Tasmota/tasmota/tasmota_xnrg_energy/xnrg_29_modbus.ino

814 lines
35 KiB
C++

/*
xnrg_29_modbus.ino - Generic Modbus energy meter support for Tasmota
Copyright (C) 2022 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ENERGY_SENSOR
#ifdef USE_MODBUS_ENERGY
/*********************************************************************************************\
* Generic Modbus energy meter
*
* Using a rule file called modbus allows to easy configure modbus energy monitor devices up to three phases.
*
* Value pair description:
* {"Name":"SDM230","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":0,"Current":6,"Power":12,"ApparentPower":18,"ReactivePower":24,"Factor":30,"Frequency":70,"Total":342,"ExportActive":0x004A}
* Modbus config parameters:
* Name - Name of energy monitoring device
* Baud - Baudrate of device modbus interface - optional. default is 9600
* Config - Serial config parameters like 8N1 - 8 databits, No parity, 1 stop bit
* Address - Modbus device address entered as decimal (1) or hexadecimal (0x01)) - optional default = 1
* Function - Modbus function code to access two registers - optional. default = 4
* Tasmota default embedded register names:
* Voltage - Voltage register entered as decimal or hexadecimal for one phase (0x0000) or up to three phases ([0x0000,0x0002,0x0004]) or
* Additional defined parameters
* Value pair description:
* {"R":0,"T":0,"M":1}
* R - Modbus register entered as decimal or hexadecimal for one phase (0x0160) or up to three phases ([0x0160,0x0162,0x0164])
* T - Datatype - optional. default is 0 - float:
* 0 - float
* 1 = 2-byte signed
* 2 = 4-byte signed
* 3 = 2-byte unsigned
* 4 = 4-byte unsigned
* M - Divider allowing to devide the read register by 1, 10, 100, 1000 etc. - optional. default = 1
* Current - Current register entered as decimal or hexadecimal for one phase (0x0006) or up to three phases ([0x0006,0x0008,0x000A]) or
* See additional defines like voltage.
* Power - Active power register entered as decimal or hexadecimal for one phase (0x000C) or up to three phases ([0x000C,0x000E,0x0010]) or
* See additional defines like voltage.
* ApparentPower - Apparent power register entered as decimal or hexadecimal for one phase (0x000C) or up to three phases ([0x000C,0x000E,0x0010]) or
* See additional defines like voltage.
* ReactivePower - Reactive power register entered as decimal or hexadecimal for one phase (0x0018) or up to three phases ([0x0018,0x001A,0x001C]) or
* See additional defines like voltage.
* Factor - Power factor register entered as decimal or hexadecimal for one phase (0x001E) or up to three phases ([0x001E,0x0020,0x0022]) or
* See additional defines like voltage.
* Frequency - Frequency register entered as decimal or hexadecimal for one phase (0x0046) or up to three phases ([0x0046,0x0048,0x004A]) or
* See additional defines like voltage.
* Total - Total active energy register entered as decimal or hexadecimal for one phase (0x0156) or up to three phases ([0x015A,0x015C,0x015E]) or
* See additional defines like voltage.
* ExportActive - Export active energy register entered as decimal or hexadecimal for one phase (0x0160) or up to three phases ([0x0160,0x0162,0x0164]) or
* See additional defines like voltage.
* Optional user defined registers:
* User - Additional user defined registers
* Value pair description:
* "User":{"R":0x0024,"T":0,"M":1,"J":"PhaseAngle","G":"Phase Angle","U":"Deg","D":2}
* R - Modbus register entered as decimal or hexadecimal for one phase (0x0160) or up to three phases ([0x0160,0x0162,0x0164])
* T - Datatype - optional. default is 0 - float:
* 0 - float
* 1 = 2-byte signed
* 2 = 4-byte signed
* 3 = 2-byte unsigned
* 4 = 4-byte unsigned
