Tasmota/sonoff/xsns_48_chirp.ino

482 lines
20 KiB
C++

/*
xsns_48_chirp.ino - soil moisture sensor support for Sonoff-Tasmota
Copyright (C) 2019 Theo Arends & Christian Baars
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
--------------------------------------------------------------------------------------------
Version Date Action Description
--------------------------------------------------------------------------------------------
---
1.0.0.0 20190608 started - further development by Christian Baars - https://github.com/Staars/Sonoff-Tasmota
forked - from arendst/tasmota - https://github.com/arendst/Sonoff-Tasmota
base - code base from arendst and - https://github.com/Miceuz/i2c-moisture-sensor
*/
#ifdef USE_I2C
#ifdef USE_CHIRP
/*********************************************************************************************\
* CHIRP - Soil moisture sensor
*
* I2C Address: 0x20 - standard address, is changeable
\*********************************************************************************************/
#define XSNS_48 48
#define CHIRP_MAX_SENSOR_COUNT 3 // 127 is expectectd to be the max number
#define CHIRP_ADDR_STANDARD 0x20 // standard address
/*********************************************************************************************\
* constants
\*********************************************************************************************/
#define D_CMND_CHIRP "CHIRP"
const char S_JSON_CHIRP_COMMAND_NVALUE[] PROGMEM = "{\"" D_CMND_CHIRP "%s\":%d}";
const char S_JSON_CHIRP_COMMAND[] PROGMEM = "{\"" D_CMND_CHIRP "%s\"}";
const char kCHIRP_Commands[] PROGMEM = "Select|Set|Scan|Reset|Sleep|Wake";
const char kChirpTypes[] PROGMEM = "CHIRP";
/*********************************************************************************************\
* enumerations
\*********************************************************************************************/
enum CHIRP_Commands { // commands useable in console or rules
CMND_CHIRP_SELECT, // select active sensor by I2C address, makes only sense for multiple sensors
CMND_CHIRP_SET, // set new I2C address for selected/active sensor, will reset
CMND_CHIRP_SCAN, // scan the I2C bus for one or more chirp sensors
CMND_CHIRP_RESET, // CHIRPReset, a fresh and default restart
CMND_CHIRP_SLEEP, // put sensor to sleep
CMND_CHIRP_WAKE }; // wake sensor by reading firmware version
/*********************************************************************************************\
* command defines
\*********************************************************************************************/
#define CHIRP_GET_CAPACITANCE 0x00 // 16 bit, read
#define CHIRP_SET_ADDRESS 0x01 // 8 bit, write
#define CHIRP_GET_ADDRESS 0x02 // 8 bit, read
#define CHIRP_MEASURE_LIGHT 0x03 // no value, write, -> initiate measurement, then wait at least 3 seconds
#define CHIRP_GET_LIGHT 0x04 // 16 bit, read, -> higher value means darker environment, noisy data, not calibrated
#define CHIRP_GET_TEMPERATURE 0x05 // 16 bit, read
#define CHIRP_RESET 0x06 // no value, write
#define CHIRP_GET_VERSION 0x07 // 8 bit, read, -> 22 means 2.2
#define CHIRP_SLEEP 0x08 // no value, write
#define CHIRP_GET_BUSY 0x09 // 8 bit, read, -> 1 = busy, 0 = otherwise
/*********************************************************************************************\
* helper function
\*********************************************************************************************/
bool I2cWriteReg(uint8_t addr, uint8_t reg)
{
return I2cWrite(addr, reg, 0, 0);
}
/********************************************************************************************/
// globals
uint8_t chirp_current = 0; // current selected/active sensor
uint8_t chirp_found_sensors = 0; // number of found sensors
char chirp_name[7];
uint8_t chirp_next_job = 0; //0=reset, 1=auto-wake, 2=moisture+temperature, 3=light, 4 = pause; 5 = TELE done
uint32_t chirp_timeout_count = 0; //is handled every second, so value is equal to seconds (it is a slow sensor)
#pragma pack(1)
struct ChirpSensor_t{
uint16_t moisture = 0; // shall hold post-processed data, if implemented
uint16_t light = 0; // light level, maybe already postprocessed depending on the firmware
int16_t temperature= 0; // temperature in degrees CELSIUS * 10
uint8_t version = 0; // firmware-version
uint8_t address:7; // we need only 7bit so...
