Tasmota/sonoff/xdrv_23_zigbee_4_converters...

751 lines
26 KiB
C++

/*
xdrv_23_zigbee_converters.ino - zigbee support for Sonoff-Tasmota
Copyright (C) 2019 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef USE_ZIGBEE
/*********************************************************************************************\
* ZCL
\*********************************************************************************************/
typedef union ZCLHeaderFrameControl_t {
struct {
uint8_t frame_type : 2; // 00 = across entire profile, 01 = cluster specific
uint8_t manuf_specific : 1; // Manufacturer Specific Sub-field
uint8_t direction : 1; // 0 = tasmota to zigbee, 1 = zigbee to tasmota
uint8_t disable_def_resp : 1; // don't send back default response
uint8_t reserved : 3;
} b;
uint32_t d8; // raw 8 bits field
} ZCLHeaderFrameControl_t;
class ZCLFrame {
public:
ZCLFrame(uint8_t frame_control, uint16_t manuf_code, uint8_t transact_seq, uint8_t cmd_id,
const char *buf, size_t buf_len, uint16_t clusterid = 0, uint16_t groupid = 0):
_cmd_id(cmd_id), _manuf_code(manuf_code), _transact_seq(transact_seq),
_payload(buf_len ? buf_len : 250), // allocate the data frame from source or preallocate big enough
_cluster_id(clusterid), _group_id(groupid)
{
_frame_control.d8 = frame_control;
_payload.addBuffer(buf, buf_len);
};
void publishMQTTReceived(uint16_t groupid, uint16_t clusterid, Z_ShortAddress srcaddr,
uint8_t srcendpoint, uint8_t dstendpoint, uint8_t wasbroadcast,
uint8_t linkquality, uint8_t securityuse, uint8_t seqnumber,
uint32_t timestamp) {
char hex_char[_payload.len()*2+2];
ToHex_P((unsigned char*)_payload.getBuffer(), _payload.len(), hex_char, sizeof(hex_char));
Response_P(PSTR("{\"" D_JSON_ZIGBEEZCLRECEIVED "\":{"
"\"groupid\":%d," "\"clusterid\":%d," "\"srcaddr\":\"0x%04X\","
"\"srcendpoint\":%d," "\"dstendpoint\":%d," "\"wasbroadcast\":%d,"
"\"linkquality\":%d," "\"securityuse\":%d," "\"seqnumber\":%d,"
"\"timestamp\":%d,"
"\"fc\":\"0x%02X\",\"manuf\":\"0x%04X\",\"transact\":%d,"
"\"cmdid\":\"0x%02X\",\"payload\":\"%s\""),
groupid, clusterid, srcaddr,
srcendpoint, dstendpoint, wasbroadcast,
linkquality, securityuse, seqnumber,
timestamp,
_frame_control, _manuf_code, _transact_seq, _cmd_id,
hex_char);
ResponseJsonEnd(); // append '}'
ResponseJsonEnd(); // append '}'
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCLSENT));
XdrvRulesProcess();
}
static ZCLFrame parseRawFrame(const SBuffer &buf, uint8_t offset, uint8_t len, uint16_t clusterid, uint16_t groupid) { // parse a raw frame and build the ZCL frame object
uint32_t i = offset;
ZCLHeaderFrameControl_t frame_control;
uint16_t manuf_code = 0;
uint8_t transact_seq;
uint8_t cmd_id;
frame_control.d8 = buf.get8(i++);
if (frame_control.b.manuf_specific) {
manuf_code = buf.get16(i);
i += 2;
}
transact_seq = buf.get8(i++);
cmd_id = buf.get8(i++);
ZCLFrame zcl_frame(frame_control.d8, manuf_code, transact_seq, cmd_id,
(const char *)(buf.buf() + i), len + offset - i,
clusterid, groupid);
return zcl_frame;
}
bool isClusterSpecificCommand(void) {
return _frame_control.b.frame_type & 1;
}
void parseRawAttributes(JsonObject& json, uint8_t offset = 0);