* M - Divider allowing to devide the read register by 1, 10, 100, 1000 etc. - optional. default = 1
* J - JSON register name (preferrably without spaces like "PhaseAngle")
* G - GUI register name
* U - GUI unit name
* D - Number of decimals for floating point presentation (0 to 20) or a code correspondig to Tasmota resolution command settings:
* 21 - VoltRes (V)
* 22 - AmpRes (A)
* 23 - WattRes (W, VA, VAr)
* 24 - EnergyRes (kWh, kVAh, kVArh)
* 25 - FreqRes (Hz)
* 26 - TempRes (C, F)
* 27 - HumRes (%)
* 28 - PressRes (hPa, mmHg)
* 29 - WeightRes (Kg)
*
* Example using default Energy registers:
* rule3 on file#modbus do {"Name":"SDM230","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":0,"Current":6,"Power":12,"ApparentPower":18,"ReactivePower":24,"Factor":30,"Frequency":70,"Total":342,"ExportActive":0x004A} endon
* rule3 on file#modbus do {"Name":"SDM230 with hex registers","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":0x0000,"Current":0x0006,"Power":0x000C,"ApparentPower":0x0012,"ReactivePower":0x0018,"Factor":0x001E,"Frequency":0x0046,"Total":0x0156,"ExportActive":0x004A} endon
* rule3 on file#modbus do {"Name":"DDSU666","Baud":9600,"Config":8N1","Address":1,"Function":4,"Voltage":0x2000,"Current":0x2002,"Power":0x2004,"ReactivePower":0x2006,"Factor":0x200A,"Frequency":0x200E,"Total":0x4000,"ExportActive":0x400A} endon
*
* Example using default Energy registers and some user defined registers:
* rule3 on file#modbus do {"Name":"SDM72","Baud":9600,"Config":8N1","Address":0x01,"Function":0x04,"Power":0x0034,"Total":0x0156,"ExportActive":0x004A,"User":[{"R":0x0502,"J":"ImportActive","G":"Import Active","U":"kWh","D":24},{"R":0x0502,"J":"ExportPower","G":"Export Power","U":"W","D":23},{"R":0x0500,"J":"ImportPower","G":"Import Power","U":"W","D":23}]} endon
* rule3 on file#modbus do {"Name":"SDM120","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":0,"Current":6,"Power":12,"ApparentPower":18,"ReactivePower":24,"Factor":30,"Frequency":70,"Total":342,"ExportActive":0x004A,"User":[{"R":0x0048,"J":"ImportActive","G":"Import Active","U":"kWh","D":24},{"R":0x004E,"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":24},{"R":0x004C,"J":"ImportReactive","G":"Import Reactive","U":"kVArh","D":24},{"R":0x0024,"J":"PhaseAngle","G":"Phase Angle","U":"Deg","D":2}]} endon
* rule3 on file#modbus do {"Name":"SDM230 with two user registers","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":0,"Current":6,"Power":12,"ApparentPower":18,"ReactivePower":24,"Factor":30,"Frequency":70,"Total":342,"ExportActive":0x004A,"User":[{"R":0x004E,"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":3},{"R":0x0024,"J":"PhaseAngle","G":"Phase Angle","U":"Deg","D":2}]} endon
* rule3 on file#modbus do {"Name":"SDM630","Baud":9600,"Config":8N1","Address":1,"Function":4,"Voltage":[0,2,4],"Current":[6,8,10],"Power":[12,14,16],"ApparentPower":[18,20,22],"ReactivePower":[24,26,28],"Factor":[30,32,34],"Frequency":70,"Total":342,"ExportActive":[352,354,356],"User":{"R":[346,348,350],"J":"ImportActive","G":"Import Active","U":"kWh","D":24}} endon
*
* Note:
* - To enter long rules using the serial console and solve error "Serial buffer overrun" you might need to enlarge the serial input buffer with command serialbuffer 800
* - Changes to rule file are only executed on restart
*
* Restrictions:
* - Supports Modbus floating point registers
* - Max number of user defined registers is defined by one rule buffer (511 characters uncompressed, around 800 characters compressed)
*
* To do:
* - Support all three rule slots
* - Support other modbus register like integers
*
* Test set:
* rule3 on file#modbus do {"Name":"SDM230 test1","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":[0,0,0],"Current":[6,6,6],"Power":[12,12,12],"ApparentPower":[18,18,18],"ReactivePower":[24,24,24],"Factor":[30,30,30],"Frequency":[70,70,70],"Total":[342,342,342]} endon
* rule3 on file#modbus do {"Name":"SDM230 test2","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":[0,0,0],"Current":[6,6,6],"Power":[12,12,12],"ApparentPower":[18,18,18],"ReactivePower":[24,24,24],"Factor":[30,30,30],"Frequency":70,"Total":[342,342,342]} endon
* rule3 on file#modbus do {"Name":"SDM230 test3","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":0,"Current":[6,6,6],"Power":[12,12,12],"ApparentPower":[18,18,18],"ReactivePower":[24,24,24],"Factor":[30,30,30],"Frequency":70,"Total":[342,342,342]} endon
* rule3 on file#modbus do {"Name":"SDM230 test4","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":0,"Current":6,"Power":12,"ApparentPower":18,"ReactivePower":24,"Factor":30,"Frequency":70,"Total":342,"ExportActive":0x004A,"User":[{"R":0x004E,"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":24},{"R":0x0024,"J":"PhaseAngle","G":"Phase Angle","U":"Deg","D":2}]} endon
* rule3 on file#modbus do {"Name":"SDM230 test5","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":[0,0,0],"Current":6,"Power":12,"ApparentPower":18,"ReactivePower":24,"Factor":30,"Frequency":70,"Total":342,"ExportActive":0x004A,"User":[{"R":[0x004E,0x004E,0x004E],"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":3},{"R":0x0024,"J":"PhaseAngle","G":"Phase Angle","U":"Deg","D":2}]} endon
* rule3 on file#modbus do {"Name":"SDM120 test1","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":0,"Current":6,"Power":12,"ApparentPower":18,"ReactivePower":24,"Factor":30,"Frequency":70,"Total":342,"ExportActive":0x004A,"User":[{"R":0x0048,"J":"ImportActive","G":"Import Active","U":"kWh","D":24},{"R":0x004E,"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":24},{"R":0x004C,"J":"ImportReactive","G":"Import Reactive","U":"kVArh","D":24},{"R":0x0024,"J":"PhaseAngle","G":"Phase Angle","U":"Deg","D":2}]} endon
*
* rule3 on file#modbus do {"Name":"SDM230 test6","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":{"R":0,"T":0,"M":1},"Current":{"R":6,"T":0,"M":1},"Power":{"R":12,"T":0,"M":1},"Frequency":70,"Total":342} endon
* rule3 on file#modbus do {"Name":"SDM230 test6","Baud":2400,"Config":8N1","Address":1,"Function":4,"Voltage":{"R":0,"T":0,"M":1},"Current":{"R":6,"T":0,"M":1},"Power":{"R":12,"T":0,"M":1},"Frequency":70,"Total":342,"User":{"R":0x0048,"T":0,"M":10,"J":"ImportActive","G":"Import Active","U":"kWh","D":24}} endon
\*********************************************************************************************/
#define XNRG_29 29
#define ENERGY_MODBUS_SPEED 9600 // Default Modbus baudrate
#define ENERGY_MODBUS_CONFIG TS_SERIAL_8N1 // Default Modbus serial configuration
#define ENERGY_MODBUS_ADDR 1 // Default Modbus device_address
#define ENERGY_MODBUS_FUNC 0x04 // Default Modbus function code
#define ENERGY_MODBUS_DATATYPE 0 // Default Modbus datatype is 4-byte float
#define ENERGY_MODBUS_DIVIDER 1 // Default Modbus data divider
#define ENERGY_MODBUS_DECIMALS 0 // Default user decimal resolution
#define ENERGY_MODBUS_TICKER // Enable for ESP8266 when using softwareserial solving most modbus serial retries
//#define ENERGY_MODBUS_DEBUG
//#define ENERGY_MODBUS_DEBUG_SHOW
const uint16_t nrg_mbs_reg_not_used = 1; // Odd number 1 is unused register
enum EnergyModbusDataType { NRG_DT_FLOAT, // 4-byte float
NRG_DT_S16, // 2-byte signed
NRG_DT_S32, // 4-byte signed
NRG_DT_U16, // 2-byte unsigned
NRG_DT_U32, // 4-byte unsigned
NRG_DT_MAX };
enum EnergyModbusResolutions { NRG_RES_VOLTAGE = 21, // V
NRG_RES_CURRENT, // A
NRG_RES_POWER, // W, VA, VAr
NRG_RES_ENERGY, // kWh, kVAh, kVArh