uint8_t explicitSleep:1; // there is a free bit to play with ;)
};
#pragma pack()
ChirpSensor_t chirp_sensor[CHIRP_MAX_SENSOR_COUNT]; // should be 8 bytes per sensor slot
/********************************************************************************************/
void ChirpReset(uint8_t addr) {
I2cWriteReg(addr, CHIRP_RESET);
}
/********************************************************************************************/
void ChirpResetAll(void) {
for (uint32_t i = 0; i < chirp_found_sensors; i++) {
if (chirp_sensor[i].version) {
ChirpReset(chirp_sensor[i].address);
}
}
}
/********************************************************************************************/
void ChirpClockSet() { // set I2C for this slow sensor
Wire.setClockStretchLimit(4000);
Wire.setClock(50000);
}
/********************************************************************************************/
void ChirpSleep(uint8_t addr) {
I2cWriteReg(addr, CHIRP_SLEEP);
}
/********************************************************************************************/
// void ChirpSleepAll(void) {
// for (uint32_t i = 0; i < chirp_found_sensors; i++) {
// if (chirp_sensor[i].version) {
// ChirpSleep(chirp_sensor[i].address);
// }
// }
// }
// /********************************************************************************************/
// void ChirpAutoWakeAll(void) {
// for (uint32_t i = 0; i < chirp_found_sensors; i++) {
// if (chirp_sensor[i].version && !chirp_sensor[i].explicitSleep) {
// ChirpReadVersion(chirp_sensor[i].address);
// }
// }
// }
/********************************************************************************************/
void ChirpSelect(uint8_t sensor) {
if(sensor < chirp_found_sensors) { //TODO: show some infos
chirp_current = sensor;
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: Sensor %u now active."), chirp_current);
}
if (sensor == 255) {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: Sensor %u active at address 0x%x."), chirp_current, chirp_sensor[chirp_current].address);
}
}
/********************************************************************************************/
bool ChirpMeasureLight(void) {
for (uint32_t i = 0; i < chirp_found_sensors; i++) {
if (chirp_sensor[i].version && !chirp_sensor[i].explicitSleep) {
uint8_t lightReady = I2cRead8(chirp_sensor[i].address, CHIRP_GET_BUSY);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: busy status for light for sensor %u"), lightReady);
if (lightReady == 1) {
return false; // a measurement is still in progress, we stop everything and come back in the next loop = 1 second
}
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: init measure light for sensor %u"), i);
I2cWriteReg(chirp_sensor[i].address, CHIRP_MEASURE_LIGHT);
}
}
return true; // we could read all values (maybe at different times, but that does not really matter) and consider this job finished
}
/********************************************************************************************/
void ChirpReadCapTemp() { // no timeout needed for both measurements, so we do it at once
for (uint32_t i = 0; i < chirp_found_sensors; i++) {
if (chirp_sensor[i].version && !chirp_sensor[i].explicitSleep) {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: now really read CapTemp for sensor at address 0x%x"), chirp_sensor[i].address);
chirp_sensor[i].moisture = I2cRead16(chirp_sensor[i].address, CHIRP_GET_CAPACITANCE);
chirp_sensor[i].temperature = I2cRead16(chirp_sensor[i].address, CHIRP_GET_TEMPERATURE);
}
}
}
/********************************************************************************************/
bool ChirpReadLight() { // sophisticated calculations could be done here
bool success = false;
for (uint32_t i = 0; i < chirp_found_sensors; i++) {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: will read light for sensor %u"), i);
if (chirp_sensor[i].version) {
if (I2cValidRead16(&chirp_sensor[i].light, chirp_sensor[i].address, CHIRP_GET_LIGHT)){
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: light read success"));
success = true;
}
if(!chirp_sensor[i].explicitSleep){ success = true;}
}
}
return success;
}
/********************************************************************************************/
uint8_t ChirpReadVersion(uint8_t addr) {
return (I2cRead8(addr, CHIRP_GET_VERSION));
}
/********************************************************************************************/
bool ChirpSet(uint8_t addr) {
if(addr < 128){
if (I2cWrite8(chirp_sensor[chirp_current].address, CHIRP_SET_ADDRESS, addr)){
I2cWrite8(chirp_sensor[chirp_current].address, CHIRP_SET_ADDRESS, addr); // two calls are needed for sensor firmware version 2.6
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: Wrote adress %u "), addr);
ChirpReset(chirp_sensor[chirp_current].address);
chirp_sensor[chirp_current].address = addr;
return true;
}
}
return false;
}
/********************************************************************************************/
bool ChirpScan() {
ChirpClockSet();
chirp_found_sensors = 0;
for (uint8_t address = 1; address <= 127; address++) {
chirp_sensor[chirp_found_sensors].version = 0;
chirp_sensor[chirp_found_sensors].version = ChirpReadVersion(address);
delay(2);
chirp_sensor[chirp_found_sensors].version = ChirpReadVersion(address);
if(chirp_sensor[chirp_found_sensors].version > 0) {
AddLog_P2(LOG_LEVEL_DEBUG, S_LOG_I2C_FOUND_AT, "CHIRP:", address);
if(chirp_found_sensors<CHIRP_MAX_SENSOR_COUNT){
chirp_sensor[chirp_found_sensors].address = address; // push next sensor, as long as there is space in the array
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: fw %u"), chirp_sensor[chirp_found_sensors].version);
}
chirp_found_sensors++;
}
}
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Found %u CHIRP sensor(s)."), chirp_found_sensors);
if (chirp_found_sensors == 0) {return false;}
else {return true;}
}
/********************************************************************************************/
void ChirpDetect(void)
{
if (chirp_next_job > 0) {
return;
}
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: scan will start ..."));
if (ChirpScan()) {
uint8_t chirp_model = 0; // TODO: ??