void parseClusterSpecificCommand(JsonObject& json, uint8_t offset = 0);
void postProcessAttributes(JsonObject& json);
inline void setGroupId(uint16_t groupid) {
_group_id = groupid;
}
inline void setClusterId(uint16_t clusterid) {
_cluster_id = clusterid;
}
inline uint8_t getCmdId(void) const {
return _cmd_id;
}
inline uint16_t getClusterId(void) const {
return _cluster_id;
}
const SBuffer &getPayload(void) const {
return _payload;
}
private:
ZCLHeaderFrameControl_t _frame_control = { .d8 = 0 };
uint16_t _manuf_code = 0; // optional
uint8_t _transact_seq = 0; // transaction sequence number
uint8_t _cmd_id = 0;
uint16_t _cluster_id = 0;
uint16_t _group_id = 0;
SBuffer _payload;
};
char Hex36Char(uint8_t value) {
// convert an integer from 0 to 46, to a single digit 0-9A-Z
if (value < 10) {
return '0' + value;
} else if (value < 46) {
return 'A' + value - 10;
} else {
return '?'; // out of range
}
}
// Zigbee ZCL converters
// from https://github.com/Koenkk/zigbee-shepherd-converters/blob/638d29f0cace6343052b9a4e7fd60980fa785479/converters/fromZigbee.js#L55
// Input voltage in mV, i.e. 3000 = 3.000V
// Output percentage from 0 to 100 as int
uint8_t toPercentageCR2032(uint32_t voltage) {
uint32_t percentage;
if (voltage < 2100) {
percentage = 0;
} else if (voltage < 2440) {
percentage = 6 - ((2440 - voltage) * 6) / 340;
} else if (voltage < 2740) {
percentage = 18 - ((2740 - voltage) * 12) / 300;
} else if (voltage < 2900) {
percentage = 42 - ((2900 - voltage) * 24) / 160;
} else if (voltage < 3000) {
percentage = 100 - ((3000 - voltage) * 58) / 100;
} else if (voltage >= 3000) {
percentage = 100;
}
return percentage;
}
uint32_t parseSingleAttribute(JsonObject& json, char *attrid_str, class SBuffer &buf,
uint32_t offset, uint32_t len) {
uint32_t i = offset;
uint32_t attrtype = buf.get8(i++);
// fallback - enter a null value
json[attrid_str] = (char*) nullptr;
// now parse accordingly to attr type
switch (attrtype) {
case 0x00: // nodata
case 0xFF: // unk
break;
case 0x10: // bool
{
uint8_t val_bool = buf.get8(i++);
if (0xFF != val_bool) {
json[attrid_str] = (bool) (val_bool ? true : false);
}
}
break;
case 0x20: // uint8
{
uint8_t uint8_val = buf.get8(i);
i += 1;
if (0xFF != uint8_val) {
json[attrid_str] = uint8_val;
}
}
break;
case 0x21: // uint16
{
uint16_t uint16_val = buf.get16(i);
i += 2;
if (0xFFFF != uint16_val) {
json[attrid_str] = uint16_val;
}
}
break;
case 0x23: // uint16
{
uint32_t uint32_val = buf.get32(i);
i += 4;
if (0xFFFFFFFF != uint32_val) {
json[attrid_str] = uint32_val;
}
}
break;
// Note: uint40, uint48, uint56, uint64 are not used in ZCL, so they are not implemented (yet)
case 0x24: // int40
case 0x25: // int48
case 0x26: // int56
case 0x27: // int64
i += attrtype - 0x1F; // 5 - 8;
break;
case 0x28: // uint8
{
int8_t int8_val = buf.get8(i);
i += 1;
if (0x80 != int8_val) {
json[attrid_str] = int8_val;
}
}
break;
case 0x29: // uint16
{
int16_t int16_val = buf.get16(i);
i += 2;
if (0x8000 != int16_val) {
json[attrid_str] = int16_val;
}
}
break;
case 0x2B: // uint16
{
int32_t int32_val = buf.get32(i);
i += 4;