NRG_RES_FREQUENCY, // Hz
NRG_RES_TEMPERATURE, // C, F
NRG_RES_HUMIDITY, // %
NRG_RES_PRESSURE, // hPa, mmHg
NRG_RES_WEIGHT }; // Kg
enum EnergyModbusRegisters { NRG_MBS_VOLTAGE,
NRG_MBS_CURRENT,
NRG_MBS_ACTIVE_POWER,
NRG_MBS_APPARENT_POWER,
NRG_MBS_REACTIVE_POWER,
NRG_MBS_POWER_FACTOR,
NRG_MBS_FREQUENCY,
NRG_MBS_TOTAL_ENERGY,
NRG_MBS_EXPORT_ACTIVE_ENERGY,
NRG_MBS_MAX_REGS };
const char kEnergyModbusValues[] PROGMEM = D_JSON_VOLTAGE "|" // Voltage
D_JSON_CURRENT "|" // Current
D_JSON_POWERUSAGE "|" // Power
D_JSON_APPARENT_POWERUSAGE "|" // ApparentPower
D_JSON_REACTIVE_POWERUSAGE "|" // ReactivePower
D_JSON_POWERFACTOR "|" // Factor
D_JSON_FREQUENCY "|" // Frequency
D_JSON_TOTAL "|" // Total
D_JSON_EXPORT_ACTIVE "|" // ExportActive
;
#include <TasmotaModbus.h>
TasmotaModbus *EnergyModbus;
#ifdef ENERGY_MODBUS_TICKER
#include <Ticker.h>
Ticker ticker_energy_modbus;
#endif // ENERGY_MODBUS_TICKER
struct NRGMBSPARAM {
uint32_t serial_bps;
uint32_t serial_config;
uint8_t device_address;
uint8_t function;
uint8_t total_regs;
uint8_t user_adds;
uint8_t phase;
uint8_t state;
uint8_t retry;
bool mutex;
} NrgMbsParam;
typedef struct NRGMBSREGISTER {
uint16_t address[ENERGY_MAX_PHASES];
uint16_t divider;
uint32_t datatype;
} NrgMbsRegister_t;
NrgMbsRegister_t *NrgMbsReg = nullptr;
typedef struct NRGMBSUSER {
float data[ENERGY_MAX_PHASES];
char* json_name;
char* gui_name;
char* gui_unit;
uint32_t resolution;
} NrgMbsUser_t;
NrgMbsUser_t *NrgMbsUser = nullptr;
/*********************************************************************************************/
void EnergyModbusLoop(void) {
#ifdef ENERGY_MODBUS_TICKER
if (NrgMbsParam.mutex || TasmotaGlobal.ota_state_flag) { return; }
#else
if (NrgMbsParam.mutex) { return; }
#endif // ENERGY_MODBUS_TICKER
NrgMbsParam.mutex = 1;
uint32_t register_count;
bool data_ready = EnergyModbus->ReceiveReady();
if (data_ready) {
uint8_t buffer[15]; // At least 5 + (2 * 2) = 9
register_count = 2 - (NrgMbsReg[NrgMbsParam.state].datatype & 1);
uint32_t error = EnergyModbus->ReceiveBuffer(buffer, register_count);
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("NRG: Modbus register %d, phase %d, rcvd %*_H"),
NrgMbsParam.state, NrgMbsParam.phase, EnergyModbus->ReceiveCount(), buffer);
if (error) {
/* Return codes from TasmotaModbus.h:
* 0 = No error
* 1 = Illegal Function,
* 2 = Illegal Data Address,
* 3 = Illegal Data Value,
* 4 = Slave Error
* 5 = Acknowledge but not finished (no error)
* 6 = Slave Busy
* 7 = Not enough minimal data received
* 8 = Memory Parity error
* 9 = Crc error
* 10 = Gateway Path Unavailable
* 11 = Gateway Target device failed to respond
* 12 = Wrong number of registers
* 13 = Register data not specified
* 14 = To many registers
*/
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Modbus error %d"), error);
} else {
Energy.data_valid[NrgMbsParam.phase] = 0;
// 0 1 2 3 4 5 6 7 8
// SA FC BC Fh Fl Sh Sl Cl Ch
// 01 04 04 43 66 33 34 1B 38 = 230.2 Volt
float value;
switch (NrgMbsReg[NrgMbsParam.state].datatype) {
case NRG_DT_FLOAT: {
((uint8_t*)&value)[3] = buffer[3]; // Get float values
((uint8_t*)&value)[2] = buffer[4];
((uint8_t*)&value)[1] = buffer[5];
((uint8_t*)&value)[0] = buffer[6];
break;
}
case NRG_DT_S16: {
int16_t value_buff = ((int16_t)buffer[3])<<8 | buffer[4];
value = (float)value_buff;
break;
}
case NRG_DT_U16: {
uint16_t value_buff = ((uint16_t)buffer[3])<<8 | buffer[4];
value = (float)value_buff;
break;
}
case NRG_DT_S32: {
int32_t value_buff = ((int32_t)buffer[3])<<24 | ((uint32_t)buffer[4])<<16 | ((uint32_t)buffer[5])<<8 | buffer[6];
value = (float)value_buff;
break;
}
case NRG_DT_U32: {
uint32_t value_buff = ((uint32_t)buffer[3])<<24 | ((uint32_t)buffer[4])<<16 | ((uint32_t)buffer[5])<<8 | buffer[6];