GetTextIndexed(chirp_name, sizeof(chirp_name), chirp_model, kChirpTypes);
}
}
/********************************************************************************************/
void ChirpEverySecond(void)
{
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: every second"));
if(chirp_timeout_count == 0) { //countdown complete, now do something
switch(chirp_next_job) {
case 0: //this should only be called after driver initialization
AddLog_P2(LOG_LEVEL_DEBUG,PSTR( "CHIRP: reset all"));
ChirpResetAll();
chirp_timeout_count = 1;
chirp_next_job++;
break;
case 1: // auto-sleep-wake seems to expose a fundamental I2C-problem of the sensor and is deactivated
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: auto-wake all"));
// ChirpAutoWakeAll(); // this is only a wake-up call at the start of next read cycle
chirp_next_job++; // go on, next job should start in a second
break;
case 2:
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: call CapTemp twice"));
ChirpReadCapTemp(); // it is reported to be useful, to read twice, because otherwise old values are received
ChirpReadCapTemp(); // this is the "real" read call, we simply overwrite the existing values
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: call measure light"));
ChirpMeasureLight(); // prepare the next step -> initiate light read
chirp_timeout_count = 2; // wait 3 seconds, no need to hurry ...
chirp_next_job++;
break;
case 3:
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: call read light"));
if (ChirpReadLight()){ // now read light and if successful continue, otherwise come back in a second and try again
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: auto-sleep all"));
// ChirpSleepAll(); // let all sensors auto-sleep
chirp_next_job++;
}
break;
case 4:
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: paused, waiting for TELE"));
break;
case 5:
if (Settings.tele_period > 9){
chirp_timeout_count = Settings.tele_period - 10; // sync it with the TELEPERIOD, we need about up to 10 seconds to measure, depending on the light level
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("CHIRP: timeout: %u, tele: %u"), chirp_timeout_count, Settings.tele_period);
}
chirp_next_job = 1; // back to step 1
break;
}
}
else {
chirp_timeout_count--; // count down
}
}
/********************************************************************************************/
// normaly in i18n.h
#define D_JSON_MOISTURE "Moisture"
#ifdef USE_WEBSERVER
// {s} = <tr><th>, {m} = </th><td>, {e} = </td></tr>
const char HTTP_SNS_MOISTURE[] PROGMEM = "{s} " D_JSON_MOISTURE ": {m}%s %{e}";
const char HTTP_SNS_CHIRPVER[] PROGMEM = "{s} CHIRP-sensor %u at address: {m}0x%x{e}"
"{s} FW-version: {m}%s {e}"; ;
const char HTTP_SNS_CHIRPSLEEP[] PROGMEM = "{s} {m} is sleeping ...{e}";
#endif // USE_WEBSERVER
/********************************************************************************************/
void ChirpShow(bool json)
{
for (uint32_t i = 0; i < chirp_found_sensors; i++) {
if (chirp_sensor[i].version) {
// convert double values to string
char str_moisture[33];
dtostrfd(chirp_sensor[i].moisture, 0, str_moisture);
char str_temperature[33];
double t_temperature = ((double) chirp_sensor[i].temperature )/10.0;
dtostrfd(t_temperature, Settings.flag2.temperature_resolution, str_temperature);
char str_light[33];
dtostrfd(chirp_sensor[i].light, 0, str_light);
char str_version[33];
dtostrfd(chirp_sensor[i].version, 0, str_version);