if (0x80000000 != int32_val) {
json[attrid_str] = int32_val;
}
}
break;
// Note: int40, int48, int56, int64 are not used in ZCL, so they are not implemented (yet)
case 0x2C: // int40
case 0x2D: // int48
case 0x2E: // int56
case 0x2F: // int64
i += attrtype - 0x27; // 5 - 8;
break;
case 0x41: // octet string, 1 byte len
case 0x42: // char string, 1 byte len
case 0x43: // octet string, 2 bytes len
case 0x44: // char string, 2 bytes len
// For strings, default is to try to do a real string, but reverts to octet stream if null char is present or on some exceptions
{
bool parse_as_string = true;
uint32_t len = (attrtype <= 0x42) ? buf.get8(i) : buf.get16(i); // len is 8 or 16 bits
i += (attrtype <= 0x42) ? 1 : 2; // increment pointer
// check if we can safely use a string
if ((0x41 == attrtype) || (0x43 == attrtype)) { parse_as_string = false; }
else {
for (uint32_t j = 0; j < len; j++) {
if (0x00 == buf.get8(i+j)) {
parse_as_string = false;
break;
}
}
}
if (parse_as_string) {
char str[len+1];
strncpy(str, buf.charptr(i), len);
str[len] = 0x00;
json[attrid_str] = str;
} else {
// print as HEX
char hex[2*len+1];
ToHex_P(buf.buf(i), len, hex, sizeof(hex));
json[attrid_str] = hex;
}
i += len;
break;
}
i += buf.get8(i) + 1;
break;
// TODO
case 0x08: // data8
i++;
break;
case 0x18: // map8
i++;
break;
case 0x19: // map16
i += 2;
break;
case 0x1B: // map32
i += 4;
break;
// enum
case 0x30: // enum8
case 0x31: // enum16
i += attrtype - 0x2F;
break;
case 0x39: // float
i += 4;
break;
case 0xE0: // ToD
case 0xE1: // date
case 0xE2: // UTC
i += 4;
break;
case 0xE8: // clusterId
case 0xE9: // attribId
i += 2;
break;
case 0xEA: // bacOID
i += 4;
break;
case 0xF0: // EUI64
i += 8;
break;
case 0xF1: // key128
i += 16;
break;
// Other un-implemented data types
case 0x09: // data16
case 0x0A: // data24
case 0x0B: // data32
case 0x0C: // data40
case 0x0D: // data48
case 0x0E: // data56
case 0x0F: // data64
i += attrtype - 0x07; // 2-8
break;
// map<x>
case 0x1A: // map24
case 0x1C: // map40
case 0x1D: // map48
case 0x1E: // map56
case 0x1F: // map64
i += attrtype - 0x17;
break;
// semi
case 0x38: // semi (float on 2 bytes)
i += 2;
break;
case 0x3A: // double precision
i += 8;
break;
}
// String pp; // pretty print
// json[attrid_str].prettyPrintTo(pp);
// // now store the attribute
// AddLog_P2(LOG_LEVEL_INFO, PSTR("ZIG: ZCL attribute decoded, id %s, type 0x%02X, val=%s"),
// attrid_str, attrtype, pp.c_str());
return i - offset; // how much have we increased the index
}
// First pass, parse all attributes in their native format
// The key is 32 bits, high 16 bits is cluserid, low 16 bits is attribute id
void ZCLFrame::parseRawAttributes(JsonObject& json, uint8_t offset) {
uint32_t i = offset;
uint32_t len = _payload.len();
while (len - i >= 3) {
uint16_t attrid = _payload.get16(i);
i += 2;
char shortaddr[16];
snprintf_P(shortaddr, sizeof(shortaddr), PSTR("%c_%04X_%04X"),
Hex36Char(_cmd_id), _cluster_id, attrid);
// exception for Xiaomi lumi.weather - specific field to be treated as octet and not char
if ((0x0000 == _cluster_id) && (0xFF01 == attrid)) {
if (0x42 == _payload.get8(i)) {