value = (float)value_buff;
break;
}
}
value /= NrgMbsReg[NrgMbsParam.state].divider;
switch (NrgMbsParam.state) {
case NRG_MBS_VOLTAGE:
Energy.voltage[NrgMbsParam.phase] = value; // 230.2 V
break;
case NRG_MBS_CURRENT:
Energy.current[NrgMbsParam.phase] = value; // 1.260 A
break;
case NRG_MBS_ACTIVE_POWER:
Energy.active_power[NrgMbsParam.phase] = value; // -196.3 W
break;
case NRG_MBS_APPARENT_POWER:
Energy.apparent_power[NrgMbsParam.phase] = value; // 223.4 VA
break;
case NRG_MBS_REACTIVE_POWER:
Energy.reactive_power[NrgMbsParam.phase] = value; // 92.2
break;
case NRG_MBS_POWER_FACTOR:
Energy.power_factor[NrgMbsParam.phase] = value; // -0.91
break;
case NRG_MBS_FREQUENCY:
Energy.frequency[NrgMbsParam.phase] = value; // 50.0 Hz
break;
case NRG_MBS_TOTAL_ENERGY:
Energy.import_active[NrgMbsParam.phase] = value; // 6.216 kWh => used in EnergyUpdateTotal()
break;
case NRG_MBS_EXPORT_ACTIVE_ENERGY:
Energy.export_active[NrgMbsParam.phase] = value; // 478.492 kWh
break;
default:
if (NrgMbsUser) {
NrgMbsUser[NrgMbsParam.state - NRG_MBS_MAX_REGS].data[NrgMbsParam.phase] = value;
}
}
do {
NrgMbsParam.phase++;
if (NrgMbsParam.phase >= Energy.phase_count) {
NrgMbsParam.phase = 0;
NrgMbsParam.state++;
if (NrgMbsParam.state >= NrgMbsParam.total_regs) {
NrgMbsParam.state = 0;
NrgMbsParam.phase = 0;
EnergyUpdateTotal(); // update every cycle after all registers have been read
break;
}
}
delay(0);
} while (NrgMbsReg[NrgMbsParam.state].address[NrgMbsParam.phase] == nrg_mbs_reg_not_used);
}
} // end data ready
if (0 == NrgMbsParam.retry || data_ready) {
NrgMbsParam.retry = 1;
register_count = 2 - (NrgMbsReg[NrgMbsParam.state].datatype & 1);
EnergyModbus->Send(NrgMbsParam.device_address, NrgMbsParam.function, NrgMbsReg[NrgMbsParam.state].address[NrgMbsParam.phase], register_count);
} else {
NrgMbsParam.retry--;
#ifdef ENERGY_MODBUS_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Modbus state %d retry %d"), NrgMbsParam.state, NrgMbsParam.retry);
#endif
}
delay(0);
NrgMbsParam.mutex = 0;
}
#ifdef USE_RULES
bool EnergyModbusReadUserRegisters(JsonParserObject user_add_value, uint32_t add_index) {
// {"R":0x004E,"T":0,"M":1,"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":3}
uint32_t reg_index = NRG_MBS_MAX_REGS + add_index;
JsonParserToken val;
val = user_add_value[PSTR("R")]; // Register address
uint32_t phase = 0;
if (val.isArray()) {
JsonParserArray address_arr = val.getArray();
for (auto value : address_arr) {
NrgMbsReg[reg_index].address[phase] = value.getUInt();
phase++;
if (phase >= ENERGY_MAX_PHASES) { break; }
}
} else if (val) {
NrgMbsReg[reg_index].address[0] = val.getUInt();
phase++;
} else {
return false;
}
if (phase > Energy.phase_count) {
Energy.phase_count = phase;
}
val = user_add_value[PSTR("T")]; // Register data type
if (val) {
// "T":0
NrgMbsReg[reg_index].datatype = val.getUInt();
}
val = user_add_value[PSTR("M")]; // Register divider
if (val) {
// "M":1
NrgMbsReg[reg_index].divider = val.getUInt();
}
val = user_add_value[PSTR("J")]; // JSON value name
if (val) {
NrgMbsUser[add_index].json_name = SetStr(val.getStr());
} else {
return false;
}
val = user_add_value[PSTR("G")]; // GUI value name
if (val) {
NrgMbsUser[add_index].gui_name = SetStr(val.getStr());
} else {
return false;
}
NrgMbsUser[add_index].gui_unit = EmptyStr;
val = user_add_value[PSTR("U")]; // GUI value Unit
if (val) {
NrgMbsUser[add_index].gui_unit = SetStr(val.getStr());
}
NrgMbsUser[add_index].resolution = ENERGY_MODBUS_DECIMALS;
val = user_add_value[PSTR("D")]; // Decimal resolution
if (val) {
NrgMbsUser[add_index].resolution = val.getUInt();
}
#ifdef ENERGY_MODBUS_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Idx %d, R [%04X,%04X,%04X], T %d, M %d, J '%s', G '%s', U '%s', D %d"),