if (json) {
if(!chirp_sensor[i].explicitSleep){
ResponseAppend_P(PSTR(",\"%s%u\":{\"" D_JSON_MOISTURE "\":%s,\"" D_JSON_TEMPERATURE "\":%s,\"" D_JSON_ILLUMINANCE "\":\"%s}"),
chirp_name, i, str_moisture, str_temperature, str_light);}
else {
ResponseAppend_P(PSTR(",\"%s%u\":{\"sleeping\"}"),
chirp_name, i);
}
#ifdef USE_DOMOTICZ
if (0 == tele_period) {
DomoticzTempHumSensor(str_temperature, str_moisture);
DomoticzSensor(DZ_ILLUMINANCE,chirp_sensor[i].light);
}
#endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_CHIRPVER, i, chirp_sensor[i].address, str_version);
if (chirp_sensor[i].explicitSleep){
WSContentSend_PD(HTTP_SNS_CHIRPSLEEP);
}
else {
WSContentSend_PD(HTTP_SNS_MOISTURE, str_moisture);
WSContentSend_PD(HTTP_SNS_ILLUMINANCE, " ", chirp_sensor[i].light);
WSContentSend_PD(HTTP_SNS_TEMP, " ",str_temperature, TempUnit());
}
#endif // USE_WEBSERVER
}
}
}
}
/*********************************************************************************************\
* check the Chirp commands
\*********************************************************************************************/
bool ChirpCmd(void) {
char command[CMDSZ];
bool serviced = true;
uint8_t disp_len = strlen(D_CMND_CHIRP);
if (!strncasecmp_P(XdrvMailbox.topic, PSTR(D_CMND_CHIRP), disp_len)) { // prefix
int command_code = GetCommandCode(command, sizeof(command), XdrvMailbox.topic + disp_len, kCHIRP_Commands);
switch (command_code) {
case CMND_CHIRP_SELECT:
case CMND_CHIRP_SET:
if (XdrvMailbox.data_len > 0) {
if (command_code == CMND_CHIRP_SELECT) { ChirpSelect(XdrvMailbox.payload); } //select active sensor, i.e. for wake, sleep or reset
if (command_code == CMND_CHIRP_SET) { ChirpSet((uint8_t)XdrvMailbox.payload); } //set and change I2C-address of selected sensor
Response_P(S_JSON_CHIRP_COMMAND_NVALUE, command, XdrvMailbox.payload);
}
else {
if (command_code == CMND_CHIRP_SELECT) { ChirpSelect(255); } //show active sensor
Response_P(S_JSON_CHIRP_COMMAND, command, XdrvMailbox.payload);
}
break;
case CMND_CHIRP_SCAN:
case CMND_CHIRP_SLEEP:
case CMND_CHIRP_WAKE:
case CMND_CHIRP_RESET:
if (command_code == CMND_CHIRP_SCAN) { chirp_next_job = 0;
ChirpDetect(); } // this will re-init the sensor array
if (command_code == CMND_CHIRP_SLEEP) { chirp_sensor[chirp_current].explicitSleep = true; // we do not touch this sensor in the read functions
ChirpSleep(chirp_sensor[chirp_current].address); }
if (command_code == CMND_CHIRP_WAKE) { chirp_sensor[chirp_current].explicitSleep = false; // back in action
ChirpReadVersion(chirp_sensor[chirp_current].address); } // just use read version as wakeup call
if (command_code == CMND_CHIRP_RESET) { ChirpReset(chirp_sensor[chirp_current].address); }
Response_P(S_JSON_CHIRP_COMMAND, command, XdrvMailbox.payload);
break;
default:
// else for Unknown command
serviced = false;
break;
}
}
return serviced;
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xsns48(uint8_t function)
{
bool result = false;
if (i2c_flg) {
switch (function) {
case FUNC_INIT:
ChirpDetect(); // We can call CHIRPSCAN later to re-detect
break;
case FUNC_EVERY_SECOND:
if(chirp_found_sensors > 0){
ChirpEverySecond();
}
break;
case FUNC_COMMAND:
result = ChirpCmd();
break;
case FUNC_JSON_APPEND:
ChirpShow(1);
chirp_next_job = 5; // TELE done, now compute time for next measure cycle
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
ChirpShow(0);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_CHIRP
#endif // USE_I2C