_payload.set8(i, 0x41); // change type from 0x42 to 0x41
}
}
i += parseSingleAttribute(json, shortaddr, _payload, i, len);
}
}
// Parse non-normalized attributes
// The key is "s_" followed by 16 bits clusterId, "_" followed by 8 bits command id
void ZCLFrame::parseClusterSpecificCommand(JsonObject& json, uint8_t offset) {
uint32_t i = offset;
uint32_t len = _payload.len();
char attrid_str[12];
snprintf_P(attrid_str, sizeof(attrid_str), PSTR("s_%04X_%02X"), _cluster_id, _cmd_id);
char hex_char[_payload.len()*2+2];
ToHex_P((unsigned char*)_payload.getBuffer(), _payload.len(), hex_char, sizeof(hex_char));
json[attrid_str] = hex_char;
}
// return value:
// 0 = keep initial value
// 1 = remove initial value
typedef int32_t (*Z_AttrConverter)(JsonObject& json, const char *name, JsonVariant& value, const char *new_name, void * param);
typedef struct Z_AttributeConverter {
const char * filter;
const char * name;
Z_AttrConverter func;
void * param;
} Z_AttributeConverter;
const float Z_100 PROGMEM = 100.0f;
const float Z_10 PROGMEM = 10.0f;
// list of post-processing directives
const Z_AttributeConverter Z_PostProcess[] = {
{ "A_0000_0005", D_JSON_MODEL D_JSON_ID, &Z_Copy, nullptr }, // ModelID
{ "A_0400_0000", D_JSON_ILLUMINANCE, &Z_Copy, nullptr }, // Illuminance (in Lux)
{ "A_0400_0004", "LightSensorType", &Z_Copy, nullptr }, // LightSensorType
{ "A_0400_????", nullptr, &Z_Remove, nullptr }, // Remove all other values
{ "A_0401_0000", "LevelStatus", &Z_Copy, nullptr }, // Illuminance (in Lux)
{ "A_0401_0001", "LightSensorType", &Z_Copy, nullptr }, // LightSensorType
{ "A_0401_????", nullptr, &Z_Remove, nullptr }, // Remove all other values
{ "A_0402_0000", D_JSON_TEMPERATURE, &Z_ConvFloatDivider, (void*) &Z_100 }, // Temperature
{ "A_0402_????", nullptr, &Z_Remove, nullptr }, // Remove all other values
{ "A_0403_0000", D_JSON_PRESSURE_UNIT, &Z_Const_Keep, (void*) D_UNIT_PRESSURE}, // Pressure Unit
{ "A_0403_0000", D_JSON_PRESSURE, &Z_Copy, nullptr }, // Pressure
{ "A_0403_????", nullptr, &Z_Remove, nullptr }, // Remove all other Pressure values
{ "A_0404_0000", D_JSON_FLOWRATE, &Z_ConvFloatDivider, (void*) &Z_10 }, // Flow (in m3/h)
{ "A_0404_????", nullptr, &Z_Remove, nullptr }, // Remove all other values
{ "A_0405_0000", D_JSON_HUMIDITY, &Z_ConvFloatDivider, (void*) &Z_100 }, // Humidity
{ "A_0405_????", nullptr, &Z_Remove, nullptr }, // Remove all other values
{ "A_0406_0000", "Occupancy", &Z_Copy, nullptr }, // Occupancy (map8)
{ "A_0406_0001", "OccupancySensorType", &Z_Copy, nullptr }, // OccupancySensorType
{ "A_0406_????", nullptr, &Z_Remove, nullptr }, // Remove all other values
// Cmd 0x0A - Cluster 0x0000, attribute 0xFF01 - proprietary
{ "A_0000_FF01", nullptr, &Z_AqaraSensor, nullptr }, // Occupancy (map8)
// // 0x0b04 Electrical Measurement
// { "A_0B04_0100", "DCVoltage", &Z_Copy, nullptr }, // Occupancy (map8)
// { "A_0B04_0001", "OccupancySensorType", &Z_Copy, nullptr }, // OccupancySensorType
// { "A_0B04_????", "", &Z_Remove, nullptr }, // Remove all other values
};
// ======================================================================
