;
if (offset < results->rawlen &&
!matchAtLeast(results->rawbuf[offset], kLgMinGapTicks * s_tick))
return false;
}
// Compliance
uint16_t command = (data >> 4) & 0xFFFF; // The 16 bits before the checksum.
if (strict && (data & 0xF) != calcLGChecksum(command))
return false; // The last 4 bits sent are the expected checksum.
// Success
if (isLg2)
results->decode_type = LG2;
else
results->decode_type = LG;
results->bits = nbits;
results->value = data;
results->command = command;
results->address = data >> 20; // The bits before the command.
return true;
}
#endif
// LG A/C Class
// Support for LG-type A/C units.
// Ref:
// https://github.com/arendst/Tasmota/blob/54c2eb283a02e4287640a4595e506bc6eadbd7f2/sonoff/xdrv_05_irremote.ino#L327-438
IRLgAc::IRLgAc(const uint16_t pin, const bool inverted,
const bool use_modulation)
: _irsend(pin, inverted, use_modulation) { this->stateReset(); }
void IRLgAc::stateReset(void) {
setRaw(kLgAcOffCommand);
setModel(lg_ac_remote_model_t::GE6711AR2853M);
}
void IRLgAc::begin(void) { _irsend.begin(); }
#if SEND_LG
void IRLgAc::send(const uint16_t repeat) {
if (this->getPower())
_irsend.send(this->_protocol, this->getRaw(), kLgBits, repeat);
else
// Always send the special Off command if the power is set to off.
// Ref: https://github.com/crankyoldgit/IRremoteESP8266/issues/1008#issuecomment-570763580
_irsend.send(this->_protocol, kLgAcOffCommand, kLgBits, repeat);
}
#endif // SEND_LG
void IRLgAc::setModel(const lg_ac_remote_model_t model) {
switch (model) {
case lg_ac_remote_model_t::AKB75215403:
_protocol = decode_type_t::LG2;
break;
case lg_ac_remote_model_t::GE6711AR2853M:
// FALL THRU
default:
_protocol = decode_type_t::LG;
}
}
lg_ac_remote_model_t IRLgAc::getModel(void) {
switch (_protocol) {
case LG2:
return lg_ac_remote_model_t::AKB75215403;
case LG:
// FALL THRU
default:
return lg_ac_remote_model_t::GE6711AR2853M;
}
}
uint32_t IRLgAc::getRaw(void) {
checksum();
return remote_state;
}
void IRLgAc::setRaw(const uint32_t new_code) {
remote_state = new_code;
_temp = 15; // Ensure there is a "sane" previous temp.
_temp = getTemp();
}
// Calculate the checksum for a given state.
// Args:
// state: The value to calculate the checksum of.
// Returns:
// A uint8_t of the checksum.
uint8_t IRLgAc::calcChecksum(const uint32_t state) {
return calcLGChecksum(state >> 4);
}
// Verify the checksum is valid for a given state.
// Args:
// state: The value to verify the checksum of.
// Returns:
// A boolean.
bool IRLgAc::validChecksum(const uint32_t state) {
return calcChecksum(state) == GETBITS32(state, kLgAcChecksumOffset,
kLgAcChecksumSize);
}
void IRLgAc::checksum(void) {
setBits(&remote_state, kLgAcChecksumOffset, kLgAcChecksumSize,
calcChecksum(remote_state));
}
void IRLgAc::on(void) { setPower(true); }
void IRLgAc::off(void) { setPower(false); }
void IRLgAc::setPower(const bool on) {
setBits(&remote_state, kLgAcPowerOffset, kLgAcPowerSize,
on ? kLgAcPowerOn : kLgAcPowerOff);
if (on)
setTemp(_temp); // Reset the temp if we are on.
else
_setTemp(0); // Off clears the temp.
}
bool IRLgAc::getPower(void) {
return GETBITS32(remote_state, kLgAcPowerOffset, kLgAcPowerSize) ==
kLgAcPowerOn;
}
// Set the temp. (Internal use only)
void IRLgAc::_setTemp(const uint8_t value) {
setBits(&remote_state, kLgAcTempOffset, kLgAcTempSize, value);
}
// Set the temp. in deg C
void IRLgAc::setTemp(const uint8_t degrees) {
uint8_t temp = std::max(kLgAcMinTemp, degrees);
temp = std::min(kLgAcMaxTemp, temp);
_temp = temp;
_setTemp(temp - kLgAcTempAdjust);
}
// Return the set temp. in deg C
uint8_t IRLgAc::getTemp(void) {
if (getPower())
return GETBITS32(remote_state, kLgAcTempOffset, kLgAcTempSize) +
kLgAcTempAdjust;
else
return _temp;
}
// Set the speed of the fan.