add_index,
NrgMbsReg[reg_index].address[0],
NrgMbsReg[reg_index].address[1],
NrgMbsReg[reg_index].address[2],
NrgMbsReg[reg_index].datatype,
NrgMbsReg[reg_index].divider,
NrgMbsUser[add_index].json_name,
NrgMbsUser[add_index].gui_name,
NrgMbsUser[add_index].gui_unit,
NrgMbsUser[add_index].resolution);
#endif
return true;
}
#endif // USE_RULES
bool EnergyModbusReadRegisters(void) {
#ifdef USE_RULES
String modbus = RuleLoadFile("MODBUS");
if (!modbus.length()) { return false; } // File not found
// AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: File '%s'"), modbus.c_str());
const char* json = modbus.c_str();
uint32_t len = strlen(json) +1;
if (len < 7) { return false; } // Invalid JSON
char json_buffer[len];
memcpy(json_buffer, json, len); // Keep original safe
JsonParser parser(json_buffer);
JsonParserObject root = parser.getRootObject();
if (!root) { return false; } // Invalid JSON
// Init defaults
NrgMbsParam.serial_bps = ENERGY_MODBUS_SPEED;
NrgMbsParam.serial_config = ENERGY_MODBUS_CONFIG;
NrgMbsParam.device_address = ENERGY_MODBUS_ADDR;
NrgMbsParam.function = ENERGY_MODBUS_FUNC;
NrgMbsParam.user_adds = 0;
JsonParserToken val;
val = root[PSTR("User")];
if (val) {
if (val.isArray()) {
// "User":[{"R":0x004E,"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":3},{"R":0x0024,"J":"PhaseAngle","G":"Phase Angle","U":"Deg","D":2}]
NrgMbsParam.user_adds = val.size();
} else {
// "User":{"R":0x004E,"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":3}
NrgMbsParam.user_adds = 1;
}
}
NrgMbsParam.total_regs = NRG_MBS_MAX_REGS + NrgMbsParam.user_adds;
NrgMbsReg = (NrgMbsRegister_t*)calloc(NrgMbsParam.total_regs, sizeof(NrgMbsRegister_t));
if (NrgMbsReg == nullptr) { return false; } // Unable to allocate variables on heap
// Init defaults
for (uint32_t i = 0; i < NrgMbsParam.total_regs; i++) {
NrgMbsReg[i].datatype = ENERGY_MODBUS_DATATYPE;
NrgMbsReg[i].divider = ENERGY_MODBUS_DIVIDER;
for (uint32_t j = 0; j < ENERGY_MAX_PHASES; j++) {
NrgMbsReg[i].address[j] = nrg_mbs_reg_not_used;
}
}
if (NrgMbsParam.user_adds) {
NrgMbsUser = (NrgMbsUser_t*)calloc(NrgMbsParam.user_adds +1, sizeof(NrgMbsUser_t));
if (NrgMbsUser == nullptr) {
NrgMbsParam.user_adds = 0;
NrgMbsParam.total_regs = NRG_MBS_MAX_REGS;
} else {
// Init defaults
for (uint32_t i = 0; i < NrgMbsParam.user_adds; i++) {
NrgMbsUser[i].resolution = ENERGY_MODBUS_DECIMALS;
for (uint32_t j = 0; j < ENERGY_MAX_PHASES; j++) {
NrgMbsUser[i].data[j] = NAN;
}
}
}
}
val = root[PSTR("Baud")];
if (val) {
NrgMbsParam.serial_bps = val.getInt(); // 2400
}
val = root[PSTR("Config")];
if (val) {
const char *serial_config = val.getStr(); // 8N1
NrgMbsParam.serial_config = ConvertSerialConfig(ParseSerialConfig(serial_config));
}
val = root[PSTR("Address")];
if (val) {
NrgMbsParam.device_address = val.getUInt(); // 1
}
val = root[PSTR("Function")];
if (val) {
NrgMbsParam.function = val.getUInt(); // 4
}
char register_name[32];
Energy.voltage_available = false; // Disable voltage is measured
Energy.current_available = false; // Disable current is measured
for (uint32_t names = 0; names < NRG_MBS_MAX_REGS; names++) {
val = root[GetTextIndexed(register_name, sizeof(register_name), names, kEnergyModbusValues)];
if (val) {
// "Voltage":0
// "Voltage":[0,0,0]
// "Voltage":{"R":0,"T":0,"M":1}
// "Voltage":{"R":[0,0,0],"T":0,"M":1}
uint32_t phase = 0;
if (val.isObject()) {
// "Voltage":{"R":0,"T":0,"M":1}
// "Voltage":{"R":[0,0,0],"T":0,"M":1}
JsonParserObject register_add_values = val.getObject();
val = register_add_values[PSTR("R")]; // Register address
if (val.isArray()) {
// "R":[0,0,0]
JsonParserArray address_arr = val.getArray();