// Remove attribute
int32_t Z_Remove(JsonObject& json, const char *name, JsonVariant& value, const char *new_name, void * param) {
return 1; // remove original key
}
// Copy value as-is
int32_t Z_Copy(JsonObject& json, const char *name, JsonVariant& value, const char *new_name, void * param) {
json[new_name] = value;
return 1; // remove original key
}
// Copy value as-is
int32_t Z_Const_Keep(JsonObject& json, const char *name, JsonVariant& value, const char *new_name, void * param) {
json[new_name] = (char*)param;
return 0; // keep original key
}
// Convert int to float with divider
int32_t Z_ConvFloatDivider(JsonObject& json, const char *name, JsonVariant& value, const char *new_name, void * param) {
float f_value = value;
float *divider = (float*) param;
json[new_name] = f_value / *divider;
return 1; // remove original key
}
int32_t Z_AqaraSensor(JsonObject& json, const char *name, JsonVariant& value, const char *new_name, void * param) {
String hex = value;
SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
uint32_t i = 0;
uint32_t len = buf2.len();
char shortaddr[8];
char tmp[] = "tmp"; // for obscure reasons, it must be converted from const char* to char*, otherwise ArduinoJson gets confused
JsonVariant sub_value;
while (len - i >= 2) {
uint8_t attrid = buf2.get8(i++);
i += parseSingleAttribute(json, tmp, buf2, i, len);
float val = json[tmp];
json.remove(tmp);
if (0x64 == attrid) {
json[F(D_JSON_TEMPERATURE)] = val / 100.0f;
} else if (0x65 == attrid) {
json[F(D_JSON_HUMIDITY)] = val / 100.0f;
} else if (0x66 == attrid) {
json[F(D_JSON_PRESSURE)] = val / 100.0f;
json[F(D_JSON_PRESSURE_UNIT)] = F(D_UNIT_PRESSURE); // hPa
} else if (0x01 == attrid) {
json[F(D_JSON_VOLTAGE)] = val / 1000.0f;
json[F("Battery")] = toPercentageCR2032(val);
}
}
return 1; // remove original key
}
// ======================================================================
#define ZCL_MODELID "A_0000_0005" // Cmd 0x0A - Cluster 0x0000, attribute 0x05
#define ZCL_TEMPERATURE "A_0402_0000" // Cmd 0x0A - Cluster 0x0402, attribute 0x00
#define ZCL_PRESSURE "A_0403_0000" // Cmd 0x0A - Cluster 0x0403, attribute 0x00
#define ZCL_PRESSURE_SCALED "A_0403_0010" // Cmd 0x0A - Cluster 0x0403, attribute 0x10
#define ZCL_PRESSURE_SCALE "A_0403_0014" // Cmd 0x0A - Cluster 0x0403, attribute 0x14
#define ZCL_HUMIDITY "A_0405_0000" // Cmd 0x0A - Cluster 0x0403, attribute 0x00
#define ZCL_LUMI_WEATHER "A_0000_FF01" // Cmd 0x0A - Cluster 0x0000, attribute 0xFF01 - proprietary
// Cluster Specific commands
#define ZCL_OO_OFF "s_0006_00" // Cluster 0x0006, cmd 0x00 - On/Off - Off
#define ZCL_OO_ON "s_0006_01" // Cluster 0x0006, cmd 0x01 - On/Off - On
#define ZCL_COLORTEMP_MOVE "s_0300_0A" // Cluster 0x0300, cmd 0x0A, Move to Color Temp
#define ZCL_LC_MOVE "s_0008_00" // Cluster 0x0008, cmd 0x00, Level Control Move to Level
#define ZCL_LC_MOVE_1 "s_0008_01" // Cluster 0x0008, cmd 0x01, Level Control Move
#define ZCL_LC_STEP "s_0008_02" // Cluster 0x0008, cmd 0x02, Level Control Step
#define ZCL_LC_STOP "s_0008_03" // Cluster 0x0008, cmd 0x03, Level Control Stop