void IRLgAc::setFan(const uint8_t speed) {
switch (speed) {
case kLgAcFanAuto:
case kLgAcFanLow:
case kLgAcFanMedium:
case kLgAcFanHigh:
setBits(&remote_state, kLgAcFanOffset, kLgAcFanSize, speed);
break;
default:
setFan(kLgAcFanAuto);
}
}
uint8_t IRLgAc::getFan(void) {
return GETBITS32(remote_state, kLgAcFanOffset, kLgAcFanSize);
}
uint8_t IRLgAc::getMode(void) {
return GETBITS32(remote_state, kLgAcModeOffset, kLgAcModeSize);
}
void IRLgAc::setMode(const uint8_t mode) {
switch (mode) {
case kLgAcAuto:
case kLgAcDry:
case kLgAcHeat:
case kLgAcCool:
case kLgAcFan:
setBits(&remote_state, kLgAcModeOffset, kLgAcModeSize, mode);
break;
default: // If we get an unexpected mode, default to AUTO.
this->setMode(kLgAcAuto);
}
}
// Convert a standard A/C mode into its native mode.
uint8_t IRLgAc::convertMode(const stdAc::opmode_t mode) {
switch (mode) {
case stdAc::opmode_t::kCool: return kLgAcCool;
case stdAc::opmode_t::kHeat: return kLgAcHeat;
case stdAc::opmode_t::kFan: return kLgAcFan;
case stdAc::opmode_t::kDry: return kLgAcDry;
default: return kLgAcAuto;
}
}
// Convert a native mode to it's common equivalent.
stdAc::opmode_t IRLgAc::toCommonMode(const uint8_t mode) {
switch (mode) {
case kLgAcCool: return stdAc::opmode_t::kCool;
case kLgAcHeat: return stdAc::opmode_t::kHeat;
case kLgAcDry: return stdAc::opmode_t::kDry;
case kLgAcFan: return stdAc::opmode_t::kFan;
default: return stdAc::opmode_t::kAuto;
}
}
// Convert a standard A/C Fan speed into its native fan speed.
uint8_t IRLgAc::convertFan(const stdAc::fanspeed_t speed) {
switch (speed) {
case stdAc::fanspeed_t::kMin:
case stdAc::fanspeed_t::kLow: return kLgAcFanLow;
case stdAc::fanspeed_t::kMedium: return kLgAcFanMedium;
case stdAc::fanspeed_t::kHigh:
case stdAc::fanspeed_t::kMax: return kHitachiAcFanHigh;
default: return kHitachiAcFanAuto;
}
}
// Convert a native fan speed to it's common equivalent.
stdAc::fanspeed_t IRLgAc::toCommonFanSpeed(const uint8_t speed) {
switch (speed) {
case kLgAcFanHigh: return stdAc::fanspeed_t::kMax;
case kLgAcFanMedium: return stdAc::fanspeed_t::kMedium;
case kLgAcFanLow: return stdAc::fanspeed_t::kLow;
default: return stdAc::fanspeed_t::kAuto;
}
}
// Convert the A/C state to it's common equivalent.
stdAc::state_t IRLgAc::toCommon(void) {
stdAc::state_t result;
result.protocol = decode_type_t::LG;
result.model = this->getModel();
result.power = this->getPower();
result.mode = this->toCommonMode(this->getMode());
result.celsius = true;
result.degrees = this->getTemp();
result.fanspeed = this->toCommonFanSpeed(this->getFan());
// Not supported.
result.swingv = stdAc::swingv_t::kOff;
result.swingh = stdAc::swingh_t::kOff;
result.quiet = false;
result.turbo = false;
result.light = false;
result.filter = false;
result.clean = false;
result.econo = false;
result.beep = false;
result.sleep = -1;
result.clock = -1;
return result;
}
// Convert the internal state into a human readable string.
String IRLgAc::toString(void) {
String result = "";
result.reserve(80); // Reserve some heap for the string to reduce fragging.
result += addModelToString(_protocol, getModel(), false);
result += addBoolToString(getPower(), kPowerStr);
if (getPower()) { // Only display the rest if is in power on state.
result += addModeToString(getMode(), kLgAcAuto, kLgAcCool,
kLgAcHeat, kLgAcDry, kLgAcFan);
result += addTempToString(getTemp());
result += addFanToString(getFan(), kLgAcFanHigh, kLgAcFanLow,
kLgAcFanAuto, kLgAcFanAuto, kLgAcFanMedium);
}
return result;
}
bool IRLgAc::isValidLgAc(void) {
return validChecksum(remote_state) &&
(GETBITS32(remote_state, kLgAcSignatureOffset, kLgAcSignatureSize) ==
kLgAcSignature);
}