for (auto value : address_arr) {
NrgMbsReg[names].address[phase] = value.getUInt();
phase++;
if (phase >= ENERGY_MAX_PHASES) { break; }
}
} else if (val) {
// "R":0
NrgMbsReg[names].address[0] = val.getUInt();
phase++;
}
val = register_add_values[PSTR("T")]; // Register data type
if (val) {
// "T":0
NrgMbsReg[names].datatype = val.getUInt();
}
val = register_add_values[PSTR("M")]; // Register divider
if (val) {
// "M":1
NrgMbsReg[names].divider = val.getUInt();
}
} else if (val.isArray()) {
// "Voltage":[0,0,0]
JsonParserArray arr = val.getArray();
for (auto value : arr) {
NrgMbsReg[names].address[phase] = value.getUInt();
phase++;
if (phase >= ENERGY_MAX_PHASES) { break; }
}
} else if (val) {
// "Voltage":0
NrgMbsReg[names].address[0] = val.getUInt();
phase++;
}
if (phase > Energy.phase_count) {
Energy.phase_count = phase;
}
switch(names) {
case NRG_MBS_VOLTAGE:
Energy.voltage_available = true; // Enable if voltage is measured
if (1 == phase) {
Energy.voltage_common = true; // Use common voltage
}
break;
case NRG_MBS_CURRENT:
Energy.current_available = true; // Enable if current is measured
break;
case NRG_MBS_FREQUENCY:
if (1 == phase) {
Energy.frequency_common = true; // Use common frequency
}
break;
case NRG_MBS_TOTAL_ENERGY:
Settings->flag3.hardware_energy_total = 1; // SetOption72 - Enable hardware energy total counter as reference (#6561)
break;
}
#ifdef ENERGY_MODBUS_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Idx %d, R [%04X,%04X,%04X], T %d, M %d"),
names,
NrgMbsReg[names].address[0],
NrgMbsReg[names].address[1],
NrgMbsReg[names].address[2],
NrgMbsReg[names].datatype,
NrgMbsReg[names].divider);
#endif
}
}
// "User":{"R":0x004E,"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":3}
// "User":[{"R":0x004E,"J":"ExportReactive","G":"Export Reactive","U":"kVArh","D":3},{"R":0x0024,"J":"PhaseAngle","G":"Phase Angle","U":"Deg","D":2}]
val = root[PSTR("User")];
if (val) {
if (val.isArray()) {
JsonParserArray user_adds_arr = val.getArray();
uint32_t add_index = 0;
for (auto user_add_values : user_adds_arr) {
if (!user_add_values.isObject()) { break; }
if (EnergyModbusReadUserRegisters(user_add_values.getObject(), add_index)) {
add_index++;
} else {
AddLog(LOG_LEVEL_INFO, PSTR("NRG: Dropped JSON user input %d"), add_index +1);
NrgMbsParam.user_adds--;
}
}
} else if (val) {
if (val.isObject()) {
if (!EnergyModbusReadUserRegisters(val.getObject(), 0)) {
AddLog(LOG_LEVEL_INFO, PSTR("NRG: Dropped JSON user input"));
NrgMbsParam.user_adds--;
}
}
}
NrgMbsParam.total_regs = NRG_MBS_MAX_REGS + NrgMbsParam.user_adds;
}
for (uint32_t i = 0; i < NrgMbsParam.total_regs; i++) {
if (NrgMbsReg[i].datatype >= NRG_DT_MAX) {
NrgMbsReg[i].datatype = ENERGY_MODBUS_DATATYPE;
}
if (NrgMbsReg[i].divider < 1) {
NrgMbsReg[i].divider = ENERGY_MODBUS_DIVIDER;
}
}
#ifdef ENERGY_MODBUS_DEBUG
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: RAM usage %d + %d + %d"), sizeof(NrgMbsParam), NrgMbsParam.total_regs * sizeof(NrgMbsRegister_t), NrgMbsParam.user_adds * sizeof(NrgMbsUser_t));
#endif
// NrgMbsParam.state = 0; // Set by calloc()
// NrgMbsParam.phase = 0;
return true;
#endif // USE_RULES
return false;
}
bool EnergyModbusRegisters(void) {
if (EnergyModbusReadRegisters()) {
return true;
}
AddLog(LOG_LEVEL_INFO, PSTR("NRG: No valid modbus data"));
return false;
}
void EnergyModbusSnsInit(void) {
if (EnergyModbusRegisters()) {
EnergyModbus = new TasmotaModbus(Pin(GPIO_NRG_MBS_RX), Pin(GPIO_NRG_MBS_TX), Pin(GPIO_NRG_MBS_TX_ENA));
uint8_t result = EnergyModbus->Begin(NrgMbsParam.serial_bps, NrgMbsParam.serial_config);
if (result) {
if (2 == result) { ClaimSerial(); }
#ifdef ENERGY_MODBUS_TICKER
ticker_energy_modbus.attach_ms(200, EnergyModbusLoop);