#define ZCL_LC_MOVE_WOO "s_0008_04" // Cluster 0x0008, cmd 0x04, Level Control Move to Level, with On/Off
#define ZCL_LC_MOVE_1_WOO "s_0008_05" // Cluster 0x0008, cmd 0x05, Level Control Move, with On/Off
#define ZCL_LC_STEP_WOO "s_0008_06" // Cluster 0x0008, cmd 0x05, Level Control Step, with On/Off
#define ZCL_LC_STOP_WOO "s_0008_07" // Cluster 0x0008, cmd 0x07, Level Control Stop
// inspired from https://github.com/torvalds/linux/blob/master/lib/glob.c
bool mini_glob_match(char const *pat, char const *str) {
for (;;) {
unsigned char c = *str++;
unsigned char d = *pat++;
switch (d) {
case '?': /* Wildcard: anything but nul */
if (c == '\0')
return false;
break;
case '\\':
d = *pat++;
/*FALLTHROUGH*/
default: /* Literal character */
if (c == d) {
if (d == '\0')
return true;
break;
}
return false; /* No point continuing */
}
}
}
void ZCLFrame::postProcessAttributes(JsonObject& json) {
// iterate on json elements
for (auto kv : json) {
String key = kv.key;
JsonVariant& value = kv.value;
// Iterate on filter
for (uint32_t i = 0; i < sizeof(Z_PostProcess) / sizeof(Z_PostProcess[0]); i++) {
const Z_AttributeConverter *converter = &Z_PostProcess[i];
if (mini_glob_match(converter->filter, key.c_str())) {
int32_t drop = (*converter->func)(json, key.c_str(), value, converter->name, converter->param);
if (drop) {
json.remove(key);
}
}
}
}
}
//void ZCLFrame::postProcessAttributes2(JsonObject& json) {
// void postProcessAttributes2(JsonObject& json) {
// const __FlashStringHelper *key;
//
// // Osram Mini Switch
// key = F(ZCL_OO_OFF);
// if (json.containsKey(key)) {
// json.remove(key);
// json[F(D_CMND_POWER)] = F("Off");
// }
// key = F(ZCL_OO_ON);
// if (json.containsKey(key)) {
// json.remove(key);
// json[F(D_CMND_POWER)] = F("On");
// }
// key = F(ZCL_COLORTEMP_MOVE);
// if (json.containsKey(key)) {
// String hex = json[key];
// SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
// uint16_t color_temp = buf2.get16(0);
// uint16_t transition_time = buf2.get16(2);
// json.remove(key);
// json[F("ColorTemp")] = color_temp;
// json[F("TransitionTime")] = transition_time / 10.0f;
// }
// key = F(ZCL_LC_MOVE_WOO);
// if (json.containsKey(key)) {
// String hex = json[key];
// SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
// uint8_t level = buf2.get8(0);
// uint16_t transition_time = buf2.get16(1);
// json.remove(key);
// json[F("Dimmer")] = changeUIntScale(level, 0, 255, 0, 100); // change to percentage
// json[F("TransitionTime")] = transition_time / 10.0f;
// if (0 == level) {
// json[F(D_CMND_POWER)] = F("Off");
// } else {
// json[F(D_CMND_POWER)] = F("On");
// }
// }
// key = F(ZCL_LC_MOVE);
// if (json.containsKey(key)) {
// String hex = json[key];
// SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
// uint8_t level = buf2.get8(0);
// uint16_t transition_time = buf2.get16(1);
// json.remove(key);
// json[F("Dimmer")] = changeUIntScale(level, 0, 255, 0, 100); // change to percentage
// json[F("TransitionTime")] = transition_time / 10.0f;
// }
// key = F(ZCL_LC_MOVE_1);
// if (json.containsKey(key)) {
// String hex = json[key];
// SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
// uint8_t move_mode = buf2.get8(0);
// uint8_t move_rate = buf2.get8(1);
// json.remove(key);
// json[F("Move")] = move_mode ? F("Down") : F("Up");
// json[F("Rate")] = move_rate;
// }
// key = F(ZCL_LC_MOVE_1_WOO);
// if (json.containsKey(key)) {
// String hex = json[key];
// SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
// uint8_t move_mode = buf2.get8(0);
// uint8_t move_rate = buf2.get8(1);
// json.remove(key);
// json[F("Move")] = move_mode ? F("Down") : F("Up");
// json[F("Rate")] = move_rate;
// if (0 == move_mode) {
// json[F(D_CMND_POWER)] = F("On");
// }
// }
// key = F(ZCL_LC_STEP);
// if (json.containsKey(key)) {
// String hex = json[key];
// SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
// uint8_t step_mode = buf2.get8(0);
// uint8_t step_size = buf2.get8(1);
// uint16_t transition_time = buf2.get16(2);
// json.remove(key);
// json[F("Step")] = step_mode ? F("Down") : F("Up");
// json[F("StepSize")] = step_size;
// json[F("TransitionTime")] = transition_time / 10.0f;
// }
// key = F(ZCL_LC_STEP_WOO);
// if (json.containsKey(key)) {
// String hex = json[key];
// SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
// uint8_t step_mode = buf2.get8(0);
// uint8_t step_size = buf2.get8(1);
// uint16_t transition_time = buf2.get16(2);
// json.remove(key);
// json[F("Step")] = step_mode ? F("Down") : F("Up");
// json[F("StepSize")] = step_size;
// json[F("TransitionTime")] = transition_time / 10.0f;
// if (0 == step_mode) {
// json[F(D_CMND_POWER)] = F("On");
// }
// }
// key = F(ZCL_LC_STOP);
// if (json.containsKey(key)) {
// json.remove(key);
// json[F("Stop")] = 1;
// }
// key = F(ZCL_LC_STOP_WOO);
// if (json.containsKey(key)) {
// json.remove(key);
// json[F("Stop")] = 1;
// }
//
// // Lumi.weather proprietary field
// key = F(ZCL_LUMI_WEATHER);
// if (json.containsKey(key)) {
// String hex = json[key];
// SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
// DynamicJsonBuffer jsonBuffer;
// JsonObject& json_lumi = jsonBuffer.createObject();
// uint32_t i = 0;
// uint32_t len = buf2.len();
// char shortaddr[8];
//
// while (len - i >= 2) {
// uint8_t attrid = buf2.get8(i++);
//
// snprintf_P(shortaddr, sizeof(shortaddr), PSTR("0x%02X"), attrid);
//
// //json[shortaddr] = parseSingleAttribute(json_lumi, buf2, i, len, nullptr, 0);
// }
// // parse output
// if (json_lumi.containsKey("0x64")) { // Temperature
// int32_t temperature = json_lumi["0x64"];
// json[F(D_JSON_TEMPERATURE)] = temperature / 100.0f;
// }
// if (json_lumi.containsKey("0x65")) { // Humidity
// uint32_t humidity = json_lumi["0x65"];
// json[F(D_JSON_HUMIDITY)] = humidity / 100.0f;
// }
// if (json_lumi.containsKey("0x66")) { // Pressure
// int32_t pressure = json_lumi["0x66"];
// json[F(D_JSON_PRESSURE)] = pressure / 100.0f;
// json[F(D_JSON_PRESSURE_UNIT)] = F(D_UNIT_PRESSURE); // hPa
// }
// if (json_lumi.containsKey("0x01")) { // Battery Voltage
// uint32_t voltage = json_lumi["0x01"];
// json[F(D_JSON_VOLTAGE)] = voltage / 1000.0f;
// json[F("Battery")] = toPercentageCR2032(voltage);
// }
// json.remove(key);
// }
//
// }
#endif // USE_ZIGBEE