#endif // ENERGY_MODBUS_TICKER
return;
}
}
TasmotaGlobal.energy_driver = ENERGY_NONE;
}
void EnergyModbusDrvInit(void) {
if (PinUsed(GPIO_NRG_MBS_RX) && PinUsed(GPIO_NRG_MBS_TX)) {
TasmotaGlobal.energy_driver = XNRG_29;
}
}
/*********************************************************************************************\
* Additional presentation
\*********************************************************************************************/
void EnergyModbusReset(void) {
for (uint32_t i = 0; i < NrgMbsParam.user_adds; i++) {
for (uint32_t j = 0; j < ENERGY_MAX_PHASES; j++) {
if (NrgMbsReg[NRG_MBS_MAX_REGS + i].address[0] != nrg_mbs_reg_not_used) {
NrgMbsUser[i].data[j] = 0;
}
}
}
}
uint32_t EnergyModbusResolution(uint32_t resolution) {
if (resolution >= NRG_RES_VOLTAGE) {
switch (resolution) {
case NRG_RES_VOLTAGE:
return Settings->flag2.voltage_resolution;
case NRG_RES_CURRENT:
return Settings->flag2.current_resolution;
case NRG_RES_POWER:
return Settings->flag2.wattage_resolution;
case NRG_RES_ENERGY:
return Settings->flag2.energy_resolution;
case NRG_RES_FREQUENCY:
return Settings->flag2.frequency_resolution;
case NRG_RES_TEMPERATURE:
return Settings->flag2.temperature_resolution;
case NRG_RES_HUMIDITY:
return Settings->flag2.humidity_resolution;
case NRG_RES_PRESSURE:
return Settings->flag2.pressure_resolution;
case NRG_RES_WEIGHT:
return Settings->flag2.weight_resolution;
}
}
return resolution;
}
void EnergyModbusShow(bool json) {
char value_chr[GUISZ];
float values[ENERGY_MAX_PHASES];
for (uint32_t i = 0; i < NrgMbsParam.user_adds; i++) {
uint32_t reg_index = NRG_MBS_MAX_REGS + i;
#ifdef ENERGY_MODBUS_DEBUG_SHOW
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Idx %d, R [%04X,%04X,%04X], J '%s', G '%s', U '%s', D %d, V [%3_f,%3_f,%3_f]"),
i,
NrgMbsReg[reg_index].address[0],
NrgMbsReg[reg_index].address[1],
NrgMbsReg[reg_index].address[2],
NrgMbsUser[i].json_name,
NrgMbsUser[i].gui_name,
NrgMbsUser[i].gui_unit,
NrgMbsUser[i].resolution,
&NrgMbsUser[i].data[0],
&NrgMbsUser[i].data[1],
&NrgMbsUser[i].data[2]);
#endif
if ((NrgMbsReg[reg_index].address[0] != nrg_mbs_reg_not_used) && !isnan(NrgMbsUser[i].data[0])) {
for (uint32_t j = 0; j < ENERGY_MAX_PHASES; j++) {
values[j] = NrgMbsUser[i].data[j];
}
uint32_t resolution = EnergyModbusResolution(NrgMbsUser[i].resolution);
uint32_t single = (!isnan(NrgMbsUser[i].data[1]) && !isnan(NrgMbsUser[i].data[2])) ? 0 : 1;
#ifdef ENERGY_MODBUS_DEBUG_SHOW
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: resolution %d -> %d"), NrgMbsUser[i].resolution, resolution);
#endif
if (json) {
ResponseAppend_P(PSTR(",\"%s\":%s"), NrgMbsUser[i].json_name, EnergyFormat(value_chr, values, resolution, single));
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(PSTR("{s}%s{m}%s %s{e}"),
NrgMbsUser[i].gui_name,
WebEnergyFormat(value_chr, values, resolution, single),
NrgMbsUser[i].gui_unit);
#endif // USE_WEBSERVER
}
}
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xnrg29(uint32_t function) {
bool result = false;
switch (function) {
#ifndef ENERGY_MODBUS_TICKER
// case FUNC_EVERY_200_MSECOND: // Energy ticker interrupt
case FUNC_EVERY_250_MSECOND: // Tasmota dispatcher
EnergyModbusLoop();
break;
#endif // No ENERGY_MODBUS_TICKER
case FUNC_JSON_APPEND:
EnergyModbusShow(1);
break;
#ifdef USE_WEBSERVER
#ifdef USE_ENERGY_COLUMN_GUI
case FUNC_WEB_COL_SENSOR:
#else // not USE_ENERGY_COLUMN_GUI
case FUNC_WEB_SENSOR:
#endif // USE_ENERGY_COLUMN_GUI
EnergyModbusShow(0);
break;
#endif // USE_WEBSERVER
case FUNC_ENERGY_RESET:
EnergyModbusReset();
break;
case FUNC_INIT:
EnergyModbusSnsInit();
break;
case FUNC_PRE_INIT:
EnergyModbusDrvInit();
break;
}
return result;
}
#endif // USE_MODBUS_ENERGY
#endif // USE_ENERGY_SENSOR